--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.2-3B tags: - generated_from_trainer datasets: - mhenrichsen/alpaca_2k_test model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: NousResearch/Hermes-3-Llama-3.2-3B # optionally might have model_type or tokenizer_type model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: true load_in_4bit: false strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/lora-out This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B) on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set: - Loss: 0.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2051 | 0.0930 | 1 | 1.3039 | | 1.0777 | 0.2791 | 3 | 1.2884 | | 1.1398 | 0.5581 | 6 | 1.1808 | | 1.0909 | 0.8372 | 9 | 1.0715 | | 0.8999 | 1.0930 | 12 | 0.9657 | | 0.7534 | 1.3721 | 15 | 0.9733 | | 0.7596 | 1.6512 | 18 | 0.9730 | | 0.7925 | 1.9302 | 21 | 0.9712 | | 0.6335 | 2.1860 | 24 | 0.9683 | | 0.6694 | 2.4651 | 27 | 0.9722 | | 0.6156 | 2.7442 | 30 | 0.9713 | | 0.6567 | 3.0 | 33 | 0.9704 | | 0.6581 | 3.2791 | 36 | 0.9713 | | 0.6023 | 3.5581 | 39 | 0.9717 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0