--- license: mit library_name: mlx language: - en base_model: Zyphra/ZR1-1.5B datasets: - AI-MO/NuminaMath-CoT - codeparrot/apps - deepmind/code_contests - BAAI/TACO - MatrixStudio/Codeforces-Python-Submissions pipeline_tag: text-generation tags: - mlx --- # dinerburger/ZR1-1.5B-mlx-8bit This model [dinerburger/ZR1-1.5B-mlx-8bit](https://huggingface.co/dinerburger/ZR1-1.5B-mlx-8bit) was converted to MLX format from [Zyphra/ZR1-1.5B](https://huggingface.co/Zyphra/ZR1-1.5B) using mlx-lm version **0.22.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("dinerburger/ZR1-1.5B-mlx-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```