Audionar long form
Browse files- README.md +3 -3
- Utils/text_utils.py +5 -17
- audiobook.py +2 -1
- correct_figure.py +0 -378
- demo.py +4 -4
- visualize_per_sentence.py +0 -251
README.md
CHANGED
@@ -14,13 +14,13 @@ tags:
|
|
14 |
- mimic3
|
15 |
---
|
16 |
|
17 |
-
Audionar -
|
18 |
|
19 |
[](https://shift-europe.eu/)
|
20 |
|
21 |
##
|
22 |
|
23 |
-
# SHIFT TTS /
|
24 |
|
25 |
Phonetic variation of [SHIFT TTS](https://audeering.github.io/shift/) blend to [AudioGen soundscapes](https://huggingface.co/dkounadis/artificial-styletts2/discussions/3)
|
26 |
- [Analysis of emotion of SHIFT TTS](https://huggingface.co/dkounadis/artificial-styletts2/discussions/2)
|
@@ -82,7 +82,7 @@ python tts.py --text assets/ocr.txt --image assets/ocr.jpg --soundscape "battle
|
|
82 |
|
83 |
## Landscape 2 Soundscapes
|
84 |
|
85 |
-
The following needs `api.py` to be already running on
|
86 |
|
87 |
```python
|
88 |
# TTS & soundscape - output .mp4 saved in ./out/
|
|
|
14 |
- mimic3
|
15 |
---
|
16 |
|
17 |
+
Audionar - Phonetic Variation of StyleTTS2 blend to AudioGen SoundScapes
|
18 |
|
19 |
[](https://shift-europe.eu/)
|
20 |
|
21 |
##
|
22 |
|
23 |
+
# SHIFT TTS / Audionar
|
24 |
|
25 |
Phonetic variation of [SHIFT TTS](https://audeering.github.io/shift/) blend to [AudioGen soundscapes](https://huggingface.co/dkounadis/artificial-styletts2/discussions/3)
|
26 |
- [Analysis of emotion of SHIFT TTS](https://huggingface.co/dkounadis/artificial-styletts2/discussions/2)
|
|
|
82 |
|
83 |
## Landscape 2 Soundscapes
|
84 |
|
85 |
+
The following needs `api.py` to be already running on another terminal
|
86 |
|
87 |
```python
|
88 |
# TTS & soundscape - output .mp4 saved in ./out/
|
Utils/text_utils.py
CHANGED
@@ -5,6 +5,10 @@ import textwrap
|
|
5 |
from num2words import num2words
|
6 |
# IPA Phonemizer: https://github.com/bootphon/phonemizer
|
7 |
import nltk
|
|
|
|
|
|
|
|
|
8 |
_pad = "$"
|
9 |
_punctuation = ';:,.!?¡¿—…"«»“” '
|
10 |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
@@ -35,23 +39,7 @@ class TextCleaner:
|
|
35 |
|
36 |
def split_into_sentences(text, max_len=120):
|
37 |
sentences = nltk.sent_tokenize(text)
|
38 |
-
limited_sentences = []
|
39 |
-
|
40 |
-
for sentence in sentences:
|
41 |
-
if len(sentence) <= max_len:
|
42 |
-
limited_sentences.append(sentence)
|
43 |
-
else:
|
44 |
-
# If a sentence is too long, try to split it more intelligently
|
45 |
-
current_chunk = ""
|
46 |
-
words = sentence.split()
|
47 |
-
for word in words:
|
48 |
-
if len(current_chunk) + len(word) + 1 <= max_len: # +1 for space
|
49 |
-
current_chunk += (word + " ").strip()
|
50 |
-
else:
|
51 |
-
limited_sentences.append(current_chunk.strip())
|
52 |
-
current_chunk = (word + " ").strip()
|
53 |
-
if current_chunk: # Add any remaining part
|
54 |
-
limited_sentences.append(current_chunk.strip())
|
55 |
return limited_sentences
|
56 |
|
57 |
|
|
|
5 |
from num2words import num2words
|
6 |
# IPA Phonemizer: https://github.com/bootphon/phonemizer
|
7 |
import nltk
|
8 |
+
#nltk.download('punkt', download_dir='./')
|
9 |
+
#nltk.download('punkt_tab', download_dir='./')
|
10 |
+
nltk.data.path.append('.')
|
11 |
+
|
12 |
_pad = "$"
|
13 |
_punctuation = ';:,.!?¡¿—…"«»“” '
|
14 |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
|
|
39 |
|
40 |
def split_into_sentences(text, max_len=120):
|
41 |
sentences = nltk.sent_tokenize(text)
|
42 |
+
limited_sentences = [i for sent in sentences for i in textwrap.wrap(sent, width=max_len)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return limited_sentences
|
44 |
|
45 |
|
audiobook.py
CHANGED
@@ -194,7 +194,8 @@ for vox in voices:
|
|
194 |
# SILENT CLIP
|
195 |
|
196 |
clip_silent = ImageClip(STATIC_FRAME).set_duration(5) # as long as the audio - TTS first
|
197 |
-
clip_silent.
|
|
|
198 |
|
199 |
|
200 |
|
|
|
194 |
# SILENT CLIP
|
195 |
|
196 |
clip_silent = ImageClip(STATIC_FRAME).set_duration(5) # as long as the audio - TTS first
|
197 |
+
clip_silent.fps = 24
|
198 |
+
clip_silent.write_videofile(SILENT_VIDEO)
|
199 |
|
200 |
|
201 |
|
correct_figure.py
DELETED
@@ -1,378 +0,0 @@
|
|
1 |
-
# we have to evaluate emotion & cer per sentence -> not audinterface sliding window
|
2 |
-
import os
|
3 |
-
import audresample
|
4 |
-
import torch
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import soundfile
|
7 |
-
import json
|
8 |
-
import audb
|
9 |
-
from transformers import AutoModelForAudioClassification
|
10 |
-
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
|
11 |
-
import types
|
12 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
13 |
-
import pandas as pd
|
14 |
-
import json
|
15 |
-
import numpy as np
|
16 |
-
from pathlib import Path
|
17 |
-
import transformers
|
18 |
-
import torch
|
19 |
-
import audmodel
|
20 |
-
import audiofile
|
21 |
-
import jiwer
|
22 |
-
# https://arxiv.org/pdf/2407.12229
|
23 |
-
# https://arxiv.org/pdf/2312.05187
|
24 |
-
# https://arxiv.org/abs/2407.05407
|
25 |
-
# https://arxiv.org/pdf/2408.06577
|
26 |
-
# https://arxiv.org/pdf/2309.07405
|
27 |
-
import msinference
|
28 |
-
import os
|
29 |
-
from random import shuffle
|
30 |
-
|
31 |
-
config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
|
32 |
-
config.dev = torch.device('cuda:0')
|
33 |
-
config.dev2 = torch.device('cuda:0')
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
LABELS = ['arousal', 'dominance', 'valence',
|
39 |
-
'Angry',
|
40 |
-
'Sad',
|
41 |
-
'Happy',
|
42 |
-
'Surprise',
|
43 |
-
'Fear',
|
44 |
-
'Disgust',
|
45 |
-
'Contempt',
|
46 |
-
'Neutral'
|
47 |
-
]
|
48 |
-
|
49 |
-
config = transformers.Wav2Vec2Config() #finetuning_task='spef2feat_reg')
|
50 |
-
config.dev = torch.device('cuda:0')
|
51 |
-
config.dev2 = torch.device('cuda:0')
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# https://arxiv.org/pdf/2407.12229
|
57 |
-
# https://arxiv.org/pdf/2312.05187
|
58 |
-
# https://arxiv.org/abs/2407.05407
|
59 |
-
# https://arxiv.org/pdf/2408.06577
|
60 |
-
# https://arxiv.org/pdf/2309.07405
|
61 |
-
|
62 |
-
|
63 |
-
def _infer(self, x):
|
64 |
-
'''x: (batch, audio-samples-16KHz)'''
|
65 |
-
x = (x + self.config.mean) / self.config.std # plus
|
66 |
-
x = self.ssl_model(x, attention_mask=None).last_hidden_state
|
67 |
-
# pool
|
68 |
-
h = self.pool_model.sap_linear(x).tanh()
|
69 |
-
w = torch.matmul(h, self.pool_model.attention)
|
70 |
-
w = w.softmax(1)
|
71 |
-
mu = (x * w).sum(1)
|
72 |
-
x = torch.cat(
|
73 |
-
[
|
74 |
-
mu,
|
75 |
-
((x * x * w).sum(1) - mu * mu).clamp(min=1e-7).sqrt()
|
76 |
-
], 1)
|
77 |
-
return self.ser_model(x)
|
78 |
-
|
79 |
-
teacher_cat = AutoModelForAudioClassification.from_pretrained(
|
80 |
-
'3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes',
|
81 |
-
trust_remote_code=True # fun definitions see 3loi/SER-.. repo
|
82 |
-
).to(config.dev2).eval()
|
83 |
-
teacher_cat.forward = types.MethodType(_infer, teacher_cat)
|
84 |
-
|
85 |
-
|
86 |
-
# ===================[:]===================== Dawn
|
87 |
-
def _prenorm(x, attention_mask=None):
|
88 |
-
'''mean/var'''
|
89 |
-
if attention_mask is not None:
|
90 |
-
N = attention_mask.sum(1, keepdim=True) # here attn msk is unprocessed just the original input
|
91 |
-
x -= x.sum(1, keepdim=True) / N
|
92 |
-
var = (x * x).sum(1, keepdim=True) / N
|
93 |
-
|
94 |
-
else:
|
95 |
-
x -= x.mean(1, keepdim=True) # mean is an onnx operator reducemean saves some ops compared to casting integer N to float and the div
|
96 |
-
var = (x * x).mean(1, keepdim=True)
|
97 |
-
return x / torch.sqrt(var + 1e-7)
|
98 |
-
|
99 |
-
from torch import nn
|
100 |
-
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
|
101 |
-
class RegressionHead(nn.Module):
|
102 |
-
r"""Classification head."""
|
103 |
-
|
104 |
-
def __init__(self, config):
|
105 |
-
|
106 |
-
super().__init__()
|
107 |
-
|
108 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
109 |
-
self.dropout = nn.Dropout(config.final_dropout)
|
110 |
-
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
111 |
-
|
112 |
-
def forward(self, features, **kwargs):
|
113 |
-
|
114 |
-
x = features
|
115 |
-
x = self.dropout(x)
|
116 |
-
x = self.dense(x)
|
117 |
-
x = torch.tanh(x)
|
118 |
-
x = self.dropout(x)
|
119 |
-
x = self.out_proj(x)
|
120 |
-
|
121 |
-
return x
|
122 |
-
|
123 |
-
|
124 |
-
class Dawn(Wav2Vec2PreTrainedModel):
|
125 |
-
r"""Speech emotion classifier."""
|
126 |
-
|
127 |
-
def __init__(self, config):
|
128 |
-
|
129 |
-
super().__init__(config)
|
130 |
-
|
131 |
-
self.config = config
|
132 |
-
self.wav2vec2 = Wav2Vec2Model(config)
|
133 |
-
self.classifier = RegressionHead(config)
|
134 |
-
self.init_weights()
|
135 |
-
|
136 |
-
def forward(
|
137 |
-
self,
|
138 |
-
input_values,
|
139 |
-
attention_mask=None,
|
140 |
-
):
|
141 |
-
x = _prenorm(input_values, attention_mask=attention_mask)
|
142 |
-
outputs = self.wav2vec2(x, attention_mask=attention_mask)
|
143 |
-
hidden_states = outputs[0]
|
144 |
-
hidden_states = torch.mean(hidden_states, dim=1)
|
145 |
-
logits = self.classifier(hidden_states)
|
146 |
-
return logits
|
147 |
-
# return {'hidden_states': hidden_states,
|
148 |
-
# 'logits': logits}
|
149 |
-
dawn = Dawn.from_pretrained('audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim').to(config.dev).eval()
|
150 |
-
# =======================================
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
torch_dtype = torch.float16 #if torch.cuda.is_available() else torch.float32
|
163 |
-
model_id = "openai/whisper-large-v3"
|
164 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
165 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
166 |
-
).to(config.dev)
|
167 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
168 |
-
_pipe = pipeline(
|
169 |
-
"automatic-speech-recognition",
|
170 |
-
model=model,
|
171 |
-
tokenizer=processor.tokenizer,
|
172 |
-
feature_extractor=processor.feature_extractor,
|
173 |
-
max_new_tokens=128,
|
174 |
-
chunk_length_s=30,
|
175 |
-
batch_size=16,
|
176 |
-
return_timestamps=True,
|
177 |
-
torch_dtype=torch_dtype,
|
178 |
-
device=config.dev,
|
179 |
-
)
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
def process_function(x, sampling_rate, idx):
|
191 |
-
# x = x[None , :] ASaHSuFDCN
|
192 |
-
# {0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise',
|
193 |
-
# 4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'}
|
194 |
-
#tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]])
|
195 |
-
logits_cat = teacher_cat(torch.from_numpy(x).to(config.dev)).softmax(1)
|
196 |
-
logits_adv = dawn(torch.from_numpy(x).to(config.dev))
|
197 |
-
|
198 |
-
out = torch.cat([logits_adv,
|
199 |
-
logits_cat],
|
200 |
-
1).cpu().detach().numpy()
|
201 |
-
# print(out.shape)
|
202 |
-
return out[0, :]
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
def load_speech(split=None):
|
207 |
-
DB = [
|
208 |
-
# [dataset, version, table, has_timdeltas_or_is_full_wavfile]
|
209 |
-
# ['crema-d', '1.1.1', 'emotion.voice.test', False],
|
210 |
-
#['librispeech', '3.1.0', 'test-clean', False],
|
211 |
-
['emodb', '1.2.0', 'emotion.categories.train.gold_standard', False],
|
212 |
-
# ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
|
213 |
-
# ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
|
214 |
-
# ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
|
215 |
-
# ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False], # tandalone bucket because it has gt labels?
|
216 |
-
# ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
|
217 |
-
# ['casia', None, 'emotion.categories.gold_standard', False],
|
218 |
-
# ['switchboard-1', None, 'sentiment', True],
|
219 |
-
# ['swiss-parliament', None, 'segments', True],
|
220 |
-
# ['argentinian-parliament', None, 'segments', True],
|
221 |
-
# ['austrian-parliament', None, 'segments', True],
|
222 |
-
# #'german', --> bundestag
|
223 |
-
# ['brazilian-parliament', None, 'segments', True],
|
224 |
-
# ['mexican-parliament', None, 'segments', True],
|
225 |
-
# ['portuguese-parliament', None, 'segments', True],
|
226 |
-
# ['spanish-parliament', None, 'segments', True],
|
227 |
-
# ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
|
228 |
-
# peoples-speech slow
|
229 |
-
# ['peoples-speech', None, 'train-initial', False]
|
230 |
-
]
|
231 |
-
|
232 |
-
output_list = []
|
233 |
-
for database_name, ver, table, has_timedeltas in DB:
|
234 |
-
|
235 |
-
a = audb.load(database_name,
|
236 |
-
sampling_rate=16000,
|
237 |
-
format='wav',
|
238 |
-
mixdown=True,
|
239 |
-
version=ver,
|
240 |
-
cache_root='/cache/audb/')
|
241 |
-
a = a[table].get()
|
242 |
-
if has_timedeltas:
|
243 |
-
print(f'{has_timedeltas=}')
|
244 |
-
# a = a.reset_index()[['file', 'start', 'end']]
|
245 |
-
# output_list += [[*t] for t
|
246 |
-
# in zip(a.file.values, a.start.dt.total_seconds().values, a.end.dt.total_seconds().values)]
|
247 |
-
else:
|
248 |
-
output_list += [f for f in a.index] # use file (no timedeltas)
|
249 |
-
return output_list
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
natural_wav_paths = load_speech()
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
with open('harvard.json', 'r') as f:
|
270 |
-
harvard_individual_sentences = json.load(f)['sentences']
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
synthetic_wav_paths = ['./enslow/' + i for i in
|
275 |
-
os.listdir('./enslow/')]
|
276 |
-
synthetic_wav_paths_4x = ['./style_vector_v2/' + i for i in
|
277 |
-
os.listdir('./style_vector_v2/')]
|
278 |
-
synthetic_wav_paths_foreign = ['./mimic3_foreign/' + i for i in os.listdir('./mimic3_foreign/') if 'en_U' not in i]
|
279 |
-
synthetic_wav_paths_foreign_4x = ['./mimic3_foreign_4x/' + i for i in os.listdir('./mimic3_foreign_4x/') if 'en_U' not in i] # very short segments
|
280 |
-
|
281 |
-
# filter very short styles
|
282 |
-
synthetic_wav_paths_foreign = [i for i in synthetic_wav_paths_foreign if audiofile.duration(i) > 2]
|
283 |
-
synthetic_wav_paths_foreign_4x = [i for i in synthetic_wav_paths_foreign_4x if audiofile.duration(i) > 2]
|
284 |
-
synthetic_wav_paths = [i for i in synthetic_wav_paths if audiofile.duration(i) > 2]
|
285 |
-
synthetic_wav_pathsn_4x = [i for i in synthetic_wav_paths_4x if audiofile.duration(i) > 2]
|
286 |
-
|
287 |
-
shuffle(synthetic_wav_paths_foreign_4x)
|
288 |
-
shuffle(synthetic_wav_paths_foreign)
|
289 |
-
shuffle(synthetic_wav_paths)
|
290 |
-
shuffle(synthetic_wav_paths_4x)
|
291 |
-
print(len(synthetic_wav_paths_foreign_4x), len(synthetic_wav_paths_foreign),
|
292 |
-
len(synthetic_wav_paths), len(synthetic_wav_paths_4x)) # 134 204 134 204
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
for audio_prompt in ['english',
|
297 |
-
'english_4x',
|
298 |
-
'human',
|
299 |
-
'foreign',
|
300 |
-
'foreign_4x']: # each of these creates a separate pkl - so outer for
|
301 |
-
#
|
302 |
-
data = np.zeros((770, len(LABELS)*2 + 2)) # 768 x LABELS-prompt & LABELS-stts2 & cer-prompt & cer-stts2
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
#
|
307 |
-
|
308 |
-
OUT_FILE = f'{audio_prompt}_analytic.pkl'
|
309 |
-
if not os.path.isfile(OUT_FILE):
|
310 |
-
ix = 0
|
311 |
-
for list_of_10 in harvard_individual_sentences[:10004]:
|
312 |
-
# long_sentence = ' '.join(list_of_10['sentences'])
|
313 |
-
# harvard.append(long_sentence.replace('.', ' '))
|
314 |
-
for text in list_of_10['sentences']:
|
315 |
-
if audio_prompt == 'english':
|
316 |
-
_p = synthetic_wav_paths[ix % len(synthetic_wav_paths)]
|
317 |
-
# 134
|
318 |
-
style_vec = msinference.compute_style(_p)
|
319 |
-
elif audio_prompt == 'english_4x':
|
320 |
-
_p = synthetic_wav_paths_4x[ix % len(synthetic_wav_paths_4x)]
|
321 |
-
# 134]
|
322 |
-
style_vec = msinference.compute_style(_p)
|
323 |
-
elif audio_prompt == 'human':
|
324 |
-
_p = natural_wav_paths[ix % len(natural_wav_paths)]
|
325 |
-
# ?
|
326 |
-
style_vec = msinference.compute_style(_p)
|
327 |
-
elif audio_prompt == 'foreign':
|
328 |
-
_p = synthetic_wav_paths_foreign[ix % len(synthetic_wav_paths_foreign)]
|
329 |
-
# 204 some short styles are discarded ~ 1180
|
330 |
-
style_vec = msinference.compute_style(_p)
|
331 |
-
elif audio_prompt == 'foreign_4x':
|
332 |
-
_p = synthetic_wav_paths_foreign_4x[ix % len(synthetic_wav_paths_foreign_4x)]
|
333 |
-
# 174
|
334 |
-
style_vec = msinference.compute_style(_p)
|
335 |
-
else:
|
336 |
-
print('unknonw list of style vector')
|
337 |
-
|
338 |
-
x = msinference.inference(text,
|
339 |
-
style_vec,
|
340 |
-
alpha=0.3,
|
341 |
-
beta=0.7,
|
342 |
-
diffusion_steps=7,
|
343 |
-
embedding_scale=1)
|
344 |
-
x = audresample.resample(x, 24000, 16000)
|
345 |
-
|
346 |
-
|
347 |
-
_st, fsr = audiofile.read(_p)
|
348 |
-
_st = audresample.resample(_st, fsr, 16000)
|
349 |
-
print(_st.shape, x.shape)
|
350 |
-
|
351 |
-
emotion_of_prompt = process_function(_st, 16000, None)
|
352 |
-
emotion_of_out = process_function(x, 16000, None)
|
353 |
-
data[ix, :11] = emotion_of_prompt
|
354 |
-
data[ix, 11:22] = emotion_of_out
|
355 |
-
|
356 |
-
# 2 last columns is cer-prompt cer-styletts2
|
357 |
-
|
358 |
-
transcription_prompt = _pipe(_st[0])
|
359 |
-
transcription_styletts2 = _pipe(x[0]) # allow singleton for EMO process func
|
360 |
-
# print(len(emotion_of_prompt + emotion_of_out), ix, text)
|
361 |
-
print(transcription_prompt, transcription_styletts2)
|
362 |
-
|
363 |
-
data[ix, 22] = jiwer.cer('Sweet dreams are made of this. I travel the world and the seven seas.',
|
364 |
-
transcription_prompt['text'])
|
365 |
-
|
366 |
-
data[ix, 23] = jiwer.cer(text,
|
367 |
-
transcription_styletts2['text'])
|
368 |
-
print(data[ix, :])
|
369 |
-
|
370 |
-
ix += 1
|
371 |
-
|
372 |
-
df = pd.DataFrame(data, columns=['prompt-' + i for i in LABELS] + ['styletts2-' + i for i in LABELS] + ['cer-prompt', 'cer-styletts2'])
|
373 |
-
df.to_pickle(OUT_FILE)
|
374 |
-
else:
|
375 |
-
|
376 |
-
df = pd.read_pickle(OUT_FILE)
|
377 |
-
print('\nALREADY EXISTS\n{df}')
|
378 |
-
# From the pickle we should also run cer and whisper on every prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import numpy as np
|
2 |
import soundfile
|
3 |
-
import msinference #
|
4 |
-
from audiocraft.builders import AudioGen #
|
5 |
|
6 |
def tts_entry(text='A quick brown fox jumps over the lazy dog. Sweet dreams are made of this, I traveled the world and the seven seas.',
|
7 |
voice='en_US/m-ailabs_low#mary_ann', # Listen to voices https://huggingface.co/dkounadis/artificial-styletts2/discussions/1
|
@@ -29,10 +29,10 @@ def tts_entry(text='A quick brown fox jumps over the lazy dog. Sweet dreams are
|
|
29 |
|
30 |
x = msinference.foreign(text=text, lang=voice)
|
31 |
|
32 |
-
x /= 1.02 * np.abs(x).max() + 1e-7 # volume amplify
|
33 |
if soundscape is not None:
|
34 |
sound_gen = AudioGen().to('cuda:0').eval()
|
35 |
-
background = sound_gen.generate(soundscape, duration=len(x)/16000 + .74, # sound duration seconds
|
36 |
).detach().cpu().numpy()
|
37 |
x = .6 * x + .4 * background[:len(x)]
|
38 |
return x
|
|
|
1 |
import numpy as np
|
2 |
import soundfile
|
3 |
+
import msinference # Prefer live_demo.py instead as this demo.py has no split to sentences to prevent OOM
|
4 |
+
from audiocraft.builders import AudioGen # fixed bug for repeated calls
|
5 |
|
6 |
def tts_entry(text='A quick brown fox jumps over the lazy dog. Sweet dreams are made of this, I traveled the world and the seven seas.',
|
7 |
voice='en_US/m-ailabs_low#mary_ann', # Listen to voices https://huggingface.co/dkounadis/artificial-styletts2/discussions/1
|
|
|
29 |
|
30 |
x = msinference.foreign(text=text, lang=voice)
|
31 |
|
32 |
+
x /= 1.02 * np.abs(x).max() + 1e-7 # volume amplify to [-1,1]
|
33 |
if soundscape is not None:
|
34 |
sound_gen = AudioGen().to('cuda:0').eval()
|
35 |
+
background = sound_gen.generate(soundscape, duration=len(x)/16000 + .74, # sound duration in seconds
|
36 |
).detach().cpu().numpy()
|
37 |
x = .6 * x + .4 * background[:len(x)]
|
38 |
return x
|
visualize_per_sentence.py
DELETED
@@ -1,251 +0,0 @@
|
|
1 |
-
# PREREQUISITY
|
2 |
-
|
3 |
-
# correct_figure.py -> makes analytic.pkl & CER -> per sentence No Audinterface sliding window
|
4 |
-
import pandas as pd
|
5 |
-
import os
|
6 |
-
import numpy as np
|
7 |
-
from pathlib import Path
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import audiofile
|
10 |
-
|
11 |
-
columns = ['prompt-arousal',
|
12 |
-
'prompt-dominance',
|
13 |
-
'prompt-valence',
|
14 |
-
'prompt-Angry',
|
15 |
-
'prompt-Sad',
|
16 |
-
'prompt-Happy',
|
17 |
-
'prompt-Surprise',
|
18 |
-
'prompt-Fear',
|
19 |
-
'prompt-Disgust',
|
20 |
-
'prompt-Contempt',
|
21 |
-
'prompt-Neutral',
|
22 |
-
'styletts2-arousal',
|
23 |
-
'styletts2-dominance',
|
24 |
-
'styletts2-valence',
|
25 |
-
'styletts2-Angry',
|
26 |
-
'styletts2-Sad',
|
27 |
-
'styletts2-Happy',
|
28 |
-
'styletts2-Surprise',
|
29 |
-
'styletts2-Fear',
|
30 |
-
'styletts2-Disgust',
|
31 |
-
'styletts2-Contempt',
|
32 |
-
'styletts2-Neutral',
|
33 |
-
'cer-prompt',
|
34 |
-
'cer-styletts2']
|
35 |
-
|
36 |
-
FULL_PKL = ['english_4x_analytic.pkl',
|
37 |
-
'english_analytic.pkl',
|
38 |
-
'foreign_4x_analytic.pkl',
|
39 |
-
'foreign_analytic.pkl',
|
40 |
-
'human_analytic.pkl']
|
41 |
-
# -------------------------------------------
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
LABELS = ['arousal', 'dominance', 'valence',
|
46 |
-
# 'speech_synthesizer', 'synthetic_singing',
|
47 |
-
'Angry',
|
48 |
-
'Sad',
|
49 |
-
'Happy',
|
50 |
-
'Surprise',
|
51 |
-
'Fear',
|
52 |
-
'Disgust',
|
53 |
-
'Contempt',
|
54 |
-
'Neutral'
|
55 |
-
]
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
# https://arxiv.org/pdf/2407.12229
|
61 |
-
# https://arxiv.org/pdf/2312.05187
|
62 |
-
# https://arxiv.org/abs/2407.05407
|
63 |
-
# https://arxiv.org/pdf/2408.06577
|
64 |
-
# https://arxiv.org/pdf/2309.07405
|
65 |
-
preds = {}
|
66 |
-
|
67 |
-
for file_interface in FULL_PKL:
|
68 |
-
y = pd.read_pickle(file_interface)
|
69 |
-
# y = y.rolling(20).mean()[19:] --> avoid when printing character error rate
|
70 |
-
preds[file_interface] = y #.sort_values('styletts2-valence')
|
71 |
-
print(f'\n\n {file_interface}\n_____________________________\n',
|
72 |
-
f"{y['cer-prompt'].mean()=}",
|
73 |
-
f"{y['cer-styletts2'].mean()=}\n\n")
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# =================================== cER ---------------------------
|
78 |
-
|
79 |
-
|
80 |
-
for lang in ['english',
|
81 |
-
'foreign']:
|
82 |
-
|
83 |
-
|
84 |
-
fig, ax = plt.subplots(nrows=8, ncols=2, figsize=(24,20.7),
|
85 |
-
gridspec_kw={'hspace': 0, 'wspace': .04})
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
time_stamp = np.arange(len(preds['english_analytic.pkl']))
|
91 |
-
_z = np.zeros(len(preds['english_analytic.pkl']))
|
92 |
-
for j, dim in enumerate(['arousal', 'dominance', 'valence']):
|
93 |
-
|
94 |
-
# MIMIC3
|
95 |
-
|
96 |
-
ax[j, 0].plot(time_stamp, preds[f'{lang}_analytic.pkl'][f'styletts2-{dim}'],
|
97 |
-
color=(0,104/255,139/255),
|
98 |
-
label='mean_1',
|
99 |
-
linewidth=2)
|
100 |
-
ax[j, 0].fill_between(time_stamp,
|
101 |
-
|
102 |
-
_z,
|
103 |
-
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
104 |
-
|
105 |
-
color=(.2,.2,.2),
|
106 |
-
alpha=0.244)
|
107 |
-
if j == 0:
|
108 |
-
if lang == 'english':
|
109 |
-
desc = 'English'
|
110 |
-
else:
|
111 |
-
desc = 'Non-English'
|
112 |
-
ax[j, 0].legend([f'StyleTTS2 using Mimic-3 {desc}',
|
113 |
-
f'StyleTTS2 uising EmoDB'],
|
114 |
-
prop={'size': 14},
|
115 |
-
)
|
116 |
-
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
|
117 |
-
|
118 |
-
# TICK
|
119 |
-
ax[j, 0].set_ylim([1e-7, .9999])
|
120 |
-
# ax[j, 0].set_yticks([.25, .5,.75])
|
121 |
-
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
|
122 |
-
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
123 |
-
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
124 |
-
|
125 |
-
|
126 |
-
# MIMIC3 4x speed
|
127 |
-
|
128 |
-
|
129 |
-
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_analytic.pkl'][f'styletts2-{dim}'],
|
130 |
-
color=(0,104/255,139/255),
|
131 |
-
label='mean_1',
|
132 |
-
linewidth=2)
|
133 |
-
ax[j, 1].fill_between(time_stamp,
|
134 |
-
|
135 |
-
_z,
|
136 |
-
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
137 |
-
|
138 |
-
color=(.2,.2,.2),
|
139 |
-
alpha=0.244)
|
140 |
-
if j == 0:
|
141 |
-
if lang == 'english':
|
142 |
-
desc = 'English'
|
143 |
-
else:
|
144 |
-
desc = 'Non-English'
|
145 |
-
ax[j, 1].legend([f'StyleTTS2 using Mimic-3 {desc} 4x speed',
|
146 |
-
f'StyleTTS2 using EmoDB'],
|
147 |
-
prop={'size': 14},
|
148 |
-
# loc='lower right'
|
149 |
-
)
|
150 |
-
|
151 |
-
|
152 |
-
ax[j, 1].set_xlabel('720 Harvard Sentences')
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
# TICK
|
157 |
-
ax[j, 1].set_ylim([1e-7, .9999])
|
158 |
-
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
159 |
-
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
160 |
-
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
ax[j, 0].grid()
|
166 |
-
ax[j, 1].grid()
|
167 |
-
# CATEGORIE
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
for j, dim in enumerate(['Angry',
|
175 |
-
'Sad',
|
176 |
-
'Happy',
|
177 |
-
# 'Surprise',
|
178 |
-
'Fear',
|
179 |
-
'Disgust',
|
180 |
-
# 'Contempt',
|
181 |
-
# 'Neutral'
|
182 |
-
]): # ASaHSuFDCN
|
183 |
-
j = j + 3 # skip A/D/V suplt
|
184 |
-
|
185 |
-
# MIMIC3
|
186 |
-
|
187 |
-
ax[j, 0].plot(time_stamp, preds[f'{lang}_analytic.pkl'][f'styletts2-{dim}'],
|
188 |
-
color=(0,104/255,139/255),
|
189 |
-
label='mean_1',
|
190 |
-
linewidth=2)
|
191 |
-
ax[j, 0].fill_between(time_stamp,
|
192 |
-
|
193 |
-
_z,
|
194 |
-
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
195 |
-
|
196 |
-
color=(.2,.2,.2),
|
197 |
-
alpha=0.244)
|
198 |
-
# ax[j, 0].legend(['StyleTTS2 style mimic3',
|
199 |
-
# 'StyleTTS2 style crema-d'],
|
200 |
-
# prop={'size': 10},
|
201 |
-
# # loc='upper left'
|
202 |
-
# )
|
203 |
-
|
204 |
-
|
205 |
-
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
|
206 |
-
|
207 |
-
# TICKS
|
208 |
-
ax[j, 0].set_ylim([1e-7, .9999])
|
209 |
-
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
210 |
-
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
211 |
-
ax[j, 0].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
|
212 |
-
|
213 |
-
|
214 |
-
# MIMIC3 4x speed
|
215 |
-
|
216 |
-
|
217 |
-
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_analytic.pkl'][f'styletts2-{dim}'],
|
218 |
-
color=(0,104/255,139/255),
|
219 |
-
label='mean_1',
|
220 |
-
linewidth=2)
|
221 |
-
ax[j, 1].fill_between(time_stamp,
|
222 |
-
|
223 |
-
_z,
|
224 |
-
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
225 |
-
|
226 |
-
color=(.2,.2,.2),
|
227 |
-
alpha=0.244)
|
228 |
-
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
|
229 |
-
# 'StyleTTS2 style crema-d'],
|
230 |
-
# prop={'size': 10},
|
231 |
-
# # loc='upper left'
|
232 |
-
# )
|
233 |
-
ax[j, 1].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
|
234 |
-
ax[j, 1].set_ylim([1e-7, .9999])
|
235 |
-
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
236 |
-
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
|
237 |
-
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
ax[j, 0].grid()
|
245 |
-
ax[j, 1].grid()
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
plt.savefig(f'persentence_{lang}.pdf', bbox_inches='tight')
|
250 |
-
plt.close()
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|