dylanebert
commited on
Commit
·
a3fbb44
1
Parent(s):
1144e46
embed mv_unet
Browse files- mv_unet.py +0 -1005
- pipeline.py +1064 -25
mv_unet.py
DELETED
|
@@ -1,1005 +0,0 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import numpy as np
|
| 3 |
-
from inspect import isfunction
|
| 4 |
-
from typing import Optional, Any, List
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
-
from einops import rearrange, repeat
|
| 10 |
-
|
| 11 |
-
from diffusers.configuration_utils import ConfigMixin
|
| 12 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 13 |
-
|
| 14 |
-
# require xformers!
|
| 15 |
-
import xformers
|
| 16 |
-
import xformers.ops
|
| 17 |
-
|
| 18 |
-
from kiui.cam import orbit_camera
|
| 19 |
-
|
| 20 |
-
def get_camera(
|
| 21 |
-
num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
| 22 |
-
):
|
| 23 |
-
angle_gap = azimuth_span / num_frames
|
| 24 |
-
cameras = []
|
| 25 |
-
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
| 26 |
-
|
| 27 |
-
pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
|
| 28 |
-
|
| 29 |
-
# opengl to blender
|
| 30 |
-
if blender_coord:
|
| 31 |
-
pose[2] *= -1
|
| 32 |
-
pose[[1, 2]] = pose[[2, 1]]
|
| 33 |
-
|
| 34 |
-
cameras.append(pose.flatten())
|
| 35 |
-
|
| 36 |
-
if extra_view:
|
| 37 |
-
cameras.append(np.zeros_like(cameras[0]))
|
| 38 |
-
|
| 39 |
-
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 43 |
-
"""
|
| 44 |
-
Create sinusoidal timestep embeddings.
|
| 45 |
-
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 46 |
-
These may be fractional.
|
| 47 |
-
:param dim: the dimension of the output.
|
| 48 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
| 49 |
-
:return: an [N x dim] Tensor of positional embeddings.
|
| 50 |
-
"""
|
| 51 |
-
if not repeat_only:
|
| 52 |
-
half = dim // 2
|
| 53 |
-
freqs = torch.exp(
|
| 54 |
-
-math.log(max_period)
|
| 55 |
-
* torch.arange(start=0, end=half, dtype=torch.float32)
|
| 56 |
-
/ half
|
| 57 |
-
).to(device=timesteps.device)
|
| 58 |
-
args = timesteps[:, None] * freqs[None]
|
| 59 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 60 |
-
if dim % 2:
|
| 61 |
-
embedding = torch.cat(
|
| 62 |
-
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
| 63 |
-
)
|
| 64 |
-
else:
|
| 65 |
-
embedding = repeat(timesteps, "b -> b d", d=dim)
|
| 66 |
-
# import pdb; pdb.set_trace()
|
| 67 |
-
return embedding
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def zero_module(module):
|
| 71 |
-
"""
|
| 72 |
-
Zero out the parameters of a module and return it.
|
| 73 |
-
"""
|
| 74 |
-
for p in module.parameters():
|
| 75 |
-
p.detach().zero_()
|
| 76 |
-
return module
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def conv_nd(dims, *args, **kwargs):
|
| 80 |
-
"""
|
| 81 |
-
Create a 1D, 2D, or 3D convolution module.
|
| 82 |
-
"""
|
| 83 |
-
if dims == 1:
|
| 84 |
-
return nn.Conv1d(*args, **kwargs)
|
| 85 |
-
elif dims == 2:
|
| 86 |
-
return nn.Conv2d(*args, **kwargs)
|
| 87 |
-
elif dims == 3:
|
| 88 |
-
return nn.Conv3d(*args, **kwargs)
|
| 89 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def avg_pool_nd(dims, *args, **kwargs):
|
| 93 |
-
"""
|
| 94 |
-
Create a 1D, 2D, or 3D average pooling module.
|
| 95 |
-
"""
|
| 96 |
-
if dims == 1:
|
| 97 |
-
return nn.AvgPool1d(*args, **kwargs)
|
| 98 |
-
elif dims == 2:
|
| 99 |
-
return nn.AvgPool2d(*args, **kwargs)
|
| 100 |
-
elif dims == 3:
|
| 101 |
-
return nn.AvgPool3d(*args, **kwargs)
|
| 102 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def default(val, d):
|
| 106 |
-
if val is not None:
|
| 107 |
-
return val
|
| 108 |
-
return d() if isfunction(d) else d
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
class GEGLU(nn.Module):
|
| 112 |
-
def __init__(self, dim_in, dim_out):
|
| 113 |
-
super().__init__()
|
| 114 |
-
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 115 |
-
|
| 116 |
-
def forward(self, x):
|
| 117 |
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 118 |
-
return x * F.gelu(gate)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
class FeedForward(nn.Module):
|
| 122 |
-
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
| 123 |
-
super().__init__()
|
| 124 |
-
inner_dim = int(dim * mult)
|
| 125 |
-
dim_out = default(dim_out, dim)
|
| 126 |
-
project_in = (
|
| 127 |
-
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
| 128 |
-
if not glu
|
| 129 |
-
else GEGLU(dim, inner_dim)
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
self.net = nn.Sequential(
|
| 133 |
-
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
def forward(self, x):
|
| 137 |
-
return self.net(x)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
class MemoryEfficientCrossAttention(nn.Module):
|
| 141 |
-
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 142 |
-
def __init__(
|
| 143 |
-
self,
|
| 144 |
-
query_dim,
|
| 145 |
-
context_dim=None,
|
| 146 |
-
heads=8,
|
| 147 |
-
dim_head=64,
|
| 148 |
-
dropout=0.0,
|
| 149 |
-
ip_dim=0,
|
| 150 |
-
ip_weight=1,
|
| 151 |
-
):
|
| 152 |
-
super().__init__()
|
| 153 |
-
|
| 154 |
-
inner_dim = dim_head * heads
|
| 155 |
-
context_dim = default(context_dim, query_dim)
|
| 156 |
-
|
| 157 |
-
self.heads = heads
|
| 158 |
-
self.dim_head = dim_head
|
| 159 |
-
|
| 160 |
-
self.ip_dim = ip_dim
|
| 161 |
-
self.ip_weight = ip_weight
|
| 162 |
-
|
| 163 |
-
if self.ip_dim > 0:
|
| 164 |
-
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
| 165 |
-
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
| 166 |
-
|
| 167 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 168 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 169 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 170 |
-
|
| 171 |
-
self.to_out = nn.Sequential(
|
| 172 |
-
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 173 |
-
)
|
| 174 |
-
self.attention_op: Optional[Any] = None
|
| 175 |
-
|
| 176 |
-
def forward(self, x, context=None):
|
| 177 |
-
q = self.to_q(x)
|
| 178 |
-
context = default(context, x)
|
| 179 |
-
|
| 180 |
-
if self.ip_dim > 0:
|
| 181 |
-
# context: [B, 77 + 16(ip), 1024]
|
| 182 |
-
token_len = context.shape[1]
|
| 183 |
-
context_ip = context[:, -self.ip_dim :, :]
|
| 184 |
-
k_ip = self.to_k_ip(context_ip)
|
| 185 |
-
v_ip = self.to_v_ip(context_ip)
|
| 186 |
-
context = context[:, : (token_len - self.ip_dim), :]
|
| 187 |
-
|
| 188 |
-
k = self.to_k(context)
|
| 189 |
-
v = self.to_v(context)
|
| 190 |
-
|
| 191 |
-
b, _, _ = q.shape
|
| 192 |
-
q, k, v = map(
|
| 193 |
-
lambda t: t.unsqueeze(3)
|
| 194 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 195 |
-
.permute(0, 2, 1, 3)
|
| 196 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 197 |
-
.contiguous(),
|
| 198 |
-
(q, k, v),
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
# actually compute the attention, what we cannot get enough of
|
| 202 |
-
out = xformers.ops.memory_efficient_attention(
|
| 203 |
-
q, k, v, attn_bias=None, op=self.attention_op
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
if self.ip_dim > 0:
|
| 207 |
-
k_ip, v_ip = map(
|
| 208 |
-
lambda t: t.unsqueeze(3)
|
| 209 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 210 |
-
.permute(0, 2, 1, 3)
|
| 211 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 212 |
-
.contiguous(),
|
| 213 |
-
(k_ip, v_ip),
|
| 214 |
-
)
|
| 215 |
-
# actually compute the attention, what we cannot get enough of
|
| 216 |
-
out_ip = xformers.ops.memory_efficient_attention(
|
| 217 |
-
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
| 218 |
-
)
|
| 219 |
-
out = out + self.ip_weight * out_ip
|
| 220 |
-
|
| 221 |
-
out = (
|
| 222 |
-
out.unsqueeze(0)
|
| 223 |
-
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 224 |
-
.permute(0, 2, 1, 3)
|
| 225 |
-
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 226 |
-
)
|
| 227 |
-
return self.to_out(out)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
class BasicTransformerBlock3D(nn.Module):
|
| 231 |
-
|
| 232 |
-
def __init__(
|
| 233 |
-
self,
|
| 234 |
-
dim,
|
| 235 |
-
n_heads,
|
| 236 |
-
d_head,
|
| 237 |
-
context_dim,
|
| 238 |
-
dropout=0.0,
|
| 239 |
-
gated_ff=True,
|
| 240 |
-
ip_dim=0,
|
| 241 |
-
ip_weight=1,
|
| 242 |
-
):
|
| 243 |
-
super().__init__()
|
| 244 |
-
|
| 245 |
-
self.attn1 = MemoryEfficientCrossAttention(
|
| 246 |
-
query_dim=dim,
|
| 247 |
-
context_dim=None, # self-attention
|
| 248 |
-
heads=n_heads,
|
| 249 |
-
dim_head=d_head,
|
| 250 |
-
dropout=dropout,
|
| 251 |
-
)
|
| 252 |
-
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 253 |
-
self.attn2 = MemoryEfficientCrossAttention(
|
| 254 |
-
query_dim=dim,
|
| 255 |
-
context_dim=context_dim,
|
| 256 |
-
heads=n_heads,
|
| 257 |
-
dim_head=d_head,
|
| 258 |
-
dropout=dropout,
|
| 259 |
-
# ip only applies to cross-attention
|
| 260 |
-
ip_dim=ip_dim,
|
| 261 |
-
ip_weight=ip_weight,
|
| 262 |
-
)
|
| 263 |
-
self.norm1 = nn.LayerNorm(dim)
|
| 264 |
-
self.norm2 = nn.LayerNorm(dim)
|
| 265 |
-
self.norm3 = nn.LayerNorm(dim)
|
| 266 |
-
|
| 267 |
-
def forward(self, x, context=None, num_frames=1):
|
| 268 |
-
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
| 269 |
-
x = self.attn1(self.norm1(x), context=None) + x
|
| 270 |
-
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
| 271 |
-
x = self.attn2(self.norm2(x), context=context) + x
|
| 272 |
-
x = self.ff(self.norm3(x)) + x
|
| 273 |
-
return x
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
class SpatialTransformer3D(nn.Module):
|
| 277 |
-
|
| 278 |
-
def __init__(
|
| 279 |
-
self,
|
| 280 |
-
in_channels,
|
| 281 |
-
n_heads,
|
| 282 |
-
d_head,
|
| 283 |
-
context_dim, # cross attention input dim
|
| 284 |
-
depth=1,
|
| 285 |
-
dropout=0.0,
|
| 286 |
-
ip_dim=0,
|
| 287 |
-
ip_weight=1,
|
| 288 |
-
):
|
| 289 |
-
super().__init__()
|
| 290 |
-
|
| 291 |
-
if not isinstance(context_dim, list):
|
| 292 |
-
context_dim = [context_dim]
|
| 293 |
-
|
| 294 |
-
self.in_channels = in_channels
|
| 295 |
-
|
| 296 |
-
inner_dim = n_heads * d_head
|
| 297 |
-
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 298 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 299 |
-
|
| 300 |
-
self.transformer_blocks = nn.ModuleList(
|
| 301 |
-
[
|
| 302 |
-
BasicTransformerBlock3D(
|
| 303 |
-
inner_dim,
|
| 304 |
-
n_heads,
|
| 305 |
-
d_head,
|
| 306 |
-
context_dim=context_dim[d],
|
| 307 |
-
dropout=dropout,
|
| 308 |
-
ip_dim=ip_dim,
|
| 309 |
-
ip_weight=ip_weight,
|
| 310 |
-
)
|
| 311 |
-
for d in range(depth)
|
| 312 |
-
]
|
| 313 |
-
)
|
| 314 |
-
|
| 315 |
-
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
def forward(self, x, context=None, num_frames=1):
|
| 319 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
| 320 |
-
if not isinstance(context, list):
|
| 321 |
-
context = [context]
|
| 322 |
-
b, c, h, w = x.shape
|
| 323 |
-
x_in = x
|
| 324 |
-
x = self.norm(x)
|
| 325 |
-
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
| 326 |
-
x = self.proj_in(x)
|
| 327 |
-
for i, block in enumerate(self.transformer_blocks):
|
| 328 |
-
x = block(x, context=context[i], num_frames=num_frames)
|
| 329 |
-
x = self.proj_out(x)
|
| 330 |
-
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
| 331 |
-
|
| 332 |
-
return x + x_in
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
class PerceiverAttention(nn.Module):
|
| 336 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 337 |
-
super().__init__()
|
| 338 |
-
self.scale = dim_head ** -0.5
|
| 339 |
-
self.dim_head = dim_head
|
| 340 |
-
self.heads = heads
|
| 341 |
-
inner_dim = dim_head * heads
|
| 342 |
-
|
| 343 |
-
self.norm1 = nn.LayerNorm(dim)
|
| 344 |
-
self.norm2 = nn.LayerNorm(dim)
|
| 345 |
-
|
| 346 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 347 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 348 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 349 |
-
|
| 350 |
-
def forward(self, x, latents):
|
| 351 |
-
"""
|
| 352 |
-
Args:
|
| 353 |
-
x (torch.Tensor): image features
|
| 354 |
-
shape (b, n1, D)
|
| 355 |
-
latent (torch.Tensor): latent features
|
| 356 |
-
shape (b, n2, D)
|
| 357 |
-
"""
|
| 358 |
-
x = self.norm1(x)
|
| 359 |
-
latents = self.norm2(latents)
|
| 360 |
-
|
| 361 |
-
b, l, _ = latents.shape
|
| 362 |
-
|
| 363 |
-
q = self.to_q(latents)
|
| 364 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
| 365 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 366 |
-
|
| 367 |
-
q, k, v = map(
|
| 368 |
-
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
| 369 |
-
.transpose(1, 2)
|
| 370 |
-
.reshape(b, self.heads, t.shape[1], -1)
|
| 371 |
-
.contiguous(),
|
| 372 |
-
(q, k, v),
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
# attention
|
| 376 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 377 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 378 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 379 |
-
out = weight @ v
|
| 380 |
-
|
| 381 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 382 |
-
|
| 383 |
-
return self.to_out(out)
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
class Resampler(nn.Module):
|
| 387 |
-
def __init__(
|
| 388 |
-
self,
|
| 389 |
-
dim=1024,
|
| 390 |
-
depth=8,
|
| 391 |
-
dim_head=64,
|
| 392 |
-
heads=16,
|
| 393 |
-
num_queries=8,
|
| 394 |
-
embedding_dim=768,
|
| 395 |
-
output_dim=1024,
|
| 396 |
-
ff_mult=4,
|
| 397 |
-
):
|
| 398 |
-
super().__init__()
|
| 399 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
| 400 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 401 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
| 402 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
| 403 |
-
|
| 404 |
-
self.layers = nn.ModuleList([])
|
| 405 |
-
for _ in range(depth):
|
| 406 |
-
self.layers.append(
|
| 407 |
-
nn.ModuleList(
|
| 408 |
-
[
|
| 409 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 410 |
-
nn.Sequential(
|
| 411 |
-
nn.LayerNorm(dim),
|
| 412 |
-
nn.Linear(dim, dim * ff_mult, bias=False),
|
| 413 |
-
nn.GELU(),
|
| 414 |
-
nn.Linear(dim * ff_mult, dim, bias=False),
|
| 415 |
-
)
|
| 416 |
-
]
|
| 417 |
-
)
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
def forward(self, x):
|
| 421 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 422 |
-
x = self.proj_in(x)
|
| 423 |
-
for attn, ff in self.layers:
|
| 424 |
-
latents = attn(x, latents) + latents
|
| 425 |
-
latents = ff(latents) + latents
|
| 426 |
-
|
| 427 |
-
latents = self.proj_out(latents)
|
| 428 |
-
return self.norm_out(latents)
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
class CondSequential(nn.Sequential):
|
| 432 |
-
"""
|
| 433 |
-
A sequential module that passes timestep embeddings to the children that
|
| 434 |
-
support it as an extra input.
|
| 435 |
-
"""
|
| 436 |
-
|
| 437 |
-
def forward(self, x, emb, context=None, num_frames=1):
|
| 438 |
-
for layer in self:
|
| 439 |
-
if isinstance(layer, ResBlock):
|
| 440 |
-
x = layer(x, emb)
|
| 441 |
-
elif isinstance(layer, SpatialTransformer3D):
|
| 442 |
-
x = layer(x, context, num_frames=num_frames)
|
| 443 |
-
else:
|
| 444 |
-
x = layer(x)
|
| 445 |
-
return x
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
class Upsample(nn.Module):
|
| 449 |
-
"""
|
| 450 |
-
An upsampling layer with an optional convolution.
|
| 451 |
-
:param channels: channels in the inputs and outputs.
|
| 452 |
-
:param use_conv: a bool determining if a convolution is applied.
|
| 453 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 454 |
-
upsampling occurs in the inner-two dimensions.
|
| 455 |
-
"""
|
| 456 |
-
|
| 457 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 458 |
-
super().__init__()
|
| 459 |
-
self.channels = channels
|
| 460 |
-
self.out_channels = out_channels or channels
|
| 461 |
-
self.use_conv = use_conv
|
| 462 |
-
self.dims = dims
|
| 463 |
-
if use_conv:
|
| 464 |
-
self.conv = conv_nd(
|
| 465 |
-
dims, self.channels, self.out_channels, 3, padding=padding
|
| 466 |
-
)
|
| 467 |
-
|
| 468 |
-
def forward(self, x):
|
| 469 |
-
assert x.shape[1] == self.channels
|
| 470 |
-
if self.dims == 3:
|
| 471 |
-
x = F.interpolate(
|
| 472 |
-
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 473 |
-
)
|
| 474 |
-
else:
|
| 475 |
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 476 |
-
if self.use_conv:
|
| 477 |
-
x = self.conv(x)
|
| 478 |
-
return x
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
class Downsample(nn.Module):
|
| 482 |
-
"""
|
| 483 |
-
A downsampling layer with an optional convolution.
|
| 484 |
-
:param channels: channels in the inputs and outputs.
|
| 485 |
-
:param use_conv: a bool determining if a convolution is applied.
|
| 486 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 487 |
-
downsampling occurs in the inner-two dimensions.
|
| 488 |
-
"""
|
| 489 |
-
|
| 490 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 491 |
-
super().__init__()
|
| 492 |
-
self.channels = channels
|
| 493 |
-
self.out_channels = out_channels or channels
|
| 494 |
-
self.use_conv = use_conv
|
| 495 |
-
self.dims = dims
|
| 496 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
| 497 |
-
if use_conv:
|
| 498 |
-
self.op = conv_nd(
|
| 499 |
-
dims,
|
| 500 |
-
self.channels,
|
| 501 |
-
self.out_channels,
|
| 502 |
-
3,
|
| 503 |
-
stride=stride,
|
| 504 |
-
padding=padding,
|
| 505 |
-
)
|
| 506 |
-
else:
|
| 507 |
-
assert self.channels == self.out_channels
|
| 508 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 509 |
-
|
| 510 |
-
def forward(self, x):
|
| 511 |
-
assert x.shape[1] == self.channels
|
| 512 |
-
return self.op(x)
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
class ResBlock(nn.Module):
|
| 516 |
-
"""
|
| 517 |
-
A residual block that can optionally change the number of channels.
|
| 518 |
-
:param channels: the number of input channels.
|
| 519 |
-
:param emb_channels: the number of timestep embedding channels.
|
| 520 |
-
:param dropout: the rate of dropout.
|
| 521 |
-
:param out_channels: if specified, the number of out channels.
|
| 522 |
-
:param use_conv: if True and out_channels is specified, use a spatial
|
| 523 |
-
convolution instead of a smaller 1x1 convolution to change the
|
| 524 |
-
channels in the skip connection.
|
| 525 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 526 |
-
:param up: if True, use this block for upsampling.
|
| 527 |
-
:param down: if True, use this block for downsampling.
|
| 528 |
-
"""
|
| 529 |
-
|
| 530 |
-
def __init__(
|
| 531 |
-
self,
|
| 532 |
-
channels,
|
| 533 |
-
emb_channels,
|
| 534 |
-
dropout,
|
| 535 |
-
out_channels=None,
|
| 536 |
-
use_conv=False,
|
| 537 |
-
use_scale_shift_norm=False,
|
| 538 |
-
dims=2,
|
| 539 |
-
up=False,
|
| 540 |
-
down=False,
|
| 541 |
-
):
|
| 542 |
-
super().__init__()
|
| 543 |
-
self.channels = channels
|
| 544 |
-
self.emb_channels = emb_channels
|
| 545 |
-
self.dropout = dropout
|
| 546 |
-
self.out_channels = out_channels or channels
|
| 547 |
-
self.use_conv = use_conv
|
| 548 |
-
self.use_scale_shift_norm = use_scale_shift_norm
|
| 549 |
-
|
| 550 |
-
self.in_layers = nn.Sequential(
|
| 551 |
-
nn.GroupNorm(32, channels),
|
| 552 |
-
nn.SiLU(),
|
| 553 |
-
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 554 |
-
)
|
| 555 |
-
|
| 556 |
-
self.updown = up or down
|
| 557 |
-
|
| 558 |
-
if up:
|
| 559 |
-
self.h_upd = Upsample(channels, False, dims)
|
| 560 |
-
self.x_upd = Upsample(channels, False, dims)
|
| 561 |
-
elif down:
|
| 562 |
-
self.h_upd = Downsample(channels, False, dims)
|
| 563 |
-
self.x_upd = Downsample(channels, False, dims)
|
| 564 |
-
else:
|
| 565 |
-
self.h_upd = self.x_upd = nn.Identity()
|
| 566 |
-
|
| 567 |
-
self.emb_layers = nn.Sequential(
|
| 568 |
-
nn.SiLU(),
|
| 569 |
-
nn.Linear(
|
| 570 |
-
emb_channels,
|
| 571 |
-
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 572 |
-
),
|
| 573 |
-
)
|
| 574 |
-
self.out_layers = nn.Sequential(
|
| 575 |
-
nn.GroupNorm(32, self.out_channels),
|
| 576 |
-
nn.SiLU(),
|
| 577 |
-
nn.Dropout(p=dropout),
|
| 578 |
-
zero_module(
|
| 579 |
-
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 580 |
-
),
|
| 581 |
-
)
|
| 582 |
-
|
| 583 |
-
if self.out_channels == channels:
|
| 584 |
-
self.skip_connection = nn.Identity()
|
| 585 |
-
elif use_conv:
|
| 586 |
-
self.skip_connection = conv_nd(
|
| 587 |
-
dims, channels, self.out_channels, 3, padding=1
|
| 588 |
-
)
|
| 589 |
-
else:
|
| 590 |
-
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 591 |
-
|
| 592 |
-
def forward(self, x, emb):
|
| 593 |
-
if self.updown:
|
| 594 |
-
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 595 |
-
h = in_rest(x)
|
| 596 |
-
h = self.h_upd(h)
|
| 597 |
-
x = self.x_upd(x)
|
| 598 |
-
h = in_conv(h)
|
| 599 |
-
else:
|
| 600 |
-
h = self.in_layers(x)
|
| 601 |
-
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 602 |
-
while len(emb_out.shape) < len(h.shape):
|
| 603 |
-
emb_out = emb_out[..., None]
|
| 604 |
-
if self.use_scale_shift_norm:
|
| 605 |
-
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 606 |
-
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
| 607 |
-
h = out_norm(h) * (1 + scale) + shift
|
| 608 |
-
h = out_rest(h)
|
| 609 |
-
else:
|
| 610 |
-
h = h + emb_out
|
| 611 |
-
h = self.out_layers(h)
|
| 612 |
-
return self.skip_connection(x) + h
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
| 616 |
-
"""
|
| 617 |
-
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 618 |
-
:param in_channels: channels in the input Tensor.
|
| 619 |
-
:param model_channels: base channel count for the model.
|
| 620 |
-
:param out_channels: channels in the output Tensor.
|
| 621 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
| 622 |
-
:param attention_resolutions: a collection of downsample rates at which
|
| 623 |
-
attention will take place. May be a set, list, or tuple.
|
| 624 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
| 625 |
-
will be used.
|
| 626 |
-
:param dropout: the dropout probability.
|
| 627 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
| 628 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 629 |
-
downsampling.
|
| 630 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 631 |
-
:param num_classes: if specified (as an int), then this model will be
|
| 632 |
-
class-conditional with `num_classes` classes.
|
| 633 |
-
:param num_heads: the number of attention heads in each attention layer.
|
| 634 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 635 |
-
a fixed channel width per attention head.
|
| 636 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
| 637 |
-
of heads for upsampling. Deprecated.
|
| 638 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 639 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
| 640 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
| 641 |
-
increased efficiency.
|
| 642 |
-
:param camera_dim: dimensionality of camera input.
|
| 643 |
-
"""
|
| 644 |
-
|
| 645 |
-
def __init__(
|
| 646 |
-
self,
|
| 647 |
-
image_size,
|
| 648 |
-
in_channels,
|
| 649 |
-
model_channels,
|
| 650 |
-
out_channels,
|
| 651 |
-
num_res_blocks,
|
| 652 |
-
attention_resolutions,
|
| 653 |
-
dropout=0,
|
| 654 |
-
channel_mult=(1, 2, 4, 8),
|
| 655 |
-
conv_resample=True,
|
| 656 |
-
dims=2,
|
| 657 |
-
num_classes=None,
|
| 658 |
-
num_heads=-1,
|
| 659 |
-
num_head_channels=-1,
|
| 660 |
-
num_heads_upsample=-1,
|
| 661 |
-
use_scale_shift_norm=False,
|
| 662 |
-
resblock_updown=False,
|
| 663 |
-
transformer_depth=1,
|
| 664 |
-
context_dim=None,
|
| 665 |
-
n_embed=None,
|
| 666 |
-
num_attention_blocks=None,
|
| 667 |
-
adm_in_channels=None,
|
| 668 |
-
camera_dim=None,
|
| 669 |
-
ip_dim=0, # imagedream uses ip_dim > 0
|
| 670 |
-
ip_weight=1.0,
|
| 671 |
-
**kwargs,
|
| 672 |
-
):
|
| 673 |
-
super().__init__()
|
| 674 |
-
assert context_dim is not None
|
| 675 |
-
|
| 676 |
-
if num_heads_upsample == -1:
|
| 677 |
-
num_heads_upsample = num_heads
|
| 678 |
-
|
| 679 |
-
if num_heads == -1:
|
| 680 |
-
assert (
|
| 681 |
-
num_head_channels != -1
|
| 682 |
-
), "Either num_heads or num_head_channels has to be set"
|
| 683 |
-
|
| 684 |
-
if num_head_channels == -1:
|
| 685 |
-
assert (
|
| 686 |
-
num_heads != -1
|
| 687 |
-
), "Either num_heads or num_head_channels has to be set"
|
| 688 |
-
|
| 689 |
-
self.image_size = image_size
|
| 690 |
-
self.in_channels = in_channels
|
| 691 |
-
self.model_channels = model_channels
|
| 692 |
-
self.out_channels = out_channels
|
| 693 |
-
if isinstance(num_res_blocks, int):
|
| 694 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 695 |
-
else:
|
| 696 |
-
if len(num_res_blocks) != len(channel_mult):
|
| 697 |
-
raise ValueError(
|
| 698 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
| 699 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 700 |
-
)
|
| 701 |
-
self.num_res_blocks = num_res_blocks
|
| 702 |
-
|
| 703 |
-
if num_attention_blocks is not None:
|
| 704 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 705 |
-
assert all(
|
| 706 |
-
map(
|
| 707 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 708 |
-
range(len(num_attention_blocks)),
|
| 709 |
-
)
|
| 710 |
-
)
|
| 711 |
-
print(
|
| 712 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 713 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 714 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 715 |
-
f"attention will still not be set."
|
| 716 |
-
)
|
| 717 |
-
|
| 718 |
-
self.attention_resolutions = attention_resolutions
|
| 719 |
-
self.dropout = dropout
|
| 720 |
-
self.channel_mult = channel_mult
|
| 721 |
-
self.conv_resample = conv_resample
|
| 722 |
-
self.num_classes = num_classes
|
| 723 |
-
self.num_heads = num_heads
|
| 724 |
-
self.num_head_channels = num_head_channels
|
| 725 |
-
self.num_heads_upsample = num_heads_upsample
|
| 726 |
-
self.predict_codebook_ids = n_embed is not None
|
| 727 |
-
|
| 728 |
-
self.ip_dim = ip_dim
|
| 729 |
-
self.ip_weight = ip_weight
|
| 730 |
-
|
| 731 |
-
if self.ip_dim > 0:
|
| 732 |
-
self.image_embed = Resampler(
|
| 733 |
-
dim=context_dim,
|
| 734 |
-
depth=4,
|
| 735 |
-
dim_head=64,
|
| 736 |
-
heads=12,
|
| 737 |
-
num_queries=ip_dim, # num token
|
| 738 |
-
embedding_dim=1280,
|
| 739 |
-
output_dim=context_dim,
|
| 740 |
-
ff_mult=4,
|
| 741 |
-
)
|
| 742 |
-
|
| 743 |
-
time_embed_dim = model_channels * 4
|
| 744 |
-
self.time_embed = nn.Sequential(
|
| 745 |
-
nn.Linear(model_channels, time_embed_dim),
|
| 746 |
-
nn.SiLU(),
|
| 747 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
| 748 |
-
)
|
| 749 |
-
|
| 750 |
-
if camera_dim is not None:
|
| 751 |
-
time_embed_dim = model_channels * 4
|
| 752 |
-
self.camera_embed = nn.Sequential(
|
| 753 |
-
nn.Linear(camera_dim, time_embed_dim),
|
| 754 |
-
nn.SiLU(),
|
| 755 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
| 756 |
-
)
|
| 757 |
-
|
| 758 |
-
if self.num_classes is not None:
|
| 759 |
-
if isinstance(self.num_classes, int):
|
| 760 |
-
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
| 761 |
-
elif self.num_classes == "continuous":
|
| 762 |
-
# print("setting up linear c_adm embedding layer")
|
| 763 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 764 |
-
elif self.num_classes == "sequential":
|
| 765 |
-
assert adm_in_channels is not None
|
| 766 |
-
self.label_emb = nn.Sequential(
|
| 767 |
-
nn.Sequential(
|
| 768 |
-
nn.Linear(adm_in_channels, time_embed_dim),
|
| 769 |
-
nn.SiLU(),
|
| 770 |
-
nn.Linear(time_embed_dim, time_embed_dim),
|
| 771 |
-
)
|
| 772 |
-
)
|
| 773 |
-
else:
|
| 774 |
-
raise ValueError()
|
| 775 |
-
|
| 776 |
-
self.input_blocks = nn.ModuleList(
|
| 777 |
-
[
|
| 778 |
-
CondSequential(
|
| 779 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 780 |
-
)
|
| 781 |
-
]
|
| 782 |
-
)
|
| 783 |
-
self._feature_size = model_channels
|
| 784 |
-
input_block_chans = [model_channels]
|
| 785 |
-
ch = model_channels
|
| 786 |
-
ds = 1
|
| 787 |
-
for level, mult in enumerate(channel_mult):
|
| 788 |
-
for nr in range(self.num_res_blocks[level]):
|
| 789 |
-
layers: List[Any] = [
|
| 790 |
-
ResBlock(
|
| 791 |
-
ch,
|
| 792 |
-
time_embed_dim,
|
| 793 |
-
dropout,
|
| 794 |
-
out_channels=mult * model_channels,
|
| 795 |
-
dims=dims,
|
| 796 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 797 |
-
)
|
| 798 |
-
]
|
| 799 |
-
ch = mult * model_channels
|
| 800 |
-
if ds in attention_resolutions:
|
| 801 |
-
if num_head_channels == -1:
|
| 802 |
-
dim_head = ch // num_heads
|
| 803 |
-
else:
|
| 804 |
-
num_heads = ch // num_head_channels
|
| 805 |
-
dim_head = num_head_channels
|
| 806 |
-
|
| 807 |
-
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
| 808 |
-
layers.append(
|
| 809 |
-
SpatialTransformer3D(
|
| 810 |
-
ch,
|
| 811 |
-
num_heads,
|
| 812 |
-
dim_head,
|
| 813 |
-
context_dim=context_dim,
|
| 814 |
-
depth=transformer_depth,
|
| 815 |
-
ip_dim=self.ip_dim,
|
| 816 |
-
ip_weight=self.ip_weight,
|
| 817 |
-
)
|
| 818 |
-
)
|
| 819 |
-
self.input_blocks.append(CondSequential(*layers))
|
| 820 |
-
self._feature_size += ch
|
| 821 |
-
input_block_chans.append(ch)
|
| 822 |
-
if level != len(channel_mult) - 1:
|
| 823 |
-
out_ch = ch
|
| 824 |
-
self.input_blocks.append(
|
| 825 |
-
CondSequential(
|
| 826 |
-
ResBlock(
|
| 827 |
-
ch,
|
| 828 |
-
time_embed_dim,
|
| 829 |
-
dropout,
|
| 830 |
-
out_channels=out_ch,
|
| 831 |
-
dims=dims,
|
| 832 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 833 |
-
down=True,
|
| 834 |
-
)
|
| 835 |
-
if resblock_updown
|
| 836 |
-
else Downsample(
|
| 837 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 838 |
-
)
|
| 839 |
-
)
|
| 840 |
-
)
|
| 841 |
-
ch = out_ch
|
| 842 |
-
input_block_chans.append(ch)
|
| 843 |
-
ds *= 2
|
| 844 |
-
self._feature_size += ch
|
| 845 |
-
|
| 846 |
-
if num_head_channels == -1:
|
| 847 |
-
dim_head = ch // num_heads
|
| 848 |
-
else:
|
| 849 |
-
num_heads = ch // num_head_channels
|
| 850 |
-
dim_head = num_head_channels
|
| 851 |
-
|
| 852 |
-
self.middle_block = CondSequential(
|
| 853 |
-
ResBlock(
|
| 854 |
-
ch,
|
| 855 |
-
time_embed_dim,
|
| 856 |
-
dropout,
|
| 857 |
-
dims=dims,
|
| 858 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 859 |
-
),
|
| 860 |
-
SpatialTransformer3D(
|
| 861 |
-
ch,
|
| 862 |
-
num_heads,
|
| 863 |
-
dim_head,
|
| 864 |
-
context_dim=context_dim,
|
| 865 |
-
depth=transformer_depth,
|
| 866 |
-
ip_dim=self.ip_dim,
|
| 867 |
-
ip_weight=self.ip_weight,
|
| 868 |
-
),
|
| 869 |
-
ResBlock(
|
| 870 |
-
ch,
|
| 871 |
-
time_embed_dim,
|
| 872 |
-
dropout,
|
| 873 |
-
dims=dims,
|
| 874 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 875 |
-
),
|
| 876 |
-
)
|
| 877 |
-
self._feature_size += ch
|
| 878 |
-
|
| 879 |
-
self.output_blocks = nn.ModuleList([])
|
| 880 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 881 |
-
for i in range(self.num_res_blocks[level] + 1):
|
| 882 |
-
ich = input_block_chans.pop()
|
| 883 |
-
layers = [
|
| 884 |
-
ResBlock(
|
| 885 |
-
ch + ich,
|
| 886 |
-
time_embed_dim,
|
| 887 |
-
dropout,
|
| 888 |
-
out_channels=model_channels * mult,
|
| 889 |
-
dims=dims,
|
| 890 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 891 |
-
)
|
| 892 |
-
]
|
| 893 |
-
ch = model_channels * mult
|
| 894 |
-
if ds in attention_resolutions:
|
| 895 |
-
if num_head_channels == -1:
|
| 896 |
-
dim_head = ch // num_heads
|
| 897 |
-
else:
|
| 898 |
-
num_heads = ch // num_head_channels
|
| 899 |
-
dim_head = num_head_channels
|
| 900 |
-
|
| 901 |
-
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
| 902 |
-
layers.append(
|
| 903 |
-
SpatialTransformer3D(
|
| 904 |
-
ch,
|
| 905 |
-
num_heads,
|
| 906 |
-
dim_head,
|
| 907 |
-
context_dim=context_dim,
|
| 908 |
-
depth=transformer_depth,
|
| 909 |
-
ip_dim=self.ip_dim,
|
| 910 |
-
ip_weight=self.ip_weight,
|
| 911 |
-
)
|
| 912 |
-
)
|
| 913 |
-
if level and i == self.num_res_blocks[level]:
|
| 914 |
-
out_ch = ch
|
| 915 |
-
layers.append(
|
| 916 |
-
ResBlock(
|
| 917 |
-
ch,
|
| 918 |
-
time_embed_dim,
|
| 919 |
-
dropout,
|
| 920 |
-
out_channels=out_ch,
|
| 921 |
-
dims=dims,
|
| 922 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 923 |
-
up=True,
|
| 924 |
-
)
|
| 925 |
-
if resblock_updown
|
| 926 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 927 |
-
)
|
| 928 |
-
ds //= 2
|
| 929 |
-
self.output_blocks.append(CondSequential(*layers))
|
| 930 |
-
self._feature_size += ch
|
| 931 |
-
|
| 932 |
-
self.out = nn.Sequential(
|
| 933 |
-
nn.GroupNorm(32, ch),
|
| 934 |
-
nn.SiLU(),
|
| 935 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 936 |
-
)
|
| 937 |
-
if self.predict_codebook_ids:
|
| 938 |
-
self.id_predictor = nn.Sequential(
|
| 939 |
-
nn.GroupNorm(32, ch),
|
| 940 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
| 941 |
-
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 942 |
-
)
|
| 943 |
-
|
| 944 |
-
def forward(
|
| 945 |
-
self,
|
| 946 |
-
x,
|
| 947 |
-
timesteps=None,
|
| 948 |
-
context=None,
|
| 949 |
-
y=None,
|
| 950 |
-
camera=None,
|
| 951 |
-
num_frames=1,
|
| 952 |
-
ip=None,
|
| 953 |
-
ip_img=None,
|
| 954 |
-
**kwargs,
|
| 955 |
-
):
|
| 956 |
-
"""
|
| 957 |
-
Apply the model to an input batch.
|
| 958 |
-
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 959 |
-
:param timesteps: a 1-D batch of timesteps.
|
| 960 |
-
:param context: conditioning plugged in via crossattn
|
| 961 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
| 962 |
-
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 963 |
-
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 964 |
-
"""
|
| 965 |
-
assert (
|
| 966 |
-
x.shape[0] % num_frames == 0
|
| 967 |
-
), "input batch size must be dividable by num_frames!"
|
| 968 |
-
assert (y is not None) == (
|
| 969 |
-
self.num_classes is not None
|
| 970 |
-
), "must specify y if and only if the model is class-conditional"
|
| 971 |
-
|
| 972 |
-
hs = []
|
| 973 |
-
|
| 974 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 975 |
-
|
| 976 |
-
emb = self.time_embed(t_emb)
|
| 977 |
-
|
| 978 |
-
if self.num_classes is not None:
|
| 979 |
-
assert y is not None
|
| 980 |
-
assert y.shape[0] == x.shape[0]
|
| 981 |
-
emb = emb + self.label_emb(y)
|
| 982 |
-
|
| 983 |
-
# Add camera embeddings
|
| 984 |
-
if camera is not None:
|
| 985 |
-
emb = emb + self.camera_embed(camera)
|
| 986 |
-
|
| 987 |
-
# imagedream variant
|
| 988 |
-
if self.ip_dim > 0:
|
| 989 |
-
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
| 990 |
-
ip_emb = self.image_embed(ip)
|
| 991 |
-
context = torch.cat((context, ip_emb), 1)
|
| 992 |
-
|
| 993 |
-
h = x
|
| 994 |
-
for module in self.input_blocks:
|
| 995 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 996 |
-
hs.append(h)
|
| 997 |
-
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 998 |
-
for module in self.output_blocks:
|
| 999 |
-
h = torch.cat([h, hs.pop()], dim=1)
|
| 1000 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 1001 |
-
h = h.type(x.dtype)
|
| 1002 |
-
if self.predict_codebook_ids:
|
| 1003 |
-
return self.id_predictor(h)
|
| 1004 |
-
else:
|
| 1005 |
-
return self.out(h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline.py
CHANGED
|
@@ -2,8 +2,13 @@ import torch
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import inspect
|
| 4 |
import numpy as np
|
| 5 |
-
from typing import Callable, List, Optional, Union
|
| 6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
| 8 |
from diffusers.utils import (
|
| 9 |
deprecate,
|
|
@@ -15,7 +20,1017 @@ from diffusers.configuration_utils import FrozenDict
|
|
| 15 |
from diffusers.schedulers import DDIMScheduler
|
| 16 |
from diffusers.utils.torch_utils import randn_tensor
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 21 |
|
|
@@ -404,26 +1419,30 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 404 |
|
| 405 |
if image.dtype == np.float32:
|
| 406 |
image = (image * 255).astype(np.uint8)
|
| 407 |
-
|
| 408 |
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 409 |
image = image.to(device=device, dtype=dtype)
|
| 410 |
-
|
| 411 |
-
image_embeds = self.image_encoder(
|
|
|
|
|
|
|
| 412 |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 413 |
|
| 414 |
return torch.zeros_like(image_embeds), image_embeds
|
| 415 |
|
| 416 |
def encode_image_latents(self, image, device, num_images_per_prompt):
|
| 417 |
-
|
| 418 |
dtype = next(self.image_encoder.parameters()).dtype
|
| 419 |
|
| 420 |
-
image =
|
|
|
|
|
|
|
| 421 |
image = 2 * image - 1
|
| 422 |
-
image = F.interpolate(image, (256, 256), mode=
|
| 423 |
image = image.to(dtype=dtype)
|
| 424 |
|
| 425 |
posterior = self.vae.encode(image).latent_dist
|
| 426 |
-
latents = posterior.sample() * self.vae.config.scaling_factor
|
| 427 |
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
| 428 |
|
| 429 |
return torch.zeros_like(latents), latents
|
|
@@ -442,7 +1461,7 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 442 |
num_images_per_prompt: int = 1,
|
| 443 |
eta: float = 0.0,
|
| 444 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 445 |
-
output_type: Optional[str] = "numpy",
|
| 446 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 447 |
callback_steps: int = 1,
|
| 448 |
num_frames: int = 4,
|
|
@@ -465,9 +1484,13 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 465 |
if image is not None:
|
| 466 |
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
| 467 |
self.image_encoder = self.image_encoder.to(device=device)
|
| 468 |
-
image_embeds_neg, image_embeds_pos = self.encode_image(
|
| 469 |
-
|
| 470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
_prompt_embeds = self._encode_prompt(
|
| 472 |
prompt=prompt,
|
| 473 |
device=device,
|
|
@@ -491,7 +1514,9 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 491 |
)
|
| 492 |
|
| 493 |
# Get camera
|
| 494 |
-
camera = get_camera(
|
|
|
|
|
|
|
| 495 |
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
| 496 |
|
| 497 |
# Prepare extra step kwargs.
|
|
@@ -504,20 +1529,34 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 504 |
# expand the latents if we are doing classifier free guidance
|
| 505 |
multiplier = 2 if do_classifier_free_guidance else 1
|
| 506 |
latent_model_input = torch.cat([latents] * multiplier)
|
| 507 |
-
latent_model_input = self.scheduler.scale_model_input(
|
|
|
|
|
|
|
| 508 |
|
| 509 |
unet_inputs = {
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
}
|
| 516 |
|
| 517 |
if image is not None:
|
| 518 |
-
unet_inputs[
|
| 519 |
-
|
| 520 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
# predict the noise residual
|
| 522 |
noise_pred = self.unet.forward(**unet_inputs)
|
| 523 |
|
|
@@ -547,7 +1586,7 @@ class MVDreamPipeline(DiffusionPipeline):
|
|
| 547 |
elif output_type == "pil":
|
| 548 |
image = self.decode_latents(latents)
|
| 549 |
image = self.numpy_to_pil(image)
|
| 550 |
-
else:
|
| 551 |
image = self.decode_latents(latents)
|
| 552 |
|
| 553 |
# Offload last model to CPU
|
|
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
import inspect
|
| 4 |
import numpy as np
|
| 5 |
+
from typing import Callable, List, Optional, Union, Any
|
| 6 |
+
from transformers import (
|
| 7 |
+
CLIPTextModel,
|
| 8 |
+
CLIPTokenizer,
|
| 9 |
+
CLIPVisionModel,
|
| 10 |
+
CLIPImageProcessor,
|
| 11 |
+
)
|
| 12 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
| 13 |
from diffusers.utils import (
|
| 14 |
deprecate,
|
|
|
|
| 20 |
from diffusers.schedulers import DDIMScheduler
|
| 21 |
from diffusers.utils.torch_utils import randn_tensor
|
| 22 |
|
| 23 |
+
import math
|
| 24 |
+
from inspect import isfunction
|
| 25 |
+
|
| 26 |
+
import torch.nn as nn
|
| 27 |
+
from einops import rearrange, repeat
|
| 28 |
+
|
| 29 |
+
from diffusers.configuration_utils import ConfigMixin
|
| 30 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 31 |
+
|
| 32 |
+
# require xformers!
|
| 33 |
+
import xformers
|
| 34 |
+
import xformers.ops
|
| 35 |
+
|
| 36 |
+
from kiui.cam import orbit_camera
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_camera(
|
| 40 |
+
num_frames,
|
| 41 |
+
elevation=15,
|
| 42 |
+
azimuth_start=0,
|
| 43 |
+
azimuth_span=360,
|
| 44 |
+
blender_coord=True,
|
| 45 |
+
extra_view=False,
|
| 46 |
+
):
|
| 47 |
+
angle_gap = azimuth_span / num_frames
|
| 48 |
+
cameras = []
|
| 49 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
| 50 |
+
|
| 51 |
+
pose = orbit_camera(
|
| 52 |
+
-elevation, azimuth, radius=1
|
| 53 |
+
) # kiui's elevation is negated, [4, 4]
|
| 54 |
+
|
| 55 |
+
# opengl to blender
|
| 56 |
+
if blender_coord:
|
| 57 |
+
pose[2] *= -1
|
| 58 |
+
pose[[1, 2]] = pose[[2, 1]]
|
| 59 |
+
|
| 60 |
+
cameras.append(pose.flatten())
|
| 61 |
+
|
| 62 |
+
if extra_view:
|
| 63 |
+
cameras.append(np.zeros_like(cameras[0]))
|
| 64 |
+
|
| 65 |
+
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 69 |
+
"""
|
| 70 |
+
Create sinusoidal timestep embeddings.
|
| 71 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 72 |
+
These may be fractional.
|
| 73 |
+
:param dim: the dimension of the output.
|
| 74 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 75 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 76 |
+
"""
|
| 77 |
+
if not repeat_only:
|
| 78 |
+
half = dim // 2
|
| 79 |
+
freqs = torch.exp(
|
| 80 |
+
-math.log(max_period)
|
| 81 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
| 82 |
+
/ half
|
| 83 |
+
).to(device=timesteps.device)
|
| 84 |
+
args = timesteps[:, None] * freqs[None]
|
| 85 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 86 |
+
if dim % 2:
|
| 87 |
+
embedding = torch.cat(
|
| 88 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
| 92 |
+
# import pdb; pdb.set_trace()
|
| 93 |
+
return embedding
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def zero_module(module):
|
| 97 |
+
"""
|
| 98 |
+
Zero out the parameters of a module and return it.
|
| 99 |
+
"""
|
| 100 |
+
for p in module.parameters():
|
| 101 |
+
p.detach().zero_()
|
| 102 |
+
return module
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def conv_nd(dims, *args, **kwargs):
|
| 106 |
+
"""
|
| 107 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 108 |
+
"""
|
| 109 |
+
if dims == 1:
|
| 110 |
+
return nn.Conv1d(*args, **kwargs)
|
| 111 |
+
elif dims == 2:
|
| 112 |
+
return nn.Conv2d(*args, **kwargs)
|
| 113 |
+
elif dims == 3:
|
| 114 |
+
return nn.Conv3d(*args, **kwargs)
|
| 115 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 119 |
+
"""
|
| 120 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 121 |
+
"""
|
| 122 |
+
if dims == 1:
|
| 123 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 124 |
+
elif dims == 2:
|
| 125 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 126 |
+
elif dims == 3:
|
| 127 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 128 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def default(val, d):
|
| 132 |
+
if val is not None:
|
| 133 |
+
return val
|
| 134 |
+
return d() if isfunction(d) else d
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class GEGLU(nn.Module):
|
| 138 |
+
def __init__(self, dim_in, dim_out):
|
| 139 |
+
super().__init__()
|
| 140 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 144 |
+
return x * F.gelu(gate)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class FeedForward(nn.Module):
|
| 148 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
| 149 |
+
super().__init__()
|
| 150 |
+
inner_dim = int(dim * mult)
|
| 151 |
+
dim_out = default(dim_out, dim)
|
| 152 |
+
project_in = (
|
| 153 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
| 154 |
+
if not glu
|
| 155 |
+
else GEGLU(dim, inner_dim)
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
self.net = nn.Sequential(
|
| 159 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def forward(self, x):
|
| 163 |
+
return self.net(x)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 167 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 168 |
+
def __init__(
|
| 169 |
+
self,
|
| 170 |
+
query_dim,
|
| 171 |
+
context_dim=None,
|
| 172 |
+
heads=8,
|
| 173 |
+
dim_head=64,
|
| 174 |
+
dropout=0.0,
|
| 175 |
+
ip_dim=0,
|
| 176 |
+
ip_weight=1,
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
|
| 180 |
+
inner_dim = dim_head * heads
|
| 181 |
+
context_dim = default(context_dim, query_dim)
|
| 182 |
+
|
| 183 |
+
self.heads = heads
|
| 184 |
+
self.dim_head = dim_head
|
| 185 |
+
|
| 186 |
+
self.ip_dim = ip_dim
|
| 187 |
+
self.ip_weight = ip_weight
|
| 188 |
+
|
| 189 |
+
if self.ip_dim > 0:
|
| 190 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
| 191 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
| 192 |
+
|
| 193 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 194 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 195 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 196 |
+
|
| 197 |
+
self.to_out = nn.Sequential(
|
| 198 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 199 |
+
)
|
| 200 |
+
self.attention_op: Optional[Any] = None
|
| 201 |
+
|
| 202 |
+
def forward(self, x, context=None):
|
| 203 |
+
q = self.to_q(x)
|
| 204 |
+
context = default(context, x)
|
| 205 |
+
|
| 206 |
+
if self.ip_dim > 0:
|
| 207 |
+
# context: [B, 77 + 16(ip), 1024]
|
| 208 |
+
token_len = context.shape[1]
|
| 209 |
+
context_ip = context[:, -self.ip_dim :, :]
|
| 210 |
+
k_ip = self.to_k_ip(context_ip)
|
| 211 |
+
v_ip = self.to_v_ip(context_ip)
|
| 212 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
| 213 |
+
|
| 214 |
+
k = self.to_k(context)
|
| 215 |
+
v = self.to_v(context)
|
| 216 |
+
|
| 217 |
+
b, _, _ = q.shape
|
| 218 |
+
q, k, v = map(
|
| 219 |
+
lambda t: t.unsqueeze(3)
|
| 220 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 221 |
+
.permute(0, 2, 1, 3)
|
| 222 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 223 |
+
.contiguous(),
|
| 224 |
+
(q, k, v),
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# actually compute the attention, what we cannot get enough of
|
| 228 |
+
out = xformers.ops.memory_efficient_attention(
|
| 229 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
if self.ip_dim > 0:
|
| 233 |
+
k_ip, v_ip = map(
|
| 234 |
+
lambda t: t.unsqueeze(3)
|
| 235 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 236 |
+
.permute(0, 2, 1, 3)
|
| 237 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 238 |
+
.contiguous(),
|
| 239 |
+
(k_ip, v_ip),
|
| 240 |
+
)
|
| 241 |
+
# actually compute the attention, what we cannot get enough of
|
| 242 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
| 243 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
| 244 |
+
)
|
| 245 |
+
out = out + self.ip_weight * out_ip
|
| 246 |
+
|
| 247 |
+
out = (
|
| 248 |
+
out.unsqueeze(0)
|
| 249 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 250 |
+
.permute(0, 2, 1, 3)
|
| 251 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 252 |
+
)
|
| 253 |
+
return self.to_out(out)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class BasicTransformerBlock3D(nn.Module):
|
| 257 |
+
|
| 258 |
+
def __init__(
|
| 259 |
+
self,
|
| 260 |
+
dim,
|
| 261 |
+
n_heads,
|
| 262 |
+
d_head,
|
| 263 |
+
context_dim,
|
| 264 |
+
dropout=0.0,
|
| 265 |
+
gated_ff=True,
|
| 266 |
+
ip_dim=0,
|
| 267 |
+
ip_weight=1,
|
| 268 |
+
):
|
| 269 |
+
super().__init__()
|
| 270 |
+
|
| 271 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
| 272 |
+
query_dim=dim,
|
| 273 |
+
context_dim=None, # self-attention
|
| 274 |
+
heads=n_heads,
|
| 275 |
+
dim_head=d_head,
|
| 276 |
+
dropout=dropout,
|
| 277 |
+
)
|
| 278 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 279 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
| 280 |
+
query_dim=dim,
|
| 281 |
+
context_dim=context_dim,
|
| 282 |
+
heads=n_heads,
|
| 283 |
+
dim_head=d_head,
|
| 284 |
+
dropout=dropout,
|
| 285 |
+
# ip only applies to cross-attention
|
| 286 |
+
ip_dim=ip_dim,
|
| 287 |
+
ip_weight=ip_weight,
|
| 288 |
+
)
|
| 289 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 290 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 291 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 292 |
+
|
| 293 |
+
def forward(self, x, context=None, num_frames=1):
|
| 294 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
| 295 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
| 296 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
| 297 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 298 |
+
x = self.ff(self.norm3(x)) + x
|
| 299 |
+
return x
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class SpatialTransformer3D(nn.Module):
|
| 303 |
+
|
| 304 |
+
def __init__(
|
| 305 |
+
self,
|
| 306 |
+
in_channels,
|
| 307 |
+
n_heads,
|
| 308 |
+
d_head,
|
| 309 |
+
context_dim, # cross attention input dim
|
| 310 |
+
depth=1,
|
| 311 |
+
dropout=0.0,
|
| 312 |
+
ip_dim=0,
|
| 313 |
+
ip_weight=1,
|
| 314 |
+
):
|
| 315 |
+
super().__init__()
|
| 316 |
+
|
| 317 |
+
if not isinstance(context_dim, list):
|
| 318 |
+
context_dim = [context_dim]
|
| 319 |
+
|
| 320 |
+
self.in_channels = in_channels
|
| 321 |
+
|
| 322 |
+
inner_dim = n_heads * d_head
|
| 323 |
+
self.norm = nn.GroupNorm(
|
| 324 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
| 325 |
+
)
|
| 326 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 327 |
+
|
| 328 |
+
self.transformer_blocks = nn.ModuleList(
|
| 329 |
+
[
|
| 330 |
+
BasicTransformerBlock3D(
|
| 331 |
+
inner_dim,
|
| 332 |
+
n_heads,
|
| 333 |
+
d_head,
|
| 334 |
+
context_dim=context_dim[d],
|
| 335 |
+
dropout=dropout,
|
| 336 |
+
ip_dim=ip_dim,
|
| 337 |
+
ip_weight=ip_weight,
|
| 338 |
+
)
|
| 339 |
+
for d in range(depth)
|
| 340 |
+
]
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 344 |
+
|
| 345 |
+
def forward(self, x, context=None, num_frames=1):
|
| 346 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 347 |
+
if not isinstance(context, list):
|
| 348 |
+
context = [context]
|
| 349 |
+
b, c, h, w = x.shape
|
| 350 |
+
x_in = x
|
| 351 |
+
x = self.norm(x)
|
| 352 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
| 353 |
+
x = self.proj_in(x)
|
| 354 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 355 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
| 356 |
+
x = self.proj_out(x)
|
| 357 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
| 358 |
+
|
| 359 |
+
return x + x_in
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class PerceiverAttention(nn.Module):
|
| 363 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.scale = dim_head**-0.5
|
| 366 |
+
self.dim_head = dim_head
|
| 367 |
+
self.heads = heads
|
| 368 |
+
inner_dim = dim_head * heads
|
| 369 |
+
|
| 370 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 371 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 372 |
+
|
| 373 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 374 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 375 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 376 |
+
|
| 377 |
+
def forward(self, x, latents):
|
| 378 |
+
"""
|
| 379 |
+
Args:
|
| 380 |
+
x (torch.Tensor): image features
|
| 381 |
+
shape (b, n1, D)
|
| 382 |
+
latent (torch.Tensor): latent features
|
| 383 |
+
shape (b, n2, D)
|
| 384 |
+
"""
|
| 385 |
+
x = self.norm1(x)
|
| 386 |
+
latents = self.norm2(latents)
|
| 387 |
+
|
| 388 |
+
b, h, _ = latents.shape
|
| 389 |
+
|
| 390 |
+
q = self.to_q(latents)
|
| 391 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
| 392 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 393 |
+
|
| 394 |
+
q, k, v = map(
|
| 395 |
+
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
| 396 |
+
.transpose(1, 2)
|
| 397 |
+
.reshape(b, self.heads, t.shape[1], -1)
|
| 398 |
+
.contiguous(),
|
| 399 |
+
(q, k, v),
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# attention
|
| 403 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 404 |
+
weight = (q * scale) @ (k * scale).transpose(
|
| 405 |
+
-2, -1
|
| 406 |
+
) # More stable with f16 than dividing afterwards
|
| 407 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 408 |
+
out = weight @ v
|
| 409 |
+
|
| 410 |
+
out = out.permute(0, 2, 1, 3).reshape(b, h, -1)
|
| 411 |
+
|
| 412 |
+
return self.to_out(out)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
class Resampler(nn.Module):
|
| 416 |
+
def __init__(
|
| 417 |
+
self,
|
| 418 |
+
dim=1024,
|
| 419 |
+
depth=8,
|
| 420 |
+
dim_head=64,
|
| 421 |
+
heads=16,
|
| 422 |
+
num_queries=8,
|
| 423 |
+
embedding_dim=768,
|
| 424 |
+
output_dim=1024,
|
| 425 |
+
ff_mult=4,
|
| 426 |
+
):
|
| 427 |
+
super().__init__()
|
| 428 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 429 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 430 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 431 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 432 |
+
|
| 433 |
+
self.layers = nn.ModuleList([])
|
| 434 |
+
for _ in range(depth):
|
| 435 |
+
self.layers.append(
|
| 436 |
+
nn.ModuleList(
|
| 437 |
+
[
|
| 438 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 439 |
+
nn.Sequential(
|
| 440 |
+
nn.LayerNorm(dim),
|
| 441 |
+
nn.Linear(dim, dim * ff_mult, bias=False),
|
| 442 |
+
nn.GELU(),
|
| 443 |
+
nn.Linear(dim * ff_mult, dim, bias=False),
|
| 444 |
+
),
|
| 445 |
+
]
|
| 446 |
+
)
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
def forward(self, x):
|
| 450 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 451 |
+
x = self.proj_in(x)
|
| 452 |
+
for attn, ff in self.layers:
|
| 453 |
+
latents = attn(x, latents) + latents
|
| 454 |
+
latents = ff(latents) + latents
|
| 455 |
+
|
| 456 |
+
latents = self.proj_out(latents)
|
| 457 |
+
return self.norm_out(latents)
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
class CondSequential(nn.Sequential):
|
| 461 |
+
"""
|
| 462 |
+
A sequential module that passes timestep embeddings to the children that
|
| 463 |
+
support it as an extra input.
|
| 464 |
+
"""
|
| 465 |
+
|
| 466 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
| 467 |
+
for layer in self:
|
| 468 |
+
if isinstance(layer, ResBlock):
|
| 469 |
+
x = layer(x, emb)
|
| 470 |
+
elif isinstance(layer, SpatialTransformer3D):
|
| 471 |
+
x = layer(x, context, num_frames=num_frames)
|
| 472 |
+
else:
|
| 473 |
+
x = layer(x)
|
| 474 |
+
return x
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class Upsample(nn.Module):
|
| 478 |
+
"""
|
| 479 |
+
An upsampling layer with an optional convolution.
|
| 480 |
+
:param channels: channels in the inputs and outputs.
|
| 481 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 482 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 483 |
+
upsampling occurs in the inner-two dimensions.
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 487 |
+
super().__init__()
|
| 488 |
+
self.channels = channels
|
| 489 |
+
self.out_channels = out_channels or channels
|
| 490 |
+
self.use_conv = use_conv
|
| 491 |
+
self.dims = dims
|
| 492 |
+
if use_conv:
|
| 493 |
+
self.conv = conv_nd(
|
| 494 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
def forward(self, x):
|
| 498 |
+
assert x.shape[1] == self.channels
|
| 499 |
+
if self.dims == 3:
|
| 500 |
+
x = F.interpolate(
|
| 501 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 505 |
+
if self.use_conv:
|
| 506 |
+
x = self.conv(x)
|
| 507 |
+
return x
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class Downsample(nn.Module):
|
| 511 |
+
"""
|
| 512 |
+
A downsampling layer with an optional convolution.
|
| 513 |
+
:param channels: channels in the inputs and outputs.
|
| 514 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 515 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 516 |
+
downsampling occurs in the inner-two dimensions.
|
| 517 |
+
"""
|
| 518 |
+
|
| 519 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 520 |
+
super().__init__()
|
| 521 |
+
self.channels = channels
|
| 522 |
+
self.out_channels = out_channels or channels
|
| 523 |
+
self.use_conv = use_conv
|
| 524 |
+
self.dims = dims
|
| 525 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 526 |
+
if use_conv:
|
| 527 |
+
self.op = conv_nd(
|
| 528 |
+
dims,
|
| 529 |
+
self.channels,
|
| 530 |
+
self.out_channels,
|
| 531 |
+
3,
|
| 532 |
+
stride=stride,
|
| 533 |
+
padding=padding,
|
| 534 |
+
)
|
| 535 |
+
else:
|
| 536 |
+
assert self.channels == self.out_channels
|
| 537 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 538 |
+
|
| 539 |
+
def forward(self, x):
|
| 540 |
+
assert x.shape[1] == self.channels
|
| 541 |
+
return self.op(x)
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
class ResBlock(nn.Module):
|
| 545 |
+
"""
|
| 546 |
+
A residual block that can optionally change the number of channels.
|
| 547 |
+
:param channels: the number of input channels.
|
| 548 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 549 |
+
:param dropout: the rate of dropout.
|
| 550 |
+
:param out_channels: if specified, the number of out channels.
|
| 551 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 552 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 553 |
+
channels in the skip connection.
|
| 554 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 555 |
+
:param up: if True, use this block for upsampling.
|
| 556 |
+
:param down: if True, use this block for downsampling.
|
| 557 |
+
"""
|
| 558 |
+
|
| 559 |
+
def __init__(
|
| 560 |
+
self,
|
| 561 |
+
channels,
|
| 562 |
+
emb_channels,
|
| 563 |
+
dropout,
|
| 564 |
+
out_channels=None,
|
| 565 |
+
use_conv=False,
|
| 566 |
+
use_scale_shift_norm=False,
|
| 567 |
+
dims=2,
|
| 568 |
+
up=False,
|
| 569 |
+
down=False,
|
| 570 |
+
):
|
| 571 |
+
super().__init__()
|
| 572 |
+
self.channels = channels
|
| 573 |
+
self.emb_channels = emb_channels
|
| 574 |
+
self.dropout = dropout
|
| 575 |
+
self.out_channels = out_channels or channels
|
| 576 |
+
self.use_conv = use_conv
|
| 577 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 578 |
+
|
| 579 |
+
self.in_layers = nn.Sequential(
|
| 580 |
+
nn.GroupNorm(32, channels),
|
| 581 |
+
nn.SiLU(),
|
| 582 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
self.updown = up or down
|
| 586 |
+
|
| 587 |
+
if up:
|
| 588 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 589 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 590 |
+
elif down:
|
| 591 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 592 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 593 |
+
else:
|
| 594 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 595 |
+
|
| 596 |
+
self.emb_layers = nn.Sequential(
|
| 597 |
+
nn.SiLU(),
|
| 598 |
+
nn.Linear(
|
| 599 |
+
emb_channels,
|
| 600 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 601 |
+
),
|
| 602 |
+
)
|
| 603 |
+
self.out_layers = nn.Sequential(
|
| 604 |
+
nn.GroupNorm(32, self.out_channels),
|
| 605 |
+
nn.SiLU(),
|
| 606 |
+
nn.Dropout(p=dropout),
|
| 607 |
+
zero_module(
|
| 608 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 609 |
+
),
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
if self.out_channels == channels:
|
| 613 |
+
self.skip_connection = nn.Identity()
|
| 614 |
+
elif use_conv:
|
| 615 |
+
self.skip_connection = conv_nd(
|
| 616 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 617 |
+
)
|
| 618 |
+
else:
|
| 619 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 620 |
+
|
| 621 |
+
def forward(self, x, emb):
|
| 622 |
+
if self.updown:
|
| 623 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 624 |
+
h = in_rest(x)
|
| 625 |
+
h = self.h_upd(h)
|
| 626 |
+
x = self.x_upd(x)
|
| 627 |
+
h = in_conv(h)
|
| 628 |
+
else:
|
| 629 |
+
h = self.in_layers(x)
|
| 630 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 631 |
+
while len(emb_out.shape) < len(h.shape):
|
| 632 |
+
emb_out = emb_out[..., None]
|
| 633 |
+
if self.use_scale_shift_norm:
|
| 634 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 635 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
| 636 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 637 |
+
h = out_rest(h)
|
| 638 |
+
else:
|
| 639 |
+
h = h + emb_out
|
| 640 |
+
h = self.out_layers(h)
|
| 641 |
+
return self.skip_connection(x) + h
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
| 645 |
+
"""
|
| 646 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 647 |
+
:param in_channels: channels in the input Tensor.
|
| 648 |
+
:param model_channels: base channel count for the model.
|
| 649 |
+
:param out_channels: channels in the output Tensor.
|
| 650 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 651 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 652 |
+
attention will take place. May be a set, list, or tuple.
|
| 653 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 654 |
+
will be used.
|
| 655 |
+
:param dropout: the dropout probability.
|
| 656 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 657 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 658 |
+
downsampling.
|
| 659 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 660 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 661 |
+
class-conditional with `num_classes` classes.
|
| 662 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 663 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 664 |
+
a fixed channel width per attention head.
|
| 665 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 666 |
+
of heads for upsampling. Deprecated.
|
| 667 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 668 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 669 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 670 |
+
increased efficiency.
|
| 671 |
+
:param camera_dim: dimensionality of camera input.
|
| 672 |
+
"""
|
| 673 |
+
|
| 674 |
+
def __init__(
|
| 675 |
+
self,
|
| 676 |
+
image_size,
|
| 677 |
+
in_channels,
|
| 678 |
+
model_channels,
|
| 679 |
+
out_channels,
|
| 680 |
+
num_res_blocks,
|
| 681 |
+
attention_resolutions,
|
| 682 |
+
dropout=0,
|
| 683 |
+
channel_mult=(1, 2, 4, 8),
|
| 684 |
+
conv_resample=True,
|
| 685 |
+
dims=2,
|
| 686 |
+
num_classes=None,
|
| 687 |
+
num_heads=-1,
|
| 688 |
+
num_head_channels=-1,
|
| 689 |
+
num_heads_upsample=-1,
|
| 690 |
+
use_scale_shift_norm=False,
|
| 691 |
+
resblock_updown=False,
|
| 692 |
+
transformer_depth=1,
|
| 693 |
+
context_dim=None,
|
| 694 |
+
n_embed=None,
|
| 695 |
+
num_attention_blocks=None,
|
| 696 |
+
adm_in_channels=None,
|
| 697 |
+
camera_dim=None,
|
| 698 |
+
ip_dim=0, # imagedream uses ip_dim > 0
|
| 699 |
+
ip_weight=1.0,
|
| 700 |
+
**kwargs,
|
| 701 |
+
):
|
| 702 |
+
super().__init__()
|
| 703 |
+
assert context_dim is not None
|
| 704 |
+
|
| 705 |
+
if num_heads_upsample == -1:
|
| 706 |
+
num_heads_upsample = num_heads
|
| 707 |
+
|
| 708 |
+
if num_heads == -1:
|
| 709 |
+
assert (
|
| 710 |
+
num_head_channels != -1
|
| 711 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 712 |
+
|
| 713 |
+
if num_head_channels == -1:
|
| 714 |
+
assert (
|
| 715 |
+
num_heads != -1
|
| 716 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 717 |
+
|
| 718 |
+
self.image_size = image_size
|
| 719 |
+
self.in_channels = in_channels
|
| 720 |
+
self.model_channels = model_channels
|
| 721 |
+
self.out_channels = out_channels
|
| 722 |
+
if isinstance(num_res_blocks, int):
|
| 723 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 724 |
+
else:
|
| 725 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 726 |
+
raise ValueError(
|
| 727 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 728 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 729 |
+
)
|
| 730 |
+
self.num_res_blocks = num_res_blocks
|
| 731 |
+
|
| 732 |
+
if num_attention_blocks is not None:
|
| 733 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 734 |
+
assert all(
|
| 735 |
+
map(
|
| 736 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 737 |
+
range(len(num_attention_blocks)),
|
| 738 |
+
)
|
| 739 |
+
)
|
| 740 |
+
print(
|
| 741 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 742 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 743 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 744 |
+
f"attention will still not be set."
|
| 745 |
+
)
|
| 746 |
+
|
| 747 |
+
self.attention_resolutions = attention_resolutions
|
| 748 |
+
self.dropout = dropout
|
| 749 |
+
self.channel_mult = channel_mult
|
| 750 |
+
self.conv_resample = conv_resample
|
| 751 |
+
self.num_classes = num_classes
|
| 752 |
+
self.num_heads = num_heads
|
| 753 |
+
self.num_head_channels = num_head_channels
|
| 754 |
+
self.num_heads_upsample = num_heads_upsample
|
| 755 |
+
self.predict_codebook_ids = n_embed is not None
|
| 756 |
+
|
| 757 |
+
self.ip_dim = ip_dim
|
| 758 |
+
self.ip_weight = ip_weight
|
| 759 |
+
|
| 760 |
+
if self.ip_dim > 0:
|
| 761 |
+
self.image_embed = Resampler(
|
| 762 |
+
dim=context_dim,
|
| 763 |
+
depth=4,
|
| 764 |
+
dim_head=64,
|
| 765 |
+
heads=12,
|
| 766 |
+
num_queries=ip_dim, # num token
|
| 767 |
+
embedding_dim=1280,
|
| 768 |
+
output_dim=context_dim,
|
| 769 |
+
ff_mult=4,
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
time_embed_dim = model_channels * 4
|
| 773 |
+
self.time_embed = nn.Sequential(
|
| 774 |
+
nn.Linear(model_channels, time_embed_dim),
|
| 775 |
+
nn.SiLU(),
|
| 776 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
if camera_dim is not None:
|
| 780 |
+
time_embed_dim = model_channels * 4
|
| 781 |
+
self.camera_embed = nn.Sequential(
|
| 782 |
+
nn.Linear(camera_dim, time_embed_dim),
|
| 783 |
+
nn.SiLU(),
|
| 784 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
if self.num_classes is not None:
|
| 788 |
+
if isinstance(self.num_classes, int):
|
| 789 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
| 790 |
+
elif self.num_classes == "continuous":
|
| 791 |
+
# print("setting up linear c_adm embedding layer")
|
| 792 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 793 |
+
elif self.num_classes == "sequential":
|
| 794 |
+
assert adm_in_channels is not None
|
| 795 |
+
self.label_emb = nn.Sequential(
|
| 796 |
+
nn.Sequential(
|
| 797 |
+
nn.Linear(adm_in_channels, time_embed_dim),
|
| 798 |
+
nn.SiLU(),
|
| 799 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
| 800 |
+
)
|
| 801 |
+
)
|
| 802 |
+
else:
|
| 803 |
+
raise ValueError()
|
| 804 |
+
|
| 805 |
+
self.input_blocks = nn.ModuleList(
|
| 806 |
+
[CondSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
|
| 807 |
+
)
|
| 808 |
+
self._feature_size = model_channels
|
| 809 |
+
input_block_chans = [model_channels]
|
| 810 |
+
ch = model_channels
|
| 811 |
+
ds = 1
|
| 812 |
+
for level, mult in enumerate(channel_mult):
|
| 813 |
+
for nr in range(self.num_res_blocks[level]):
|
| 814 |
+
layers: List[Any] = [
|
| 815 |
+
ResBlock(
|
| 816 |
+
ch,
|
| 817 |
+
time_embed_dim,
|
| 818 |
+
dropout,
|
| 819 |
+
out_channels=mult * model_channels,
|
| 820 |
+
dims=dims,
|
| 821 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 822 |
+
)
|
| 823 |
+
]
|
| 824 |
+
ch = mult * model_channels
|
| 825 |
+
if ds in attention_resolutions:
|
| 826 |
+
if num_head_channels == -1:
|
| 827 |
+
dim_head = ch // num_heads
|
| 828 |
+
else:
|
| 829 |
+
num_heads = ch // num_head_channels
|
| 830 |
+
dim_head = num_head_channels
|
| 831 |
+
|
| 832 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
| 833 |
+
layers.append(
|
| 834 |
+
SpatialTransformer3D(
|
| 835 |
+
ch,
|
| 836 |
+
num_heads,
|
| 837 |
+
dim_head,
|
| 838 |
+
context_dim=context_dim,
|
| 839 |
+
depth=transformer_depth,
|
| 840 |
+
ip_dim=self.ip_dim,
|
| 841 |
+
ip_weight=self.ip_weight,
|
| 842 |
+
)
|
| 843 |
+
)
|
| 844 |
+
self.input_blocks.append(CondSequential(*layers))
|
| 845 |
+
self._feature_size += ch
|
| 846 |
+
input_block_chans.append(ch)
|
| 847 |
+
if level != len(channel_mult) - 1:
|
| 848 |
+
out_ch = ch
|
| 849 |
+
self.input_blocks.append(
|
| 850 |
+
CondSequential(
|
| 851 |
+
ResBlock(
|
| 852 |
+
ch,
|
| 853 |
+
time_embed_dim,
|
| 854 |
+
dropout,
|
| 855 |
+
out_channels=out_ch,
|
| 856 |
+
dims=dims,
|
| 857 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 858 |
+
down=True,
|
| 859 |
+
)
|
| 860 |
+
if resblock_updown
|
| 861 |
+
else Downsample(
|
| 862 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 863 |
+
)
|
| 864 |
+
)
|
| 865 |
+
)
|
| 866 |
+
ch = out_ch
|
| 867 |
+
input_block_chans.append(ch)
|
| 868 |
+
ds *= 2
|
| 869 |
+
self._feature_size += ch
|
| 870 |
+
|
| 871 |
+
if num_head_channels == -1:
|
| 872 |
+
dim_head = ch // num_heads
|
| 873 |
+
else:
|
| 874 |
+
num_heads = ch // num_head_channels
|
| 875 |
+
dim_head = num_head_channels
|
| 876 |
+
|
| 877 |
+
self.middle_block = CondSequential(
|
| 878 |
+
ResBlock(
|
| 879 |
+
ch,
|
| 880 |
+
time_embed_dim,
|
| 881 |
+
dropout,
|
| 882 |
+
dims=dims,
|
| 883 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 884 |
+
),
|
| 885 |
+
SpatialTransformer3D(
|
| 886 |
+
ch,
|
| 887 |
+
num_heads,
|
| 888 |
+
dim_head,
|
| 889 |
+
context_dim=context_dim,
|
| 890 |
+
depth=transformer_depth,
|
| 891 |
+
ip_dim=self.ip_dim,
|
| 892 |
+
ip_weight=self.ip_weight,
|
| 893 |
+
),
|
| 894 |
+
ResBlock(
|
| 895 |
+
ch,
|
| 896 |
+
time_embed_dim,
|
| 897 |
+
dropout,
|
| 898 |
+
dims=dims,
|
| 899 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 900 |
+
),
|
| 901 |
+
)
|
| 902 |
+
self._feature_size += ch
|
| 903 |
+
|
| 904 |
+
self.output_blocks = nn.ModuleList([])
|
| 905 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 906 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 907 |
+
ich = input_block_chans.pop()
|
| 908 |
+
layers = [
|
| 909 |
+
ResBlock(
|
| 910 |
+
ch + ich,
|
| 911 |
+
time_embed_dim,
|
| 912 |
+
dropout,
|
| 913 |
+
out_channels=model_channels * mult,
|
| 914 |
+
dims=dims,
|
| 915 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 916 |
+
)
|
| 917 |
+
]
|
| 918 |
+
ch = model_channels * mult
|
| 919 |
+
if ds in attention_resolutions:
|
| 920 |
+
if num_head_channels == -1:
|
| 921 |
+
dim_head = ch // num_heads
|
| 922 |
+
else:
|
| 923 |
+
num_heads = ch // num_head_channels
|
| 924 |
+
dim_head = num_head_channels
|
| 925 |
+
|
| 926 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
| 927 |
+
layers.append(
|
| 928 |
+
SpatialTransformer3D(
|
| 929 |
+
ch,
|
| 930 |
+
num_heads,
|
| 931 |
+
dim_head,
|
| 932 |
+
context_dim=context_dim,
|
| 933 |
+
depth=transformer_depth,
|
| 934 |
+
ip_dim=self.ip_dim,
|
| 935 |
+
ip_weight=self.ip_weight,
|
| 936 |
+
)
|
| 937 |
+
)
|
| 938 |
+
if level and i == self.num_res_blocks[level]:
|
| 939 |
+
out_ch = ch
|
| 940 |
+
layers.append(
|
| 941 |
+
ResBlock(
|
| 942 |
+
ch,
|
| 943 |
+
time_embed_dim,
|
| 944 |
+
dropout,
|
| 945 |
+
out_channels=out_ch,
|
| 946 |
+
dims=dims,
|
| 947 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 948 |
+
up=True,
|
| 949 |
+
)
|
| 950 |
+
if resblock_updown
|
| 951 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 952 |
+
)
|
| 953 |
+
ds //= 2
|
| 954 |
+
self.output_blocks.append(CondSequential(*layers))
|
| 955 |
+
self._feature_size += ch
|
| 956 |
+
|
| 957 |
+
self.out = nn.Sequential(
|
| 958 |
+
nn.GroupNorm(32, ch),
|
| 959 |
+
nn.SiLU(),
|
| 960 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 961 |
+
)
|
| 962 |
+
if self.predict_codebook_ids:
|
| 963 |
+
self.id_predictor = nn.Sequential(
|
| 964 |
+
nn.GroupNorm(32, ch),
|
| 965 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 966 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
def forward(
|
| 970 |
+
self,
|
| 971 |
+
x,
|
| 972 |
+
timesteps=None,
|
| 973 |
+
context=None,
|
| 974 |
+
y=None,
|
| 975 |
+
camera=None,
|
| 976 |
+
num_frames=1,
|
| 977 |
+
ip=None,
|
| 978 |
+
ip_img=None,
|
| 979 |
+
**kwargs,
|
| 980 |
+
):
|
| 981 |
+
"""
|
| 982 |
+
Apply the model to an input batch.
|
| 983 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 984 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 985 |
+
:param context: conditioning plugged in via crossattn
|
| 986 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 987 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 988 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 989 |
+
"""
|
| 990 |
+
assert (
|
| 991 |
+
x.shape[0] % num_frames == 0
|
| 992 |
+
), "input batch size must be dividable by num_frames!"
|
| 993 |
+
assert (y is not None) == (
|
| 994 |
+
self.num_classes is not None
|
| 995 |
+
), "must specify y if and only if the model is class-conditional"
|
| 996 |
+
|
| 997 |
+
hs = []
|
| 998 |
+
|
| 999 |
+
t_emb = timestep_embedding(
|
| 1000 |
+
timesteps, self.model_channels, repeat_only=False
|
| 1001 |
+
).to(x.dtype)
|
| 1002 |
+
|
| 1003 |
+
emb = self.time_embed(t_emb)
|
| 1004 |
+
|
| 1005 |
+
if self.num_classes is not None:
|
| 1006 |
+
assert y is not None
|
| 1007 |
+
assert y.shape[0] == x.shape[0]
|
| 1008 |
+
emb = emb + self.label_emb(y)
|
| 1009 |
+
|
| 1010 |
+
# Add camera embeddings
|
| 1011 |
+
if camera is not None:
|
| 1012 |
+
emb = emb + self.camera_embed(camera)
|
| 1013 |
+
|
| 1014 |
+
# imagedream variant
|
| 1015 |
+
if self.ip_dim > 0:
|
| 1016 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
| 1017 |
+
ip_emb = self.image_embed(ip)
|
| 1018 |
+
context = torch.cat((context, ip_emb), 1)
|
| 1019 |
+
|
| 1020 |
+
h = x
|
| 1021 |
+
for module in self.input_blocks:
|
| 1022 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 1023 |
+
hs.append(h)
|
| 1024 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 1025 |
+
for module in self.output_blocks:
|
| 1026 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
| 1027 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 1028 |
+
h = h.type(x.dtype)
|
| 1029 |
+
if self.predict_codebook_ids:
|
| 1030 |
+
return self.id_predictor(h)
|
| 1031 |
+
else:
|
| 1032 |
+
return self.out(h)
|
| 1033 |
+
|
| 1034 |
|
| 1035 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 1036 |
|
|
|
|
| 1419 |
|
| 1420 |
if image.dtype == np.float32:
|
| 1421 |
image = (image * 255).astype(np.uint8)
|
| 1422 |
+
|
| 1423 |
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 1424 |
image = image.to(device=device, dtype=dtype)
|
| 1425 |
+
|
| 1426 |
+
image_embeds = self.image_encoder(
|
| 1427 |
+
image, output_hidden_states=True
|
| 1428 |
+
).hidden_states[-2]
|
| 1429 |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1430 |
|
| 1431 |
return torch.zeros_like(image_embeds), image_embeds
|
| 1432 |
|
| 1433 |
def encode_image_latents(self, image, device, num_images_per_prompt):
|
| 1434 |
+
|
| 1435 |
dtype = next(self.image_encoder.parameters()).dtype
|
| 1436 |
|
| 1437 |
+
image = (
|
| 1438 |
+
torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device)
|
| 1439 |
+
) # [1, 3, H, W]
|
| 1440 |
image = 2 * image - 1
|
| 1441 |
+
image = F.interpolate(image, (256, 256), mode="bilinear", align_corners=False)
|
| 1442 |
image = image.to(dtype=dtype)
|
| 1443 |
|
| 1444 |
posterior = self.vae.encode(image).latent_dist
|
| 1445 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
| 1446 |
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1447 |
|
| 1448 |
return torch.zeros_like(latents), latents
|
|
|
|
| 1461 |
num_images_per_prompt: int = 1,
|
| 1462 |
eta: float = 0.0,
|
| 1463 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1464 |
+
output_type: Optional[str] = "numpy", # pil, numpy, latents
|
| 1465 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1466 |
callback_steps: int = 1,
|
| 1467 |
num_frames: int = 4,
|
|
|
|
| 1484 |
if image is not None:
|
| 1485 |
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
| 1486 |
self.image_encoder = self.image_encoder.to(device=device)
|
| 1487 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(
|
| 1488 |
+
image, device, num_images_per_prompt
|
| 1489 |
+
)
|
| 1490 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(
|
| 1491 |
+
image, device, num_images_per_prompt
|
| 1492 |
+
)
|
| 1493 |
+
|
| 1494 |
_prompt_embeds = self._encode_prompt(
|
| 1495 |
prompt=prompt,
|
| 1496 |
device=device,
|
|
|
|
| 1514 |
)
|
| 1515 |
|
| 1516 |
# Get camera
|
| 1517 |
+
camera = get_camera(
|
| 1518 |
+
num_frames, elevation=elevation, extra_view=(image is not None)
|
| 1519 |
+
).to(dtype=latents.dtype, device=device)
|
| 1520 |
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
| 1521 |
|
| 1522 |
# Prepare extra step kwargs.
|
|
|
|
| 1529 |
# expand the latents if we are doing classifier free guidance
|
| 1530 |
multiplier = 2 if do_classifier_free_guidance else 1
|
| 1531 |
latent_model_input = torch.cat([latents] * multiplier)
|
| 1532 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 1533 |
+
latent_model_input, t
|
| 1534 |
+
)
|
| 1535 |
|
| 1536 |
unet_inputs = {
|
| 1537 |
+
"x": latent_model_input,
|
| 1538 |
+
"timesteps": torch.tensor(
|
| 1539 |
+
[t] * actual_num_frames * multiplier,
|
| 1540 |
+
dtype=latent_model_input.dtype,
|
| 1541 |
+
device=device,
|
| 1542 |
+
),
|
| 1543 |
+
"context": torch.cat(
|
| 1544 |
+
[prompt_embeds_neg] * actual_num_frames
|
| 1545 |
+
+ [prompt_embeds_pos] * actual_num_frames
|
| 1546 |
+
),
|
| 1547 |
+
"num_frames": actual_num_frames,
|
| 1548 |
+
"camera": torch.cat([camera] * multiplier),
|
| 1549 |
}
|
| 1550 |
|
| 1551 |
if image is not None:
|
| 1552 |
+
unet_inputs["ip"] = torch.cat(
|
| 1553 |
+
[image_embeds_neg] * actual_num_frames
|
| 1554 |
+
+ [image_embeds_pos] * actual_num_frames
|
| 1555 |
+
)
|
| 1556 |
+
unet_inputs["ip_img"] = torch.cat(
|
| 1557 |
+
[image_latents_neg] + [image_latents_pos]
|
| 1558 |
+
) # no repeat
|
| 1559 |
+
|
| 1560 |
# predict the noise residual
|
| 1561 |
noise_pred = self.unet.forward(**unet_inputs)
|
| 1562 |
|
|
|
|
| 1586 |
elif output_type == "pil":
|
| 1587 |
image = self.decode_latents(latents)
|
| 1588 |
image = self.numpy_to_pil(image)
|
| 1589 |
+
else: # numpy
|
| 1590 |
image = self.decode_latents(latents)
|
| 1591 |
|
| 1592 |
# Offload last model to CPU
|