---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-4B
tags:
- generated_from_trainer
datasets:
- dougiefresh/jade_identity
model-index:
- name: outputs/identity_adapter
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.9.2`
```yaml
adapter: lora
base_model: Qwen/Qwen3-4B
bf16: true
# Dataset & Data Loading
dataset_processes: 32
chat_template: chatml
datasets:
- message_property_mappings:
content: content
role: role
path: dougiefresh/jade_identity
train_split: train
valid_split: valid
trust_remote_code: false
type: chat_template
# Training Efficiency
micro_batch_size: 32
gradient_accumulation_steps: 2
gradient_checkpointing: true
# LoRA Settings
lora_alpha: 64
lora_dropout: 0.05
lora_r: 64
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
# Optimization
learning_rate: 0.000008 # ↓ lower LR for stability
lr_scheduler: cosine
warmup_ratio: 0.2 # ↑ slightly longer warmup for smoother start
optimizer: adamw_torch_fused
# Sequence Length & Packing
sequence_len: 2048 # ↓ 32K is overkill for identity Q&A
max_prompt_len: 2048
sample_packing_bin_size: 256
sample_packing_group_size: 200000
# Saving & Evaluation
num_epochs: 30.0 # ↑ train longer on smaller dataset
output_dir: ./outputs/identity_adapter
save_only_model: false
save_safetensors: true
val_set_size: 0.2 # ↑ larger validation split
eval_steps: 50 # ↑ more frequent eval
save_steps: 50 # ↑ save often to prevent data loss
load_best_model_at_end: true
# Training Behavior
train_on_inputs: false
shuffle_merged_datasets: true
skip_prepare_dataset: false
auto_resume_from_checkpoints: true
weight_decay: 0.01
# Advanced
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 10000
qlora_sharded_model_loading: false
mean_resizing_embeddings: false
strict: false
# TRL
trl:
log_completions: false
ref_model_mixup_alpha: 0.9
ref_model_sync_steps: 64
sync_ref_model: false
use_vllm: false
# Hardware
load_in_4bit: false
load_in_8bit: false
use_ray: false
ray_num_workers: 1
resources_per_worker:
GPU: 1
callbacks:
- type: ReduceLROnPlateau
monitor: eval_loss
factor: 0.5
patience: 3
mode: min
min_lr: 1e-7
- type: EarlyStoppingCallback
monitor: eval_loss
patience: 6
mode: min
# Logging
use_tensorboard: true
logging_dir: ./outputs/tensorboard
logging_first_step: true
logging_steps: 10
```
# outputs/identity_adapter
This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) on the dougiefresh/jade_identity dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 184
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log | 0.0323 | 1 | 7.7014 |
| 7.2709 | 1.6129 | 50 | 7.0879 |
| 4.9858 | 3.2258 | 100 | 4.8536 |
| 3.5705 | 4.8387 | 150 | 3.4831 |
| 2.839 | 6.4516 | 200 | 2.9379 |
| 2.5697 | 8.0645 | 250 | 2.6852 |
| 2.3997 | 9.6774 | 300 | 2.5461 |
| 2.2486 | 11.2903 | 350 | 2.4681 |
| 2.1874 | 12.9032 | 400 | 2.4054 |
| 2.0334 | 14.5161 | 450 | 2.3724 |
| 1.9825 | 16.1290 | 500 | 2.3459 |
| 1.9212 | 17.7419 | 550 | 2.3317 |
| 1.8507 | 19.3548 | 600 | 2.3255 |
| 1.8262 | 20.9677 | 650 | 2.3246 |
| 1.8001 | 22.5806 | 700 | 2.3292 |
| 1.7335 | 24.1935 | 750 | 2.3303 |
| 1.751 | 25.8065 | 800 | 2.3328 |
| 1.7384 | 27.4194 | 850 | 2.3327 |
| 1.7723 | 29.0323 | 900 | 2.3335 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1