Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachDense-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachDense-v2
|
| 16 |
+
type: PandaReachDense-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -3.50 +/- 0.52
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d49ded6e51770b0cb47b056040662697c21858f4e33dfe70e52c18292e67eb0c
|
| 3 |
+
size 108044
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff61ee96c10>",
|
| 8 |
+
"__abstractmethods__": "frozenset()",
|
| 9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff61ee980c0>"
|
| 10 |
+
},
|
| 11 |
+
"verbose": 1,
|
| 12 |
+
"policy_kwargs": {
|
| 13 |
+
":type:": "<class 'dict'>",
|
| 14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
| 15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 16 |
+
"optimizer_kwargs": {
|
| 17 |
+
"alpha": 0.99,
|
| 18 |
+
"eps": 1e-05,
|
| 19 |
+
"weight_decay": 0
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
"observation_space": {
|
| 23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
| 24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
| 25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
| 26 |
+
"_shape": null,
|
| 27 |
+
"dtype": null,
|
| 28 |
+
"_np_random": null
|
| 29 |
+
},
|
| 30 |
+
"action_space": {
|
| 31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 33 |
+
"dtype": "float32",
|
| 34 |
+
"_shape": [
|
| 35 |
+
3
|
| 36 |
+
],
|
| 37 |
+
"low": "[-1. -1. -1.]",
|
| 38 |
+
"high": "[1. 1. 1.]",
|
| 39 |
+
"bounded_below": "[ True True True]",
|
| 40 |
+
"bounded_above": "[ True True True]",
|
| 41 |
+
"_np_random": null
|
| 42 |
+
},
|
| 43 |
+
"n_envs": 4,
|
| 44 |
+
"num_timesteps": 1647696,
|
| 45 |
+
"_total_timesteps": 3000000,
|
| 46 |
+
"_num_timesteps_at_start": 0,
|
| 47 |
+
"seed": null,
|
| 48 |
+
"action_noise": null,
|
| 49 |
+
"start_time": 1680423642372618719,
|
| 50 |
+
"learning_rate": 0.0007,
|
| 51 |
+
"tensorboard_log": null,
|
| 52 |
+
"lr_schedule": {
|
| 53 |
+
":type:": "<class 'function'>",
|
| 54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 55 |
+
},
|
| 56 |
+
"_last_obs": {
|
| 57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhvVQv6c1hj6FF4C+P9E/Px1y8T5xFQq/PNiDPz/j2r6tQgO+k2dkP+xwVb/ChT+/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJqV0v13yVj+6rsw+Ciy3PqOroz/VBgo/ZsBIPyS9gD6Yy3Q/R5SNP9HmKL/dqFy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACG9VC/pzWGPoUXgL6Ksxc/y1rRv8v5Yz4/0T8/HXLxPnEVCr9Keq4+k+YSvW1OXz882IM/P+Pavq1CA77lPUq+boVmvjKaOz+TZ2Q/7HBVv8KFP7/wQH6/MbOePphnz7+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 59 |
+
"achieved_goal": "[[-0.8162464 0.26212808 -0.25017944]\n [ 0.7492866 0.47157374 -0.53938967]\n [ 1.0300364 -0.427515 -0.12818404]\n [ 0.8922054 -0.8337543 -0.74813473]]",
|
| 60 |
+
"desired_goal": "[[-0.95564497 0.83963567 0.39977056]\n [ 0.35775787 1.2786754 0.53916675]\n [ 0.78418577 0.25144303 0.9562316 ]\n [ 1.1060876 -0.659772 -0.86195165]]",
|
| 61 |
+
"observation": "[[-0.8162464 0.26212808 -0.25017944 0.5925833 -1.6355833 0.22263257]\n [ 0.7492866 0.47157374 -0.53938967 0.34077674 -0.03586442 0.87229043]\n [ 1.0300364 -0.427515 -0.12818404 -0.19750173 -0.22511837 0.7328216 ]\n [ 0.8922054 -0.8337543 -0.74813473 -0.99317837 0.30996087 -1.6203489 ]]"
|
| 62 |
+
},
|
| 63 |
+
"_last_episode_starts": {
|
| 64 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 66 |
+
},
|
| 67 |
+
"_last_original_obs": {
|
| 68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw3cUOgbR4j3CYrM9qVn0PZRpFb5OZEY9RfYJvko27ju5ET4+eksXPhZ7BD5aOkQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 71 |
+
"desired_goal": "[[ 0.00056636 0.11075024 0.08759071]\n [ 0.11931164 -0.14591056 0.0484355 ]\n [-0.1347285 0.00726966 0.18561448]\n [ 0.14774886 0.12937579 0.19162884]]",
|
| 72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 73 |
+
},
|
| 74 |
+
"_episode_num": 0,
|
| 75 |
+
"use_sde": false,
|
| 76 |
+
"sde_sample_freq": -1,
|
| 77 |
+
"_current_progress_remaining": 0.45077333333333336,
|
| 78 |
+
"ep_info_buffer": {
|
| 79 |
+
":type:": "<class 'collections.deque'>",
|
| 80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId6G5TiPdEcCUhpRSlIwBbJRLMowBdJRHQLD5a5tWMjx1fZQoaAZoCWgPQwhVNNb+zpYKwJSGlFKUaBVLMmgWR0Cw+Uk8zQ/pdX2UKGgGaAloD0MI8yA9RQ7RDMCUhpRSlGgVSzJoFkdAsPkl0Qsf73V9lChoBmgJaA9DCIo6cw8JXwbAlIaUUpRoFUsyaBZHQLD5ArbQC0Z1fZQoaAZoCWgPQwiLxAQ1fIsMwJSGlFKUaBVLMmgWR0Cw+eKKk2xZdX2UKGgGaAloD0MIKZMa2gCsCMCUhpRSlGgVSzJoFkdAsPm//ffoBHV9lChoBmgJaA9DCI9VSs/0chLAlIaUUpRoFUsyaBZHQLD5nIGhVVB1fZQoaAZoCWgPQwgVGR2QhG0TwJSGlFKUaBVLMmgWR0Cw+Xlr6+FldX2UKGgGaAloD0MIKv2Es1vrBsCUhpRSlGgVSzJoFkdAsPpZsLv1DnV9lChoBmgJaA9DCB3Lu+oBswPAlIaUUpRoFUsyaBZHQLD6NysCDEp1fZQoaAZoCWgPQwhRhqqYSv8TwJSGlFKUaBVLMmgWR0Cw+hO49X9zdX2UKGgGaAloD0MICf1MvW5xCsCUhpRSlGgVSzJoFkdAsPnwnrpqynV9lChoBmgJaA9DCLFvJxHhfwjAlIaUUpRoFUsyaBZHQLD60XDWK/F1fZQoaAZoCWgPQwjOUUfH1WgPwJSGlFKUaBVLMmgWR0Cw+q7q+rU9dX2UKGgGaAloD0MI56vkY3cBC8CUhpRSlGgVSzJoFkdAsPqLnB+F13V9lChoBmgJaA9DCGObVDTWXhDAlIaUUpRoFUsyaBZHQLD6aIn0Cih1fZQoaAZoCWgPQwjUmBBzSRUHwJSGlFKUaBVLMmgWR0Cw+00O/cnFdX2UKGgGaAloD0MIdO52vTQFEMCUhpRSlGgVSzJoFkdAsPsqhWYF7nV9lChoBmgJaA9DCFM/bypSoQnAlIaUUpRoFUsyaBZHQLD7BxCIDYB1fZQoaAZoCWgPQwhJ9gg1Q6oGwJSGlFKUaBVLMmgWR0Cw+uQEZBLPdX2UKGgGaAloD0MIGhajrrU3DsCUhpRSlGgVSzJoFkdAsPvHWlMyrXV9lChoBmgJaA9DCFXa4hqfGRPAlIaUUpRoFUsyaBZHQLD7pM3ZPEd1fZQoaAZoCWgPQwgEV3kCYWcFwJSGlFKUaBVLMmgWR0Cw+4FSn+AFdX2UKGgGaAloD0MICJRNucJ7E8CUhpRSlGgVSzJoFkdAsPteN70Fr3V9lChoBmgJaA9DCI523PC7CQ/AlIaUUpRoFUsyaBZHQLD8RRChN/R1fZQoaAZoCWgPQwghdxGmKOcTwJSGlFKUaBVLMmgWR0Cw/CKFVT73dX2UKGgGaAloD0MIGELO+/+4A8CUhpRSlGgVSzJoFkdAsPv/BSDRMXV9lChoBmgJaA9DCBCSBUzgFgXAlIaUUpRoFUsyaBZHQLD72/ZuhsZ1fZQoaAZoCWgPQwjPwMjLmhgLwJSGlFKUaBVLMmgWR0Cw/MD1schldX2UKGgGaAloD0MIyt5Szhd7BMCUhpRSlGgVSzJoFkdAsPyebVjI73V9lChoBmgJaA9DCGb4TzdQYAzAlIaUUpRoFUsyaBZHQLD8evjwQUZ1fZQoaAZoCWgPQwjvqDEh5nIKwJSGlFKUaBVLMmgWR0Cw/FfwiJO4dX2UKGgGaAloD0MIpHITtTRXBsCUhpRSlGgVSzJoFkdAsP09cC5mRXV9lChoBmgJaA9DCD8cJET54gvAlIaUUpRoFUsyaBZHQLD9GuBczIp1fZQoaAZoCWgPQwizXgzlRFsGwJSGlFKUaBVLMmgWR0Cw/PeIMz/IdX2UKGgGaAloD0MI2ERmLnAJEcCUhpRSlGgVSzJoFkdAsPzUdwNsnHV9lChoBmgJaA9DCOqT3GETyRHAlIaUUpRoFUsyaBZHQLD9uIBRyfd1fZQoaAZoCWgPQwi2ateEtKYSwJSGlFKUaBVLMmgWR0Cw/ZYAKfFrdX2UKGgGaAloD0MI3lflQuU/BMCUhpRSlGgVSzJoFkdAsP1yg00m+nV9lChoBmgJaA9DCCRfCaTELgfAlIaUUpRoFUsyaBZHQLD9T2uxKQJ1fZQoaAZoCWgPQwhkyRzLu+oPwJSGlFKUaBVLMmgWR0Cw/i/GQ0XQdX2UKGgGaAloD0MIjgQabOocF8CUhpRSlGgVSzJoFkdAsP4NPUKArnV9lChoBmgJaA9DCBmqYir9ZAXAlIaUUpRoFUsyaBZHQLD96cbiqAB1fZQoaAZoCWgPQwjjiSDOw3kQwJSGlFKUaBVLMmgWR0Cw/caz3RG+dX2UKGgGaAloD0MIf/YjRWQ4DsCUhpRSlGgVSzJoFkdAsP6tGb1AaHV9lChoBmgJaA9DCIz34/bLhxHAlIaUUpRoFUsyaBZHQLD+ipm29ct1fZQoaAZoCWgPQwgZWTLH8m4TwJSGlFKUaBVLMmgWR0Cw/mcbzbvgdX2UKGgGaAloD0MIVIuIYvLGCMCUhpRSlGgVSzJoFkdAsP5EBQvYe3V9lChoBmgJaA9DCBfYYyKlWQXAlIaUUpRoFUsyaBZHQLD/I7L+xW11fZQoaAZoCWgPQwiutmJ/2Y0TwJSGlFKUaBVLMmgWR0Cw/wEleF+NdX2UKGgGaAloD0MIrBxaZDsfDsCUhpRSlGgVSzJoFkdAsP7dqM3qA3V9lChoBmgJaA9DCBJPdjOjzxrAlIaUUpRoFUsyaBZHQLD+upRGc4J1fZQoaAZoCWgPQwhyi/m5oVkRwJSGlFKUaBVLMmgWR0Cw/51y7wrldX2UKGgGaAloD0MI+1xtxf6yDcCUhpRSlGgVSzJoFkdAsP96508vEnV9lChoBmgJaA9DCK8l5IOeDQjAlIaUUpRoFUsyaBZHQLD/V2jfvWp1fZQoaAZoCWgPQwiqKF5lbcMUwJSGlFKUaBVLMmgWR0Cw/zRhMJyAdX2UKGgGaAloD0MIqDY4Ef3aCMCUhpRSlGgVSzJoFkdAsQAZXq7iAHV9lChoBmgJaA9DCBHlC1pIgBTAlIaUUpRoFUsyaBZHQLD/9t0V8Cx1fZQoaAZoCWgPQwjye5v+7OcRwJSGlFKUaBVLMmgWR0Cw/9OafBepdX2UKGgGaAloD0MI+MQ6Vb7nDsCUhpRSlGgVSzJoFkdAsP+wj+rEL3V9lChoBmgJaA9DCMGLvoI0QwjAlIaUUpRoFUsyaBZHQLEAla6BiCt1fZQoaAZoCWgPQwjjjjf5LUoUwJSGlFKUaBVLMmgWR0CxAHMrRSgodX2UKGgGaAloD0MIK2wGuCBbCcCUhpRSlGgVSzJoFkdAsQBPsC1Z1XV9lChoBmgJaA9DCAZINIEithLAlIaUUpRoFUsyaBZHQLEALJw84gl1fZQoaAZoCWgPQwg7cw8J3/sCwJSGlFKUaBVLMmgWR0CxARBwAEMcdX2UKGgGaAloD0MIIZOMnIUdCMCUhpRSlGgVSzJoFkdAsQDt5rxiG3V9lChoBmgJaA9DCPvqqkAt9hDAlIaUUpRoFUsyaBZHQLEAynssxwh1fZQoaAZoCWgPQwgY7fFCOowQwJSGlFKUaBVLMmgWR0CxAKdpZfUndX2UKGgGaAloD0MILh9JSQ/DEMCUhpRSlGgVSzJoFkdAsQGIKw6hg3V9lChoBmgJaA9DCITXLm04TArAlIaUUpRoFUsyaBZHQLEBZZ2ZApt1fZQoaAZoCWgPQwgF24gnu1kMwJSGlFKUaBVLMmgWR0CxAUIgA6uGdX2UKGgGaAloD0MIt9RBXg8mCMCUhpRSlGgVSzJoFkdAsQEfEpAlfXV9lChoBmgJaA9DCLb0aKonUwrAlIaUUpRoFUsyaBZHQLEB/qioKlZ1fZQoaAZoCWgPQwho6nWLwNgLwJSGlFKUaBVLMmgWR0CxAdwf+0gKdX2UKGgGaAloD0MIOIQqNXvwFMCUhpRSlGgVSzJoFkdAsQG4rkKeCnV9lChoBmgJaA9DCFJgAUwZaBPAlIaUUpRoFUsyaBZHQLEBlZvkzXV1fZQoaAZoCWgPQwgqjZjZ53EOwJSGlFKUaBVLMmgWR0CxAnYIKMNudX2UKGgGaAloD0MIUMb4MHt5B8CUhpRSlGgVSzJoFkdAsQJTied073V9lChoBmgJaA9DCCmV8IRePxLAlIaUUpRoFUsyaBZHQLECMA+6iCd1fZQoaAZoCWgPQwhApUqUvQUNwJSGlFKUaBVLMmgWR0CxAgz6N2kjdX2UKGgGaAloD0MIUprN4zCIEMCUhpRSlGgVSzJoFkdAsQLtoTPBznV9lChoBmgJaA9DCGghAaPLGwfAlIaUUpRoFUsyaBZHQLECyxYJVsF1fZQoaAZoCWgPQwg334juWVcRwJSGlFKUaBVLMmgWR0CxAqeUMXrMdX2UKGgGaAloD0MIiUFg5dDiBMCUhpRSlGgVSzJoFkdAsQKEgDA8CHV9lChoBmgJaA9DCLag98YQYAnAlIaUUpRoFUsyaBZHQLEDZvqTr3V1fZQoaAZoCWgPQwgjSRCugOIGwJSGlFKUaBVLMmgWR0CxA0SC4BmxdX2UKGgGaAloD0MIsyeBzTk4BcCUhpRSlGgVSzJoFkdAsQMhPGhmG3V9lChoBmgJaA9DCFsIclDCLBLAlIaUUpRoFUsyaBZHQLEC/jqOcUd1fZQoaAZoCWgPQwjw3Hu45BgTwJSGlFKUaBVLMmgWR0CxA9+2JBPbdX2UKGgGaAloD0MIj6uRXWm5C8CUhpRSlGgVSzJoFkdAsQO9Je3QU3V9lChoBmgJaA9DCFtCPujZDAbAlIaUUpRoFUsyaBZHQLEDmamGdqd1fZQoaAZoCWgPQwiq86j4v7MSwJSGlFKUaBVLMmgWR0CxA3aN+9amdX2UKGgGaAloD0MI4Sh5dY7BBsCUhpRSlGgVSzJoFkdAsQRXkYGdJHV9lChoBmgJaA9DCHeeeM4WsBDAlIaUUpRoFUsyaBZHQLEENQjUuth1fZQoaAZoCWgPQwhMpZ9wdssIwJSGlFKUaBVLMmgWR0CxBBGNaQmvdX2UKGgGaAloD0MIKZKvBFJCDsCUhpRSlGgVSzJoFkdAsQPuclPac3V9lChoBmgJaA9DCKc/+5Ei0gzAlIaUUpRoFUsyaBZHQLEE1JtSAH51fZQoaAZoCWgPQwhLVkW4yegEwJSGlFKUaBVLMmgWR0CxBLIWk8A8dX2UKGgGaAloD0MIb0VighqeAsCUhpRSlGgVSzJoFkdAsQSOnivPknV9lChoBmgJaA9DCDSg3oyarwXAlIaUUpRoFUsyaBZHQLEEa4ptrKx1ZS4="
|
| 81 |
+
},
|
| 82 |
+
"ep_success_buffer": {
|
| 83 |
+
":type:": "<class 'collections.deque'>",
|
| 84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 85 |
+
},
|
| 86 |
+
"_n_updates": 82384,
|
| 87 |
+
"n_steps": 5,
|
| 88 |
+
"gamma": 0.99,
|
| 89 |
+
"gae_lambda": 1.0,
|
| 90 |
+
"ent_coef": 0.0,
|
| 91 |
+
"vf_coef": 0.5,
|
| 92 |
+
"max_grad_norm": 0.5,
|
| 93 |
+
"normalize_advantage": false
|
| 94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:436a36b20f24fa2737342f16052124d3a58738d120441f4cc8bbad5023b72aab
|
| 3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e3ac399f1fe84f4d043d2537dfde7c95a28dba88956ee64d9f98124e4218201
|
| 3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff61ee96c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff61ee980c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1647696, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680423642372618719, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhvVQv6c1hj6FF4C+P9E/Px1y8T5xFQq/PNiDPz/j2r6tQgO+k2dkP+xwVb/ChT+/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJqV0v13yVj+6rsw+Ciy3PqOroz/VBgo/ZsBIPyS9gD6Yy3Q/R5SNP9HmKL/dqFy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACG9VC/pzWGPoUXgL6Ksxc/y1rRv8v5Yz4/0T8/HXLxPnEVCr9Keq4+k+YSvW1OXz882IM/P+Pavq1CA77lPUq+boVmvjKaOz+TZ2Q/7HBVv8KFP7/wQH6/MbOePphnz7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8162464 0.26212808 -0.25017944]\n [ 0.7492866 0.47157374 -0.53938967]\n [ 1.0300364 -0.427515 -0.12818404]\n [ 0.8922054 -0.8337543 -0.74813473]]", "desired_goal": "[[-0.95564497 0.83963567 0.39977056]\n [ 0.35775787 1.2786754 0.53916675]\n [ 0.78418577 0.25144303 0.9562316 ]\n [ 1.1060876 -0.659772 -0.86195165]]", "observation": "[[-0.8162464 0.26212808 -0.25017944 0.5925833 -1.6355833 0.22263257]\n [ 0.7492866 0.47157374 -0.53938967 0.34077674 -0.03586442 0.87229043]\n [ 1.0300364 -0.427515 -0.12818404 -0.19750173 -0.22511837 0.7328216 ]\n [ 0.8922054 -0.8337543 -0.74813473 -0.99317837 0.30996087 -1.6203489 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw3cUOgbR4j3CYrM9qVn0PZRpFb5OZEY9RfYJvko27ju5ET4+eksXPhZ7BD5aOkQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00056636 0.11075024 0.08759071]\n [ 0.11931164 -0.14591056 0.0484355 ]\n [-0.1347285 0.00726966 0.18561448]\n [ 0.14774886 0.12937579 0.19162884]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.45077333333333336, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId6G5TiPdEcCUhpRSlIwBbJRLMowBdJRHQLD5a5tWMjx1fZQoaAZoCWgPQwhVNNb+zpYKwJSGlFKUaBVLMmgWR0Cw+Uk8zQ/pdX2UKGgGaAloD0MI8yA9RQ7RDMCUhpRSlGgVSzJoFkdAsPkl0Qsf73V9lChoBmgJaA9DCIo6cw8JXwbAlIaUUpRoFUsyaBZHQLD5ArbQC0Z1fZQoaAZoCWgPQwiLxAQ1fIsMwJSGlFKUaBVLMmgWR0Cw+eKKk2xZdX2UKGgGaAloD0MIKZMa2gCsCMCUhpRSlGgVSzJoFkdAsPm//ffoBHV9lChoBmgJaA9DCI9VSs/0chLAlIaUUpRoFUsyaBZHQLD5nIGhVVB1fZQoaAZoCWgPQwgVGR2QhG0TwJSGlFKUaBVLMmgWR0Cw+Xlr6+FldX2UKGgGaAloD0MIKv2Es1vrBsCUhpRSlGgVSzJoFkdAsPpZsLv1DnV9lChoBmgJaA9DCB3Lu+oBswPAlIaUUpRoFUsyaBZHQLD6NysCDEp1fZQoaAZoCWgPQwhRhqqYSv8TwJSGlFKUaBVLMmgWR0Cw+hO49X9zdX2UKGgGaAloD0MICf1MvW5xCsCUhpRSlGgVSzJoFkdAsPnwnrpqynV9lChoBmgJaA9DCLFvJxHhfwjAlIaUUpRoFUsyaBZHQLD60XDWK/F1fZQoaAZoCWgPQwjOUUfH1WgPwJSGlFKUaBVLMmgWR0Cw+q7q+rU9dX2UKGgGaAloD0MI56vkY3cBC8CUhpRSlGgVSzJoFkdAsPqLnB+F13V9lChoBmgJaA9DCGObVDTWXhDAlIaUUpRoFUsyaBZHQLD6aIn0Cih1fZQoaAZoCWgPQwjUmBBzSRUHwJSGlFKUaBVLMmgWR0Cw+00O/cnFdX2UKGgGaAloD0MIdO52vTQFEMCUhpRSlGgVSzJoFkdAsPsqhWYF7nV9lChoBmgJaA9DCFM/bypSoQnAlIaUUpRoFUsyaBZHQLD7BxCIDYB1fZQoaAZoCWgPQwhJ9gg1Q6oGwJSGlFKUaBVLMmgWR0Cw+uQEZBLPdX2UKGgGaAloD0MIGhajrrU3DsCUhpRSlGgVSzJoFkdAsPvHWlMyrXV9lChoBmgJaA9DCFXa4hqfGRPAlIaUUpRoFUsyaBZHQLD7pM3ZPEd1fZQoaAZoCWgPQwgEV3kCYWcFwJSGlFKUaBVLMmgWR0Cw+4FSn+AFdX2UKGgGaAloD0MICJRNucJ7E8CUhpRSlGgVSzJoFkdAsPteN70Fr3V9lChoBmgJaA9DCI523PC7CQ/AlIaUUpRoFUsyaBZHQLD8RRChN/R1fZQoaAZoCWgPQwghdxGmKOcTwJSGlFKUaBVLMmgWR0Cw/CKFVT73dX2UKGgGaAloD0MIGELO+/+4A8CUhpRSlGgVSzJoFkdAsPv/BSDRMXV9lChoBmgJaA9DCBCSBUzgFgXAlIaUUpRoFUsyaBZHQLD72/ZuhsZ1fZQoaAZoCWgPQwjPwMjLmhgLwJSGlFKUaBVLMmgWR0Cw/MD1schldX2UKGgGaAloD0MIyt5Szhd7BMCUhpRSlGgVSzJoFkdAsPyebVjI73V9lChoBmgJaA9DCGb4TzdQYAzAlIaUUpRoFUsyaBZHQLD8evjwQUZ1fZQoaAZoCWgPQwjvqDEh5nIKwJSGlFKUaBVLMmgWR0Cw/FfwiJO4dX2UKGgGaAloD0MIpHITtTRXBsCUhpRSlGgVSzJoFkdAsP09cC5mRXV9lChoBmgJaA9DCD8cJET54gvAlIaUUpRoFUsyaBZHQLD9GuBczIp1fZQoaAZoCWgPQwizXgzlRFsGwJSGlFKUaBVLMmgWR0Cw/PeIMz/IdX2UKGgGaAloD0MI2ERmLnAJEcCUhpRSlGgVSzJoFkdAsPzUdwNsnHV9lChoBmgJaA9DCOqT3GETyRHAlIaUUpRoFUsyaBZHQLD9uIBRyfd1fZQoaAZoCWgPQwi2ateEtKYSwJSGlFKUaBVLMmgWR0Cw/ZYAKfFrdX2UKGgGaAloD0MI3lflQuU/BMCUhpRSlGgVSzJoFkdAsP1yg00m+nV9lChoBmgJaA9DCCRfCaTELgfAlIaUUpRoFUsyaBZHQLD9T2uxKQJ1fZQoaAZoCWgPQwhkyRzLu+oPwJSGlFKUaBVLMmgWR0Cw/i/GQ0XQdX2UKGgGaAloD0MIjgQabOocF8CUhpRSlGgVSzJoFkdAsP4NPUKArnV9lChoBmgJaA9DCBmqYir9ZAXAlIaUUpRoFUsyaBZHQLD96cbiqAB1fZQoaAZoCWgPQwjjiSDOw3kQwJSGlFKUaBVLMmgWR0Cw/caz3RG+dX2UKGgGaAloD0MIf/YjRWQ4DsCUhpRSlGgVSzJoFkdAsP6tGb1AaHV9lChoBmgJaA9DCIz34/bLhxHAlIaUUpRoFUsyaBZHQLD+ipm29ct1fZQoaAZoCWgPQwgZWTLH8m4TwJSGlFKUaBVLMmgWR0Cw/mcbzbvgdX2UKGgGaAloD0MIVIuIYvLGCMCUhpRSlGgVSzJoFkdAsP5EBQvYe3V9lChoBmgJaA9DCBfYYyKlWQXAlIaUUpRoFUsyaBZHQLD/I7L+xW11fZQoaAZoCWgPQwiutmJ/2Y0TwJSGlFKUaBVLMmgWR0Cw/wEleF+NdX2UKGgGaAloD0MIrBxaZDsfDsCUhpRSlGgVSzJoFkdAsP7dqM3qA3V9lChoBmgJaA9DCBJPdjOjzxrAlIaUUpRoFUsyaBZHQLD+upRGc4J1fZQoaAZoCWgPQwhyi/m5oVkRwJSGlFKUaBVLMmgWR0Cw/51y7wrldX2UKGgGaAloD0MI+1xtxf6yDcCUhpRSlGgVSzJoFkdAsP96508vEnV9lChoBmgJaA9DCK8l5IOeDQjAlIaUUpRoFUsyaBZHQLD/V2jfvWp1fZQoaAZoCWgPQwiqKF5lbcMUwJSGlFKUaBVLMmgWR0Cw/zRhMJyAdX2UKGgGaAloD0MIqDY4Ef3aCMCUhpRSlGgVSzJoFkdAsQAZXq7iAHV9lChoBmgJaA9DCBHlC1pIgBTAlIaUUpRoFUsyaBZHQLD/9t0V8Cx1fZQoaAZoCWgPQwjye5v+7OcRwJSGlFKUaBVLMmgWR0Cw/9OafBepdX2UKGgGaAloD0MI+MQ6Vb7nDsCUhpRSlGgVSzJoFkdAsP+wj+rEL3V9lChoBmgJaA9DCMGLvoI0QwjAlIaUUpRoFUsyaBZHQLEAla6BiCt1fZQoaAZoCWgPQwjjjjf5LUoUwJSGlFKUaBVLMmgWR0CxAHMrRSgodX2UKGgGaAloD0MIK2wGuCBbCcCUhpRSlGgVSzJoFkdAsQBPsC1Z1XV9lChoBmgJaA9DCAZINIEithLAlIaUUpRoFUsyaBZHQLEALJw84gl1fZQoaAZoCWgPQwg7cw8J3/sCwJSGlFKUaBVLMmgWR0CxARBwAEMcdX2UKGgGaAloD0MIIZOMnIUdCMCUhpRSlGgVSzJoFkdAsQDt5rxiG3V9lChoBmgJaA9DCPvqqkAt9hDAlIaUUpRoFUsyaBZHQLEAynssxwh1fZQoaAZoCWgPQwgY7fFCOowQwJSGlFKUaBVLMmgWR0CxAKdpZfUndX2UKGgGaAloD0MILh9JSQ/DEMCUhpRSlGgVSzJoFkdAsQGIKw6hg3V9lChoBmgJaA9DCITXLm04TArAlIaUUpRoFUsyaBZHQLEBZZ2ZApt1fZQoaAZoCWgPQwgF24gnu1kMwJSGlFKUaBVLMmgWR0CxAUIgA6uGdX2UKGgGaAloD0MIt9RBXg8mCMCUhpRSlGgVSzJoFkdAsQEfEpAlfXV9lChoBmgJaA9DCLb0aKonUwrAlIaUUpRoFUsyaBZHQLEB/qioKlZ1fZQoaAZoCWgPQwho6nWLwNgLwJSGlFKUaBVLMmgWR0CxAdwf+0gKdX2UKGgGaAloD0MIOIQqNXvwFMCUhpRSlGgVSzJoFkdAsQG4rkKeCnV9lChoBmgJaA9DCFJgAUwZaBPAlIaUUpRoFUsyaBZHQLEBlZvkzXV1fZQoaAZoCWgPQwgqjZjZ53EOwJSGlFKUaBVLMmgWR0CxAnYIKMNudX2UKGgGaAloD0MIUMb4MHt5B8CUhpRSlGgVSzJoFkdAsQJTied073V9lChoBmgJaA9DCCmV8IRePxLAlIaUUpRoFUsyaBZHQLECMA+6iCd1fZQoaAZoCWgPQwhApUqUvQUNwJSGlFKUaBVLMmgWR0CxAgz6N2kjdX2UKGgGaAloD0MIUprN4zCIEMCUhpRSlGgVSzJoFkdAsQLtoTPBznV9lChoBmgJaA9DCGghAaPLGwfAlIaUUpRoFUsyaBZHQLECyxYJVsF1fZQoaAZoCWgPQwg334juWVcRwJSGlFKUaBVLMmgWR0CxAqeUMXrMdX2UKGgGaAloD0MIiUFg5dDiBMCUhpRSlGgVSzJoFkdAsQKEgDA8CHV9lChoBmgJaA9DCLag98YQYAnAlIaUUpRoFUsyaBZHQLEDZvqTr3V1fZQoaAZoCWgPQwgjSRCugOIGwJSGlFKUaBVLMmgWR0CxA0SC4BmxdX2UKGgGaAloD0MIsyeBzTk4BcCUhpRSlGgVSzJoFkdAsQMhPGhmG3V9lChoBmgJaA9DCFsIclDCLBLAlIaUUpRoFUsyaBZHQLEC/jqOcUd1fZQoaAZoCWgPQwjw3Hu45BgTwJSGlFKUaBVLMmgWR0CxA9+2JBPbdX2UKGgGaAloD0MIj6uRXWm5C8CUhpRSlGgVSzJoFkdAsQO9Je3QU3V9lChoBmgJaA9DCFtCPujZDAbAlIaUUpRoFUsyaBZHQLEDmamGdqd1fZQoaAZoCWgPQwiq86j4v7MSwJSGlFKUaBVLMmgWR0CxA3aN+9amdX2UKGgGaAloD0MI4Sh5dY7BBsCUhpRSlGgVSzJoFkdAsQRXkYGdJHV9lChoBmgJaA9DCHeeeM4WsBDAlIaUUpRoFUsyaBZHQLEENQjUuth1fZQoaAZoCWgPQwhMpZ9wdssIwJSGlFKUaBVLMmgWR0CxBBGNaQmvdX2UKGgGaAloD0MIKZKvBFJCDsCUhpRSlGgVSzJoFkdAsQPuclPac3V9lChoBmgJaA9DCKc/+5Ei0gzAlIaUUpRoFUsyaBZHQLEE1JtSAH51fZQoaAZoCWgPQwhLVkW4yegEwJSGlFKUaBVLMmgWR0CxBLIWk8A8dX2UKGgGaAloD0MIb0VighqeAsCUhpRSlGgVSzJoFkdAsQSOnivPknV9lChoBmgJaA9DCDSg3oyarwXAlIaUUpRoFUsyaBZHQLEEa4ptrKx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 82384, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
Binary file (886 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -3.4971293016336857, "std_reward": 0.5240060991480168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T09:34:05.789036"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fec0ed1b700a0ea542bb6bcb2ceb0a67202209768fe5abdd181e5238d7188d85
|
| 3 |
+
size 3056
|