Update README.md
Browse files
README.md
CHANGED
@@ -1,110 +1,110 @@
|
|
1 |
-
---
|
2 |
-
library_name: ctranslate2
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: openai/whisper-small
|
5 |
-
tags:
|
6 |
-
- audio
|
7 |
-
- automatic-speech-recognition
|
8 |
-
- ctranslate2
|
9 |
-
- faster-whisper
|
10 |
-
- generated_from_trainer
|
11 |
-
- whisper
|
12 |
-
metrics:
|
13 |
-
- cer
|
14 |
-
- wer
|
15 |
-
model-index:
|
16 |
-
- name: whisper-small-jp
|
17 |
-
results:
|
18 |
-
- task:
|
19 |
-
name: Automatic Speech Recognition
|
20 |
-
type: automatic-speech-recognition
|
21 |
-
dataset:
|
22 |
-
name: mozilla-foundation/common_voice_17_0 (ja)
|
23 |
-
type: mozilla-foundation/common_voice_17_0
|
24 |
-
config: ja
|
25 |
-
split: test
|
26 |
-
args:
|
27 |
-
language: ja
|
28 |
-
metrics:
|
29 |
-
- name: CER
|
30 |
-
type: cer
|
31 |
-
value: 0.23043221252477486
|
32 |
-
---
|
33 |
-
|
34 |
-
> **This repository contains the CTranslate2 export of the fine-tuned model.**
|
35 |
-
>
|
36 |
-
> • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp)
|
37 |
-
> • Use with `faster-whisper`:
|
38 |
-
>
|
39 |
-
> ```python
|
40 |
-
> from faster_whisper import WhisperModel
|
41 |
-
> model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16")
|
42 |
-
> ```
|
43 |
-
|
44 |
-
# OTHER FINETUNES
|
45 |
-
- Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2)
|
46 |
-
|
47 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
48 |
-
should probably proofread and complete it, then remove this comment. -->
|
49 |
-
|
50 |
-
# whisper-small-jp
|
51 |
-
|
52 |
-
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on
|
53 |
-
It achieves the following results on the evaluation set:
|
54 |
-
- Loss: 0.6168
|
55 |
-
- Wer: 0.2600
|
56 |
-
- Cer: 0.2600
|
57 |
-
|
58 |
-
## Model description
|
59 |
-
|
60 |
-
Better suited for transcribing japanese youtube content.
|
61 |
-
|
62 |
-
## Intended uses & limitations
|
63 |
-
|
64 |
-
More information needed
|
65 |
-
|
66 |
-
## Training and evaluation data
|
67 |
-
|
68 |
-
More information needed
|
69 |
-
|
70 |
-
## Training procedure
|
71 |
-
|
72 |
-
### Training hyperparameters
|
73 |
-
|
74 |
-
The following hyperparameters were used during training:
|
75 |
-
- learning_rate: 5e-06
|
76 |
-
- train_batch_size: 8
|
77 |
-
- eval_batch_size: 4
|
78 |
-
- seed: 42
|
79 |
-
- distributed_type: multi-GPU
|
80 |
-
- num_devices: 2
|
81 |
-
- total_train_batch_size: 16
|
82 |
-
- total_eval_batch_size: 8
|
83 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
84 |
-
- lr_scheduler_type: linear
|
85 |
-
- lr_scheduler_warmup_steps: 300
|
86 |
-
- num_epochs: 10
|
87 |
-
- mixed_precision_training: Native AMP
|
88 |
-
|
89 |
-
### Training results
|
90 |
-
|
91 |
-
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
92 |
-
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
93 |
-
| 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 |
|
94 |
-
| 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 |
|
95 |
-
| 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 |
|
96 |
-
| 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 |
|
97 |
-
| 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 |
|
98 |
-
| 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 |
|
99 |
-
| 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 |
|
100 |
-
| 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 |
|
101 |
-
| 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 |
|
102 |
-
| 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 |
|
103 |
-
|
104 |
-
|
105 |
-
### Framework versions
|
106 |
-
|
107 |
-
- Transformers 4.56.1
|
108 |
-
- Pytorch 2.8.0+cu128
|
109 |
-
- Datasets 4.0.0
|
110 |
- Tokenizers 0.22.0
|
|
|
1 |
+
---
|
2 |
+
library_name: ctranslate2
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: openai/whisper-small
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- ctranslate2
|
9 |
+
- faster-whisper
|
10 |
+
- generated_from_trainer
|
11 |
+
- whisper
|
12 |
+
metrics:
|
13 |
+
- cer
|
14 |
+
- wer
|
15 |
+
model-index:
|
16 |
+
- name: whisper-small-jp
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
name: Automatic Speech Recognition
|
20 |
+
type: automatic-speech-recognition
|
21 |
+
dataset:
|
22 |
+
name: mozilla-foundation/common_voice_17_0 (ja)
|
23 |
+
type: mozilla-foundation/common_voice_17_0
|
24 |
+
config: ja
|
25 |
+
split: test
|
26 |
+
args:
|
27 |
+
language: ja
|
28 |
+
metrics:
|
29 |
+
- name: CER
|
30 |
+
type: cer
|
31 |
+
value: 0.23043221252477486
|
32 |
+
---
|
33 |
+
|
34 |
+
> **This repository contains the CTranslate2 export of the fine-tuned model.**
|
35 |
+
>
|
36 |
+
> • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp)
|
37 |
+
> • Use with `faster-whisper`:
|
38 |
+
>
|
39 |
+
> ```python
|
40 |
+
> from faster_whisper import WhisperModel
|
41 |
+
> model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16")
|
42 |
+
> ```
|
43 |
+
|
44 |
+
# OTHER FINETUNES
|
45 |
+
- Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2)
|
46 |
+
|
47 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
48 |
+
should probably proofread and complete it, then remove this comment. -->
|
49 |
+
|
50 |
+
# whisper-small-jp
|
51 |
+
|
52 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on a Japanese youtube based dataset.
|
53 |
+
It achieves the following results on the evaluation set:
|
54 |
+
- Loss: 0.6168
|
55 |
+
- Wer: 0.2600
|
56 |
+
- Cer: 0.2600
|
57 |
+
|
58 |
+
## Model description
|
59 |
+
|
60 |
+
Better suited for transcribing japanese youtube content.
|
61 |
+
|
62 |
+
## Intended uses & limitations
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training and evaluation data
|
67 |
+
|
68 |
+
More information needed
|
69 |
+
|
70 |
+
## Training procedure
|
71 |
+
|
72 |
+
### Training hyperparameters
|
73 |
+
|
74 |
+
The following hyperparameters were used during training:
|
75 |
+
- learning_rate: 5e-06
|
76 |
+
- train_batch_size: 8
|
77 |
+
- eval_batch_size: 4
|
78 |
+
- seed: 42
|
79 |
+
- distributed_type: multi-GPU
|
80 |
+
- num_devices: 2
|
81 |
+
- total_train_batch_size: 16
|
82 |
+
- total_eval_batch_size: 8
|
83 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
84 |
+
- lr_scheduler_type: linear
|
85 |
+
- lr_scheduler_warmup_steps: 300
|
86 |
+
- num_epochs: 10
|
87 |
+
- mixed_precision_training: Native AMP
|
88 |
+
|
89 |
+
### Training results
|
90 |
+
|
91 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
92 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
93 |
+
| 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 |
|
94 |
+
| 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 |
|
95 |
+
| 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 |
|
96 |
+
| 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 |
|
97 |
+
| 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 |
|
98 |
+
| 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 |
|
99 |
+
| 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 |
|
100 |
+
| 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 |
|
101 |
+
| 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 |
|
102 |
+
| 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.56.1
|
108 |
+
- Pytorch 2.8.0+cu128
|
109 |
+
- Datasets 4.0.0
|
110 |
- Tokenizers 0.22.0
|