|
from typing import Dict, List, Any |
|
import json |
|
import numpy as np |
|
from transformers import AutoProcessor, MusicgenForConditionalGeneration |
|
import torch |
|
import logging |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.processor = AutoProcessor.from_pretrained(path) |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
self.model = MusicgenForConditionalGeneration.from_pretrained(path) |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
logger.debug(f"Data: {data}") |
|
inputs = data.pop("inputs", data) |
|
logger.debug(f"Inputs: {inputs}") |
|
parameters = data.pop("parameters", None) |
|
logger.debug(f"Parameters: {parameters}") |
|
duration = parameters.pop("duration", None) |
|
logger.debug(f"Duration: {duration}") |
|
audio = parameters.pop("audio", None) |
|
logger.debug(f"Audio: {audio}") |
|
sampling_rate = parameters.pop("sampling_rate", None) |
|
logger.debug(f"Sampling Rate: {sampling_rate}") |
|
if not sampling_rate: |
|
sampling_rate = self.model.config.audio_encoder.sampling_rate |
|
|
|
if audio is not None: |
|
audio_array = np.array(audio) |
|
audio = audio_array[: len(audio_array) // 3] |
|
|
|
|
|
if duration is not None: |
|
|
|
max_new_tokens = int(duration * 50) |
|
else: |
|
max_new_tokens = 256 |
|
|
|
|
|
inputs = self.processor( |
|
text=[inputs], |
|
padding=True, |
|
return_tensors="pt", |
|
audio=audio, |
|
sampling_rate=sampling_rate).to(self.device) |
|
|
|
|
|
if parameters is not None and 'duration' in parameters: |
|
parameters.pop('duration') |
|
if parameters is not None and 'audio' in parameters: |
|
parameters.pop('audio') |
|
if parameters is not None and 'sampling_rate' in parameters: |
|
parameters.pop('sampling_rate') |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, **parameters) |
|
else: |
|
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens) |
|
|
|
|
|
prediction = outputs[0].cpu().numpy() |
|
|
|
return [{"generated_text": prediction, "sampling_rate" : sampling_rate}] |