---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
base_model: intfloat/multilingual-e5-small
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: apache-2.0
language:
- ko
- en
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on datasets that include Korean query-passage pairs for improved performance on Korean retrieval tasks. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model is a lightweight Korean retriever, designed for ease of use and strong performance in practical retrieval tasks.
It is ideal for running demos or lightweight applications, offering a good balance between speed and accuracy.
For even higher retrieval performance, we recommend combining it with a reranker.
Suggested reranker models:
- dragonkue/bge-reranker-v2-m3-ko
- BAAI/bge-reranker-v2-m3
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
**πͺΆ Lightweight Version Available**
We also introduce a lightweight variant of this model:
[`exp-models/dragonkue-KoEn-E5-Tiny`](https://huggingface.co/exp-models/dragonkue-KoEn-E5-Tiny),
which removes all tokens **except Korean and English** to reduce model size while maintaining performance.
The repository also includes a **GGUF-quantized version**, making it suitable for efficient local or on-device embedding model serving.
> π§ For practical deployment, we highly recommend using this **lightweight retriever** in combination with a **reranker** model β it forms a powerful and resource-efficient retrieval setup.
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("dragonkue/multilingual-e5-small-ko")
# Run inference
sentences = [
'query: λΆνκ°μ‘±λ² λͺ μ°¨ κ°μ μμ μ΄νΌνκ²° νμ ν 3κ°μ λ΄μ λ±λ‘μμλ§ μ ν¨νλ€λ μ‘°νμ νμ€ν νμκΉ?',
'passage: 1990λ
μ μ μ λ λΆν κ°μ‘±λ²μ μ§κΈκΉμ§ 4μ°¨λ‘ κ°μ λμ΄ νμ¬μ μ΄λ₯΄κ³ μλ€. 1993λ
μ μ΄λ£¨μ΄μ§ μ 1μ°¨ κ°μ μ μ£Όλ‘ κ·μ μ μ νμ±μ κΈ°νκΈ° μνμ¬ λͺλͺ μ‘°λ¬Έμ μμ ν κ²μ΄λ©°, μ€μ²΄μ μΈ λ΄μ©μ 보μν κ²μ μμμ μΉμΈκ³Ό ν¬κΈ°κΈ°κ°μ μ€μ ν μ 52μ‘° μ λλΌκ³ ν μ μλ€. 2004λ
μ μ΄λ£¨μ΄μ§ μ 2μ°¨μ κ°μ μμλ μ 20μ‘°μ 3νμ μ μ€νμ¬ μ¬νμ νμ λ μ΄νΌνκ²°μ 3κ°μ λ΄μ λ±λ‘ν΄μΌ μ΄νΌμ ν¨λ ₯μ΄ λ°μνλ€λ κ²μ λͺ
ννκ² νμλ€. 2007λ
μ μ΄λ£¨μ΄μ§ μ 3μ°¨ κ°μ μμλ λΆλͺ¨μ μλ
κ΄κ³ λν μ λΆλ±λ‘κΈ°κ΄μ λ±λ‘ν λλΆν° λ²μ ν¨λ ₯μ΄ λ°μνλ€λ κ²μ μ μ€(μ 25μ‘°μ 2ν)νμλ€. λν λ―Έμ±λ
μ, λ
Έλλ₯λ ₯ μλ μμ λΆμκ³Ό κ΄λ ¨(μ 37μ‘°μ 2ν)νμ¬ κΈ°μ‘΄μλ βλΆμλ₯λ ₯μ΄ μλ κ°μ μ±μμ΄ μμ κ²½μ°μλ λ°λ‘ μ¬λ λΆλͺ¨λ μλ
, μ‘°λΆλͺ¨λ μμλ
, νμ μλ§€κ° λΆμνλ€βκ³ κ·μ νκ³ μμλ κ²μ βλΆμλ₯λ ₯μ΄ μλ κ°μ μ±μμ΄ μμ κ²½μ°μλ λ°λ‘ μ¬λ λΆλͺ¨λ μλ
κ° λΆμνλ©° κ·Έλ€μ΄ μμ κ²½μ°μλ μ‘°λΆλͺ¨λ μμλ
, νμ μλ§€κ° λΆμνλ€βλ‘ κ°μ νμλ€.',
'passage: νκ²½λ§ν¬ μ λ, μΈμ¦κΈ°μ€ λ³κ²½μΌλ‘ κΈ°μ
λΆλ΄ μ€μΈλ€\nνκ²½λ§ν¬ μ λ μκ°\nβ‘ κ°μ\nβ λμΌ μ©λμ λ€λ₯Έ μ νμ λΉν΄ βμ νμ νκ²½μ±*βμ κ°μ ν μ νμ λ‘κ³ μ μ€λͺ
μ νμν μ μλλ‘νλ μΈμ¦ μ λ\nβ» μ νμ νκ²½μ± : μ¬λ£μ μ νμ μ μ‘°β€μλΉ νκΈ°νλ μ κ³Όμ μμ μ€μΌλ¬Όμ§μ΄λ μ¨μ€κ°μ€ λ±μ λ°°μΆνλ μ λ λ° μμκ³Ό μλμ§λ₯Ό μλΉνλ μ λ λ± νκ²½μ λ―ΈμΉλ μν₯λ ₯μ μ λ(γνκ²½κΈ°μ λ° νκ²½μ°μ
μ§μλ²γμ 2μ‘°μ 5νΈ)\nβ‘ λ²μ κ·Όκ±°\nβ γνκ²½κΈ°μ λ° νκ²½μ°μ
μ§μλ²γμ 17μ‘°(νκ²½νμ§μ μΈμ¦)\nβ‘ κ΄λ ¨ κ΅μ νμ€\nβ ISO 14024(μ 1μ ν νκ²½λΌλ²¨λ§)\nβ‘ μ μ©λμ\nβ μ¬λ¬΄κΈ°κΈ°, κ°μ μ ν, μνμ©ν, 건μΆμμ¬ λ± 156κ° λμμ νκ΅°\nβ‘ μΈμ¦νν©\nβ 2,737κ° κΈ°μ
μ 16,647κ° μ ν(2015.12μλ§ κΈ°μ€)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
### Direct Usage (Transformers)
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ["query: λΆνκ°μ‘±λ² λͺ μ°¨ κ°μ μμ μ΄νΌνκ²° νμ ν 3κ°μ λ΄μ λ±λ‘μμλ§ μ ν¨νλ€λ μ‘°νμ νμ€ν νμκΉ?",
"passage: 1990λ
μ μ μ λ λΆν κ°μ‘±λ²μ μ§κΈκΉμ§ 4μ°¨λ‘ κ°μ λμ΄ νμ¬μ μ΄λ₯΄κ³ μλ€. 1993λ
μ μ΄λ£¨μ΄μ§ μ 1μ°¨ κ°μ μ μ£Όλ‘ κ·μ μ μ νμ±μ κΈ°νκΈ° μνμ¬ λͺλͺ μ‘°λ¬Έμ μμ ν κ²μ΄λ©°, μ€μ²΄μ μΈ λ΄μ©μ 보μν κ²μ μμμ μΉμΈκ³Ό ν¬κΈ°κΈ°κ°μ μ€μ ν μ 52μ‘° μ λλΌκ³ ν μ μλ€. 2004λ
μ μ΄λ£¨μ΄μ§ μ 2μ°¨μ κ°μ μμλ μ 20μ‘°μ 3νμ μ μ€νμ¬ μ¬νμ νμ λ μ΄νΌνκ²°μ 3κ°μ λ΄μ λ±λ‘ν΄μΌ μ΄νΌμ ν¨λ ₯μ΄ λ°μνλ€λ κ²μ λͺ
ννκ² νμλ€. 2007λ
μ μ΄λ£¨μ΄μ§ μ 3μ°¨ κ°μ μμλ λΆλͺ¨μ μλ
κ΄κ³ λν μ λΆλ±λ‘κΈ°κ΄μ λ±λ‘ν λλΆν° λ²μ ν¨λ ₯μ΄ λ°μνλ€λ κ²μ μ μ€(μ 25μ‘°μ 2ν)νμλ€. λν λ―Έμ±λ
μ, λ
Έλλ₯λ ₯ μλ μμ λΆμκ³Ό κ΄λ ¨(μ 37μ‘°μ 2ν)νμ¬ κΈ°μ‘΄μλ βλΆμλ₯λ ₯μ΄ μλ κ°μ μ±μμ΄ μμ κ²½μ°μλ λ°λ‘ μ¬λ λΆλͺ¨λ μλ
, μ‘°λΆλͺ¨λ μμλ
, νμ μλ§€κ° λΆμνλ€βκ³ κ·μ νκ³ μμλ κ²μ βλΆμλ₯λ ₯μ΄ μλ κ°μ μ±μμ΄ μμ κ²½μ°μλ λ°λ‘ μ¬λ λΆλͺ¨λ μλ
κ° λΆμνλ©° κ·Έλ€μ΄ μμ κ²½μ°μλ μ‘°λΆλͺ¨λ μμλ
, νμ μλ§€κ° λΆμνλ€βλ‘ κ°μ νμλ€.",
"passage: νκ²½λ§ν¬ μ λ, μΈμ¦κΈ°μ€ λ³κ²½μΌλ‘ κΈ°μ
λΆλ΄ μ€μΈλ€\nνκ²½λ§ν¬ μ λ μκ°\nβ‘ κ°μ\nβ λμΌ μ©λμ λ€λ₯Έ μ νμ λΉν΄ βμ νμ νκ²½μ±*βμ κ°μ ν μ νμ λ‘κ³ μ μ€λͺ
μ νμν μ μλλ‘νλ μΈμ¦ μ λ\nβ» μ νμ νκ²½μ± : μ¬λ£μ μ νμ μ μ‘°β€μλΉ νκΈ°νλ μ κ³Όμ μμ μ€μΌλ¬Όμ§μ΄λ μ¨μ€κ°μ€ λ±μ λ°°μΆνλ μ λ λ° μμκ³Ό μλμ§λ₯Ό μλΉνλ μ λ λ± νκ²½μ λ―ΈμΉλ μν₯λ ₯μ μ λ(γνκ²½κΈ°μ λ° νκ²½μ°μ
μ§μλ²γμ 2μ‘°μ 5νΈ)\nβ‘ λ²μ κ·Όκ±°\nβ γνκ²½κΈ°μ λ° νκ²½μ°μ
μ§μλ²γμ 17μ‘°(νκ²½νμ§μ μΈμ¦)\nβ‘ κ΄λ ¨ κ΅μ νμ€\nβ ISO 14024(μ 1μ ν νκ²½λΌλ²¨λ§)\nβ‘ μ μ©λμ\nβ μ¬λ¬΄κΈ°κΈ°, κ°μ μ ν, μνμ©ν, 건μΆμμ¬ λ± 156κ° λμμ νκ΅°\nβ‘ μΈμ¦νν©\nβ 2,737κ° κΈ°μ
μ 16,647κ° μ ν(2015.12μλ§ κΈ°μ€)"]
tokenizer = AutoTokenizer.from_pretrained('dragonkue/multilingual-e5-small-ko')
model = AutoModel.from_pretrained('dragonkue/multilingual-e5-small-ko')
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T)
print(scores.tolist())
```
## Evaluation
- This evaluation references the KURE GitHub repository. (https://github.com/nlpai-lab/KURE)
- We conducted an evaluation on all **Korean Retrieval Benchmarks** registered in [MTEB](https://github.com/embeddings-benchmark/mteb).
### Korean Retrieval Benchmark
- [Ko-StrategyQA](https://huggingface.co/datasets/taeminlee/Ko-StrategyQA): A Korean **ODQA multi-hop retrieval dataset**, translated from StrategyQA.
- [AutoRAGRetrieval](https://huggingface.co/datasets/yjoonjang/markers_bm): A **Korean document retrieval dataset** constructed by parsing PDFs from five domains: **finance, public, medical, legal, and commerce**.
- [MIRACLRetrieval](https://huggingface.co/datasets/miracl/miracl): A **Korean document retrieval dataset** based on Wikipedia.
- [PublicHealthQA](https://huggingface.co/datasets/xhluca/publichealth-qa): A **retrieval dataset** focused on **medical and public health domains** in Korean.
- [BelebeleRetrieval](https://huggingface.co/datasets/facebook/belebele): A **Korean document retrieval dataset** based on FLORES-200.
- [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy): A **Wikipedia-based Korean document retrieval dataset**.
- [XPQARetrieval](https://huggingface.co/datasets/jinaai/xpqa): A **cross-domain Korean document retrieval dataset**.
### Metrics
* Standard metric : NDCG@10
#### Information Retrieval
| Model | Size(M) | Average | XPQARetrieval | PublicHealthQA | MIRACLRetrieval | Ko-StrategyQA | BelebeleRetrieval | AutoRAGRetrieval | MrTidyRetrieval |
|:------------------------------------------------------------|----------:|----------:|----------------:|-----------------:|------------------:|----------------:|--------------------:|-------------------:|------------------:|
| BAAI/bge-m3 | 560 | 0.724169 | 0.36075 | 0.80412 | 0.70146 | 0.79405 | 0.93164 | 0.83008 | 0.64708 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 560 | 0.724104 | 0.43018 | 0.81679 | 0.66077 | 0.80455 | 0.9271 | 0.83863 | 0.59071 |
| intfloat/multilingual-e5-large | 560 | 0.721607 | 0.3571 | 0.82534 | 0.66486 | 0.80348 | 0.94499 | 0.81337 | 0.64211 |
| intfloat/multilingual-e5-base | 278 | 0.689429 | 0.3607 | 0.77203 | 0.6227 | 0.76355 | 0.92868 | 0.79752 | 0.58082 |
| **dragonkue/multilingual-e5-small-ko** | 118 | 0.688819 | 0.34871 | 0.79729 | 0.61113 | 0.76173 | 0.9297 | 0.86184 | 0.51133 |
| **exp-models/dragonkue-KoEn-E5-Tiny** | 37 | 0.687496 | 0.34735 | 0.7925 | 0.6143 | 0.75978 | 0.93018 | 0.86503 | 0.50333 |
| intfloat/multilingual-e5-small | 118 | 0.670906 | 0.33003 | 0.73668 | 0.61238 | 0.75157 | 0.90531 | 0.80068 | 0.55969 |
| ibm-granite/granite-embedding-278m-multilingual | 278 | 0.616466 | 0.23058 | 0.77668 | 0.59216 | 0.71762 | 0.83231 | 0.70226 | 0.46365 |
| ibm-granite/granite-embedding-107m-multilingual | 107 | 0.599759 | 0.23058 | 0.73209 | 0.58413 | 0.70531 | 0.82063 | 0.68243 | 0.44314 |
| sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 118 | 0.409766 | 0.21345 | 0.67409 | 0.25676 | 0.45903 | 0.71491 | 0.42296 | 0.12716 |
#### Performance Comparison by Model Size (Based on Average NDCG@10)
## Training Details
### Training Datasets
This model was fine-tuned on the same dataset used in dragonkue/snowflake-arctic-embed-l-v2.0-ko, which consists of Korean query-passage pairs.
The training objective was to improve retrieval performance specifically for Korean-language tasks.
### Training Methods
Following the training approach used in dragonkue/snowflake-arctic-embed-l-v2.0-ko, this model constructs in-batch negatives based on clustered passages. In addition, we introduce GISTEmbedLoss with a configurable margin.
**π Margin-based Training Results**
- Using the standard MNR (Multiple Negatives Ranking) loss alone resulted in decreased performance.
- The original GISTEmbedLoss (without margin) yielded modest improvements of around +0.8 NDCG@10.
- Applying a margin led to performance gains of up to +1.5 NDCG@10.
- This indicates that simply tuning the margin value can lead to up to 2x improvement, showing strong sensitivity and effectiveness of margin scaling.
This margin-based approach extends the idea proposed in the NV-Retriever paper, which originally filtered false negatives during hard negative sampling.
We adapt this to in-batch negatives, treating false negatives as dynamic samples guided by margin-based filtering.
The sentence-transformers library now supports GISTEmbedLoss with margin configuration, making it easy to integrate into any training pipeline.
You can install the latest version with:
```bash
pip install -U sentence-transformers
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20000
- `per_device_eval_batch_size`: 4096
- `learning_rate`: 0.00025
- `num_train_epochs`: 3
- `warmup_ratio`: 0.05
- `fp16`: True
- `dataloader_drop_last`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20000
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.00025
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## FAQ
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
Yes, this is how the model is trained, otherwise you will see a performance degradation.
Here are some rules of thumb:
Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.
Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
**2. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue.
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### Base Model
```bibtex
@article{wang2024multilingual,
title={Multilingual E5 Text Embeddings: A Technical Report},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2402.05672},
year={2024}
}
```
#### NV-Retriever: Improving text embedding models with effective hard-negative mining
```bibtex
@article{moreira2024nvretriever,
title = {NV-Retriever: Improving text embedding models with effective hard-negative mining},
author = {Moreira, Gabriel de Souza P. and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even},
journal = {arXiv preprint arXiv:2407.15831},
year = {2024},
url = {https://arxiv.org/abs/2407.15831},
doi = {10.48550/arXiv.2407.15831}
}
```
#### KURE
```bibtex
@misc{KURE,
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
year = {2024},
url = {https://github.com/nlpai-lab/KURE}
}
```
## Limitations
Long texts will be truncated to at most 512 tokens.
## Acknowledgements
Special thanks to lemon-mint for their valuable contribution in optimizing and compressing this model.