Create Model_Training.py
Browse files- Model_Training.py +44 -0
Model_Training.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
# Load dataset - CodeParrot is a good example dataset
|
| 5 |
+
dataset = load_dataset('codeparrot/code-to-text')
|
| 6 |
+
|
| 7 |
+
# Load pre-trained model and tokenizer
|
| 8 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')
|
| 9 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
|
| 10 |
+
|
| 11 |
+
# Tokenize dataset
|
| 12 |
+
def tokenize_function(examples):
|
| 13 |
+
return tokenizer(examples['code'], truncation=True, padding='max_length', max_length=512)
|
| 14 |
+
|
| 15 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=['code'])
|
| 16 |
+
|
| 17 |
+
# Training arguments
|
| 18 |
+
training_args = TrainingArguments(
|
| 19 |
+
output_dir="./results",
|
| 20 |
+
evaluation_strategy="epoch",
|
| 21 |
+
learning_rate=5e-5,
|
| 22 |
+
per_device_train_batch_size=4,
|
| 23 |
+
per_device_eval_batch_size=4,
|
| 24 |
+
num_train_epochs=3,
|
| 25 |
+
weight_decay=0.01,
|
| 26 |
+
push_to_hub=True,
|
| 27 |
+
hub_model_id='dnnsdunca/UANN',
|
| 28 |
+
hub_token='YOUR_HUGGINGFACE_TOKEN'
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Trainer
|
| 32 |
+
trainer = Trainer(
|
| 33 |
+
model=model,
|
| 34 |
+
args=training_args,
|
| 35 |
+
train_dataset=tokenized_datasets['train'],
|
| 36 |
+
eval_dataset=tokenized_datasets['validation'],
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Train model
|
| 40 |
+
trainer.train()
|
| 41 |
+
|
| 42 |
+
# Save the model
|
| 43 |
+
model.save_pretrained('./codegen_model')
|
| 44 |
+
tokenizer.save_pretrained('./codegen_model')
|