KernelCoder-32B-AWQ_20250621-161329 / training_config.yaml
dtadpole's picture
Upload fine-tuned model - Fine-tuned model
7ba99a2 verified
data:
collator:
pad_to_multiple_of: 8
dataloader:
drop_last: true
num_workers: 4
pin_memory: true
shuffle: true
processed_dir: finetune_processed_experiences
fsdp:
activation_checkpointing: true
mixed_precision: true
sharding_strategy: FULL_SHARD
gpu:
data_parallel: true
single_gpu: false
huggingface:
create_model_card: true
repo_name: dtadpole/KernelCoder-32B-AWQ_20250621-161329
upload: true
lora:
alpha: 64
bias: none
dropout: 0.05
r: 64
target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
model:
dtype: null
load_in_4bit: false
max_seq_length: 8192
name: Qwen/Qwen3-32B-AWQ
test:
default_prompt: '<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is machine learning?<|im_end|>
<|im_start|>assistant
'
generation:
do_sample: true
max_new_tokens: 1024
temperature: 0.7
use_cache: true
training:
gradient_accumulation_steps: 1
learning_rate: 3.0e-05
logging_steps: 1
lr_scheduler_type: cosine
max_grad_norm: 0.75
max_steps: -1
num_train_epochs: 1
num_workers: 4
optim: paged_adamw_8bit
output_dir: ../finetune_model_output
per_device_batch_size: 1
save_steps: 100
save_total_limit: 3
seed: 3407
use_awq_precision: true
use_custom_loss_masking: true
warmup_steps: 10
weight_decay: 0.05