drepic commited on
Commit
45eab7a
·
verified ·
1 Parent(s): c1411a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -109
README.md CHANGED
@@ -1,110 +1,110 @@
1
- ---
2
- library_name: ctranslate2
3
- license: apache-2.0
4
- base_model: openai/whisper-small
5
- tags:
6
- - audio
7
- - automatic-speech-recognition
8
- - ctranslate2
9
- - faster-whisper
10
- - generated_from_trainer
11
- - whisper
12
- metrics:
13
- - cer
14
- - wer
15
- model-index:
16
- - name: whisper-small-jp
17
- results:
18
- - task:
19
- name: Automatic Speech Recognition
20
- type: automatic-speech-recognition
21
- dataset:
22
- name: mozilla-foundation/common_voice_17_0 (ja)
23
- type: mozilla-foundation/common_voice_17_0
24
- config: ja
25
- split: test
26
- args:
27
- language: ja
28
- metrics:
29
- - name: CER
30
- type: cer
31
- value: 0.23043221252477486
32
- ---
33
-
34
- > **This repository contains the CTranslate2 export of the fine-tuned model.**
35
- >
36
- > • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp)
37
- > • Use with `faster-whisper`:
38
- >
39
- > ```python
40
- > from faster_whisper import WhisperModel
41
- > model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16")
42
- > ```
43
-
44
- # OTHER FINETUNES
45
- - Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2)
46
-
47
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
48
- should probably proofread and complete it, then remove this comment. -->
49
-
50
- # whisper-small-jp
51
-
52
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
53
- It achieves the following results on the evaluation set:
54
- - Loss: 0.6168
55
- - Wer: 0.2600
56
- - Cer: 0.2600
57
-
58
- ## Model description
59
-
60
- Better suited for transcribing japanese youtube content.
61
-
62
- ## Intended uses & limitations
63
-
64
- More information needed
65
-
66
- ## Training and evaluation data
67
-
68
- More information needed
69
-
70
- ## Training procedure
71
-
72
- ### Training hyperparameters
73
-
74
- The following hyperparameters were used during training:
75
- - learning_rate: 5e-06
76
- - train_batch_size: 8
77
- - eval_batch_size: 4
78
- - seed: 42
79
- - distributed_type: multi-GPU
80
- - num_devices: 2
81
- - total_train_batch_size: 16
82
- - total_eval_batch_size: 8
83
- - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
84
- - lr_scheduler_type: linear
85
- - lr_scheduler_warmup_steps: 300
86
- - num_epochs: 10
87
- - mixed_precision_training: Native AMP
88
-
89
- ### Training results
90
-
91
- | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
92
- |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
93
- | 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 |
94
- | 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 |
95
- | 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 |
96
- | 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 |
97
- | 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 |
98
- | 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 |
99
- | 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 |
100
- | 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 |
101
- | 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 |
102
- | 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 |
103
-
104
-
105
- ### Framework versions
106
-
107
- - Transformers 4.56.1
108
- - Pytorch 2.8.0+cu128
109
- - Datasets 4.0.0
110
  - Tokenizers 0.22.0
 
1
+ ---
2
+ library_name: ctranslate2
3
+ license: apache-2.0
4
+ base_model: openai/whisper-small
5
+ tags:
6
+ - audio
7
+ - automatic-speech-recognition
8
+ - ctranslate2
9
+ - faster-whisper
10
+ - generated_from_trainer
11
+ - whisper
12
+ metrics:
13
+ - cer
14
+ - wer
15
+ model-index:
16
+ - name: whisper-small-jp
17
+ results:
18
+ - task:
19
+ name: Automatic Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: mozilla-foundation/common_voice_17_0 (ja)
23
+ type: mozilla-foundation/common_voice_17_0
24
+ config: ja
25
+ split: test
26
+ args:
27
+ language: ja
28
+ metrics:
29
+ - name: CER
30
+ type: cer
31
+ value: 0.23043221252477486
32
+ ---
33
+
34
+ > **This repository contains the CTranslate2 export of the fine-tuned model.**
35
+ >
36
+ > • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp)
37
+ > • Use with `faster-whisper`:
38
+ >
39
+ > ```python
40
+ > from faster_whisper import WhisperModel
41
+ > model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16")
42
+ > ```
43
+
44
+ # OTHER FINETUNES
45
+ - Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2)
46
+
47
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
48
+ should probably proofread and complete it, then remove this comment. -->
49
+
50
+ # whisper-small-jp
51
+
52
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on a Japanese youtube based dataset.
53
+ It achieves the following results on the evaluation set:
54
+ - Loss: 0.6168
55
+ - Wer: 0.2600
56
+ - Cer: 0.2600
57
+
58
+ ## Model description
59
+
60
+ Better suited for transcribing japanese youtube content.
61
+
62
+ ## Intended uses & limitations
63
+
64
+ More information needed
65
+
66
+ ## Training and evaluation data
67
+
68
+ More information needed
69
+
70
+ ## Training procedure
71
+
72
+ ### Training hyperparameters
73
+
74
+ The following hyperparameters were used during training:
75
+ - learning_rate: 5e-06
76
+ - train_batch_size: 8
77
+ - eval_batch_size: 4
78
+ - seed: 42
79
+ - distributed_type: multi-GPU
80
+ - num_devices: 2
81
+ - total_train_batch_size: 16
82
+ - total_eval_batch_size: 8
83
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
84
+ - lr_scheduler_type: linear
85
+ - lr_scheduler_warmup_steps: 300
86
+ - num_epochs: 10
87
+ - mixed_precision_training: Native AMP
88
+
89
+ ### Training results
90
+
91
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
92
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
93
+ | 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 |
94
+ | 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 |
95
+ | 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 |
96
+ | 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 |
97
+ | 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 |
98
+ | 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 |
99
+ | 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 |
100
+ | 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 |
101
+ | 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 |
102
+ | 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.56.1
108
+ - Pytorch 2.8.0+cu128
109
+ - Datasets 4.0.0
110
  - Tokenizers 0.22.0