--- library_name: ctranslate2 license: apache-2.0 base_model: openai/whisper-small tags: - audio - automatic-speech-recognition - ctranslate2 - faster-whisper - generated_from_trainer - whisper metrics: - cer - wer model-index: - name: whisper-small-jp results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 (ja) type: mozilla-foundation/common_voice_17_0 config: ja split: test args: language: ja metrics: - name: CER type: cer value: 0.23043221252477486 --- > **This repository contains the CTranslate2 export of the fine-tuned model.** > > • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp) > • Use with `faster-whisper`: > > ```python > from faster_whisper import WhisperModel > model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16") > ``` # OTHER FINETUNES - Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2) # whisper-small-jp This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on a Japanese youtube based dataset. It achieves the following results on the evaluation set: - Loss: 0.6168 - Wer: 0.2600 - Cer: 0.2600 ## Model description Better suited for transcribing japanese youtube content. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 | | 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 | | 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 | | 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 | | 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 | | 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 | | 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 | | 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 | | 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 | | 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0