Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "af9bff8c",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from fastai.vision.all import*\n",
|
| 11 |
+
"import gradio as gr\n",
|
| 12 |
+
"learn1 = load_learner('stage1.pkl')\n",
|
| 13 |
+
"learn2 = load_learner('stage2.pkl')\n",
|
| 14 |
+
"demo = gr.Blocks()\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"categories1 = 'discarded clothing', 'food waste', 'plastic bags', 'recyc_no_scrap', 'scrap metal piece', 'wood scraps'\n",
|
| 17 |
+
"categories2 = 'HDPE container', 'PET plastic bottle', 'aluminium can', 'cardboard', 'glass', 'paper2D', 'paper3D', 'steel and tin cans'\n",
|
| 18 |
+
"categories1_str = \"Stage 1 categories: \"+\", \".join(categories1)\n",
|
| 19 |
+
"categories2_str = \"Stage 2 categories: \"+\", \".join(categories2)\n",
|
| 20 |
+
"placeholder_=\"Stages 1 and 2 of the Recycling Process\\n\"+categories1_str+\"\\n\"+categories2_str\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"image1 = gr.inputs.Image(shape=(192,192))\n",
|
| 23 |
+
"label1 = gr.outputs.Label()\n",
|
| 24 |
+
"examples1 = ['stage1ex1_t.jpeg', 'stage1ex2_t.jpeg','stage1ex3_t.jpeg','stage1ex4_t.jpeg', 'stage1ex5_t.jpeg','stage1ex6_t.jpeg']\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"image2 = gr.inputs.Image(shape=(192,192))\n",
|
| 28 |
+
"label2 = gr.outputs.Label()\n",
|
| 29 |
+
"examples2 = ['stage2ex1_t.jpeg', 'stage2ex2_t.jpeg','stage2ex3_t.jpeg', 'stage2ex4_t.jpeg','stage2ex5_t.jpeg',\n",
|
| 30 |
+
" 'stage2ex6_tt.jpeg','stage2ex7_tt.jpeg','stage2ex8_t.jpeg']\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"def classify_stage1(img):\n",
|
| 34 |
+
" pred, idx, probs = learn1.predict(img)\n",
|
| 35 |
+
" return dict(zip(categories1, map(float,probs)))\n",
|
| 36 |
+
"def classify_stage2(img):\n",
|
| 37 |
+
" pred, idx, probs = learn2.predict(img)\n",
|
| 38 |
+
" return dict(zip(categories2, map(float,probs)))\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"with demo:\n",
|
| 43 |
+
" gr.Markdown(placeholder_)\n",
|
| 44 |
+
" with gr.Tabs():\n",
|
| 45 |
+
" with gr.TabItem(\"Stage 1\"):\n",
|
| 46 |
+
" with gr.Row():\n",
|
| 47 |
+
" nxt1 = random.choice(examples1)\n",
|
| 48 |
+
" stage1_input = gr.Image(nxt1)\n",
|
| 49 |
+
" stage1_output = gr.Label()\n",
|
| 50 |
+
" \n",
|
| 51 |
+
" stage1_button = gr.Button(\"Categorize Stage 1 Item\")\n",
|
| 52 |
+
" \n",
|
| 53 |
+
" \n",
|
| 54 |
+
" \n",
|
| 55 |
+
" with gr.TabItem(\"Stage2\"):\n",
|
| 56 |
+
" with gr.Row():\n",
|
| 57 |
+
" stage2_input = gr.Image(random.choice(examples2))\n",
|
| 58 |
+
" stage2_output = gr.Label()\n",
|
| 59 |
+
" \n",
|
| 60 |
+
" stage2_button = gr.Button(\"Categorize Stage 2 Item\")\n",
|
| 61 |
+
"\n",
|
| 62 |
+
" stage1_button.click(classify_stage1, inputs=stage1_input, outputs=stage1_output)#, examples = examples1)\n",
|
| 63 |
+
" stage2_button.click(classify_stage2, inputs=stage2_input, outputs=stage2_output)#, examples = examples2)\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"demo.launch()"
|
| 66 |
+
]
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"metadata": {
|
| 70 |
+
"kernelspec": {
|
| 71 |
+
"display_name": "Python 3 (ipykernel)",
|
| 72 |
+
"language": "python",
|
| 73 |
+
"name": "python3"
|
| 74 |
+
},
|
| 75 |
+
"language_info": {
|
| 76 |
+
"codemirror_mode": {
|
| 77 |
+
"name": "ipython",
|
| 78 |
+
"version": 3
|
| 79 |
+
},
|
| 80 |
+
"file_extension": ".py",
|
| 81 |
+
"mimetype": "text/x-python",
|
| 82 |
+
"name": "python",
|
| 83 |
+
"nbconvert_exporter": "python",
|
| 84 |
+
"pygments_lexer": "ipython3",
|
| 85 |
+
"version": "3.10.4"
|
| 86 |
+
},
|
| 87 |
+
"toc": {
|
| 88 |
+
"base_numbering": 1,
|
| 89 |
+
"nav_menu": {},
|
| 90 |
+
"number_sections": true,
|
| 91 |
+
"sideBar": true,
|
| 92 |
+
"skip_h1_title": false,
|
| 93 |
+
"title_cell": "Table of Contents",
|
| 94 |
+
"title_sidebar": "Contents",
|
| 95 |
+
"toc_cell": false,
|
| 96 |
+
"toc_position": {},
|
| 97 |
+
"toc_section_display": true,
|
| 98 |
+
"toc_window_display": false
|
| 99 |
+
}
|
| 100 |
+
},
|
| 101 |
+
"nbformat": 4,
|
| 102 |
+
"nbformat_minor": 5
|
| 103 |
+
}
|