---
library_name: peft
license: llama3
base_model: NousResearch/Hermes-3-Llama-3.2-3B
tags:
- generated_from_trainer
datasets:
- mhenrichsen/alpaca_2k_test
model-index:
- name: outputs/lora-out
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.8.0.dev0`
```yaml
base_model: NousResearch/Hermes-3-Llama-3.2-3B
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
# outputs/lora-out
This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B) on the mhenrichsen/alpaca_2k_test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9717
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2051 | 0.0930 | 1 | 1.3039 |
| 1.0777 | 0.2791 | 3 | 1.2884 |
| 1.1398 | 0.5581 | 6 | 1.1808 |
| 1.0909 | 0.8372 | 9 | 1.0715 |
| 0.8999 | 1.0930 | 12 | 0.9657 |
| 0.7534 | 1.3721 | 15 | 0.9733 |
| 0.7596 | 1.6512 | 18 | 0.9730 |
| 0.7925 | 1.9302 | 21 | 0.9712 |
| 0.6335 | 2.1860 | 24 | 0.9683 |
| 0.6694 | 2.4651 | 27 | 0.9722 |
| 0.6156 | 2.7442 | 30 | 0.9713 |
| 0.6567 | 3.0 | 33 | 0.9704 |
| 0.6581 | 3.2791 | 36 | 0.9713 |
| 0.6023 | 3.5581 | 39 | 0.9717 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0