File size: 3,283 Bytes
c3b4d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4aa442
c3b4d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4aa442
c3b4d4f
 
 
 
 
 
 
 
 
b320da9
c3b4d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b320da9
c3b4d4f
b320da9
c3b4d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
base_model: gpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: mit
tags:
- bitnet
- 1.58b
- generated_from_trainer
model-index:
- name: distily_test_attn_identity
  results: []
---


# Summary

Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co/gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.

# Model description

More information needed

# Intended uses & limitations

More information needed
-->

# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.24 GB


# Benchmark Metrics Comparison

| Metric |  |
| :--- |

# Resource Usage Comparison

- VRAM Use: 7.7831 GB

# Distillation (Teacher -> Student) Architecture Difference:

- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 124,439,808
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.24 GB

<details>
<summary>Module Diff Details</summary>

```diff

```

</details>
<br/>

# Train Dataset
Trained on 145,744,973 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.

- Num Samples: `247,500`
- Subset: `20231101.en`
- Split: `train`


# Training Objective

```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=identity))
```

# Hyperparameters
The following hyperparameters were used during training:

<details>
<summary>Expand</summary>

- learning_rate: `0.0001`
- train_batch_size: `4`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `cosine_with_min_lr`
- lr_scheduler_warmup_ratio: `0.5`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=identity))`
- train_embeddings: `True`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7fb8899c3c40>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `None`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `True`
- dropout: `None`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `250000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0.5`
- warmup_steps: `0`
- gradient_checkpointing: `True`

</details>
<br/>


# Framework Versions
- Distily 0.3.0
- Transformers 4.44.1
- Pytorch 2.4.0+cu121
- Datasets 2.21.0