--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-uploads-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9669421487603306 --- # swin-tiny-patch4-window7-224-uploads-classifier This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0740 - Accuracy: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.57 | 0.99 | 17 | 1.0733 | 0.7355 | | 0.5726 | 1.97 | 34 | 0.4882 | 0.8347 | | 0.213 | 2.96 | 51 | 0.1166 | 0.9628 | | 0.1528 | 4.0 | 69 | 0.1640 | 0.9339 | | 0.1243 | 4.99 | 86 | 0.1529 | 0.9380 | | 0.0985 | 5.97 | 103 | 0.1888 | 0.9215 | | 0.0838 | 6.96 | 120 | 0.1224 | 0.9421 | | 0.0667 | 8.0 | 138 | 0.1046 | 0.9421 | | 0.0455 | 8.99 | 155 | 0.0740 | 0.9669 | | 0.0469 | 9.97 | 172 | 0.0781 | 0.9669 | | 0.0472 | 10.96 | 189 | 0.1143 | 0.9628 | | 0.0378 | 12.0 | 207 | 0.1974 | 0.9545 | | 0.0386 | 12.99 | 224 | 0.1051 | 0.9587 | | 0.035 | 13.97 | 241 | 0.0719 | 0.9545 | | 0.0339 | 14.96 | 258 | 0.1225 | 0.9504 | | 0.0292 | 16.0 | 276 | 0.0962 | 0.9587 | | 0.0278 | 16.99 | 293 | 0.1322 | 0.9463 | | 0.0233 | 17.97 | 310 | 0.1064 | 0.9545 | | 0.028 | 18.96 | 327 | 0.1207 | 0.9504 | | 0.0269 | 19.71 | 340 | 0.1161 | 0.9504 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3