vukosi commited on
Commit
020aca2
·
1 Parent(s): bca1b93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -125
README.md CHANGED
@@ -3,6 +3,7 @@ license: cc-by-4.0
3
  datasets:
4
  - dsfsi/vukuzenzele-monolingual
5
  - nchlt
 
6
  language:
7
  - tn
8
  library_name: transformers
@@ -11,153 +12,46 @@ tags:
11
  - masked langauge model
12
  - setswana
13
  ---
14
- # Model Card for PuoBERTa
15
 
 
16
 
17
  ## Model Details
18
 
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
 
23
  - **Developed by:** Vukosi Marivate ([@vukosi](https://huggingface.co/@vukosi)), Moseli Mots'Oehli ([@MoseliMotsoehli](https://huggingface.co/@MoseliMotsoehli)) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai
24
  - **Model type:** RoBERTa Model
25
  - **Language(s) (NLP):** Setswana
26
  - **License:** CC BY 4.0
27
 
28
- <!-- ### Model Sources [optional] -->
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- <!--- **Repository:** [More Information Needed] . -->
33
- <!-- - **Paper [optional]:** [More Information Needed] . -->
34
- <!-- - **Demo [optional]:** [More Information Needed] . -->
35
 
36
- ## Uses
 
37
 
38
- Pre-trained masked language model for Setswana. Model can be fine-tuned for downstream NLP tasks for Setswana.
 
 
39
 
 
 
40
  ### Downstream Use
41
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
42
-
43
- [More Information Needed]
44
-
45
- <!-- ### Out-of-Scope Use
46
-
47
- This section addresses misuse, malicious use, and uses that the model will not work well for.
48
-
49
- [More Information Needed]-->
50
-
51
- <!-- ## Bias, Risks, and Limitations
52
-
53
- This section is meant to convey both technical and sociotechnical limitations.
54
-
55
- [More Information Needed] -->
56
-
57
- <!-- ### Recommendations
58
-
59
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
60
-
61
- <!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
62
-
63
- <!-- ## How to Get Started with the Model
64
-
65
- Use the code below to get started with the model.
66
-
67
- [More Information Needed]
68
-
69
- <!-- ## Training Details
70
-
71
- <!-- ### Training Data
72
-
73
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
74
-
75
- <!-- [More Information Needed]
76
-
77
- ### Training Procedure
78
-
79
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
80
-
81
- <!-- #### Preprocessing [optional]
82
-
83
- [More Information Needed]
84
-
85
-
86
- #### Training Hyperparameters
87
-
88
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
89
-
90
- <!-- #### Speeds, Sizes, Times [optional]
91
-
92
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
93
-
94
- <!-- [More Information Needed]
95
-
96
- ## Evaluation
97
-
98
- <!-- This section describes the evaluation protocols and provides the results. -->
99
 
100
- <!-- ### Testing Data, Factors & Metrics
101
 
102
- #### Testing Data
103
 
104
- <!-- This should link to a Data Card if possible.
105
-
106
- [More Information Needed]
107
-
108
- #### Factors -->
109
-
110
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
111
-
112
- [More Information Needed]
113
-
114
- <!-- #### Metrics
115
-
116
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
117
-
118
- [More Information Needed]
119
-
120
- <!-- ### Results
121
-
122
- [More Information Needed]
123
-
124
- #### Summary
125
-
126
-
127
- ## Model Examination [optional] -->
128
-
129
- <!-- Relevant interpretability work for the model goes here -->
130
-
131
-
132
- <!-- R### Model Architecture and Objective
133
-
134
- [More Information Needed]
135
-
136
- ### Compute Infrastructure
137
-
138
- [More Information Needed]
139
-
140
- #### Hardware
141
-
142
- [More Information Needed]
143
-
144
- #### Software
145
-
146
- [More Information Needed]
147
-
148
- <!-- ## Citation [optional]
149
-
150
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
151
-
152
- <!-- **BibTeX:**
153
-
154
- [More Information Needed]
155
-
156
- **APA:**
157
-
158
- [More Information Needed] -->
159
 
 
160
 
 
161
 
162
  ## Model Card Authors
163
 
@@ -165,4 +59,8 @@ Vukosi Marivate
165
 
166
  ## Model Card Contact
167
 
168
- vukosi.marivate@cs.up.ac.za
 
 
 
 
 
3
  datasets:
4
  - dsfsi/vukuzenzele-monolingual
5
  - nchlt
6
+ - dsfsi/PuoData
7
  language:
8
  - tn
9
  library_name: transformers
 
12
  - masked langauge model
13
  - setswana
14
  ---
15
+ # PuoBerta: A curated Setswana Language Model
16
 
17
+ A Roberta-based language model specially designed for Setswana, using the new PuoData dataset.
18
 
19
  ## Model Details
20
 
21
+
22
  ### Model Description
23
 
24
+ This is a masked language model trained on Setswana corpora, making it a valuable tool for a range of downstream applications from translation to content creation. It's powered by the PuoData dataset to ensure accuracy and cultural relevance.
25
 
26
  - **Developed by:** Vukosi Marivate ([@vukosi](https://huggingface.co/@vukosi)), Moseli Mots'Oehli ([@MoseliMotsoehli](https://huggingface.co/@MoseliMotsoehli)) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai
27
  - **Model type:** RoBERTa Model
28
  - **Language(s) (NLP):** Setswana
29
  - **License:** CC BY 4.0
30
 
 
31
 
32
+ ### Usage
33
 
34
+ Use this model filling in masks or finetune for downstream tasks. Here’s a simple example for masked prediction:
 
 
35
 
36
+ ```python
37
+ from transformers import RobertaTokenizer, RobertaModel
38
 
39
+ # Load model and tokenizer
40
+ model = RobertaModel.from_pretrained('dsfsi/PuoBERTa')
41
+ tokenizer = RobertaTokenizer.from_pretrained('dsfsi/PuoBERTa')
42
 
43
+ ```
44
+
45
  ### Downstream Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
 
47
 
48
+ ## Dataset
49
 
50
+ We used the PuoData dataset, a rich source of Setswana text, ensuring that our model is well-trained and culturally attuned.\\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ ## Contributing
53
 
54
+ Your contributions are welcome! Feel free to improve the model.
55
 
56
  ## Model Card Authors
57
 
 
59
 
60
  ## Model Card Contact
61
 
62
+ For more details, reach out or check our [website](https://dsfsi.github.io/).
63
+
64
65
+
66
+ **Enjoy exploring Setswana through AI!**