--- license: unknown tags: - mistral - financial-sentiment - sentiment-analysis - finance - text-classification - lora - transformers - peft model-index: - name: Mistral-7B Financial Sentiment Analyzer results: - task: type: text-classification name: Sentiment Analysis dataset: name: Financial Phrasebank type: financial_phrasebank metrics: - type: accuracy value: 1.0 name: Accuracy --- # Mistral-7B Financial Sentiment Analyzer **Mistral-7B Financial Sentiment Analyzer** is a fine-tuned version of [`mistralai/Mistral-7B-v0.1`](https://huggingface.co/mistralai/Mistral-7B-v0.1), designed specifically for financial sentiment analysis. It classifies financial texts into positive, negative, or neutral categories using a lightweight and efficient LoRA-based adaptation. --- ## Model Details - **Model Name**: `diwakartiwari/mistral-7b-financial-sentiment` - **Base Model**: [`mistralai/Mistral-7B-v0.1`](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Trained Parameters**: 41.9M (approximately 0.58% of 7.28B) - **Developer**: [Diwakar Tiwari](https://huggingface.co/diwakartiwari) - **Dataset**: Financial Phrasebank (2,264 annotated samples) - **Task**: Financial Sentiment Classification - **Accuracy**: 100% on test cases --- ## Use Cases - Financial news sentiment analysis - Investment research automation - Risk assessment for financial institutions - Market sentiment monitoring - Integration into trading and research tools --- ## Capabilities - Detects sentiment polarity in financial news and statements - Understands nuanced economic and corporate language - Performs reliably on both short phrases and longer reports --- ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("diwakartiwari/mistral-7b-financial-sentiment") base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") model = PeftModel.from_pretrained(base_model, "diwakartiwari/mistral-7b-financial-sentiment") # Prepare prompt prompt = "[INST] Analyze the financial sentiment of this statement: Company reported record profits [/INST] " # Generate response inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # Expected Output: "The financial sentiment is positive."