eevvgg commited on
Commit
8a5d442
·
1 Parent(s): abcbc11

up example and pipeline usage

Browse files
Files changed (1) hide show
  1. README.md +30 -14
README.md CHANGED
@@ -1,11 +1,17 @@
1
  ---
2
  language:
3
  - pl
 
 
 
 
 
 
4
 
5
  tags:
6
  - text
7
  - sentiment
8
- - political
9
 
10
  metrics:
11
  - accuracy
@@ -31,15 +37,26 @@ model-index:
31
  This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment.
32
  Fine-tuned on 1k sample of manually annotated Twitter data.
33
 
 
 
 
 
 
 
 
 
 
34
 
 
 
35
 
36
- Mapping (id2label):
37
- mapping = {
38
- 0:'negative',
39
- 1:'neutral',
40
- 2:'positive'
41
- }
42
 
 
43
 
44
 
45
  ## Intended uses & limitations
@@ -49,22 +66,21 @@ Sentiment detection in Polish data (fine-tuned on tweets from political domain).
49
 
50
  ## Training and evaluation data
51
 
52
- Trained for 3 epochs, mini-batch size of 8.
53
- Training results: loss: 0.1358926964368792
54
 
55
 
56
  ## Evaluation procedure
57
 
58
-
59
  It achieves the following results on the test set (10%):
60
 
61
- ### Num examples = 100
62
 
63
- ### Batch size = 8
64
 
65
- ### Accuracy = 0.950
66
 
67
- ### F1-macro = 0.944
68
 
69
  precision recall f1-score support
70
 
 
1
  ---
2
  language:
3
  - pl
4
+
5
+ pipeline_tag: text-classification
6
+
7
+ widget:
8
+ - text: "Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach"
9
+ example_title: "example 1"
10
 
11
  tags:
12
  - text
13
  - sentiment
14
+ - politics
15
 
16
  metrics:
17
  - accuracy
 
37
  This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment.
38
  Fine-tuned on 1k sample of manually annotated Twitter data.
39
 
40
+ Mapping':
41
+ id2label= {
42
+ 0:'Negative',
43
+ 1:'Neutral',
44
+ 2:'Positive'
45
+ }
46
+
47
+ ```
48
+ from transformers import pipeline
49
 
50
+ model_path = "eevvgg/PaReS-sentimenTw-political-PL"
51
+ sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path)
52
 
53
+ sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach",
54
+ "Brawo panie ministrze!"]
55
+
56
+ result = sentiment_task(sequence)
57
+ labels = [i['label'] for i in result] # ['Negative', 'Positive']
 
58
 
59
+ ```
60
 
61
 
62
  ## Intended uses & limitations
 
66
 
67
  ## Training and evaluation data
68
 
69
+ #### Trained for 3 epochs, mini-batch size of 8.
70
+ #### Training results: loss: 0.1358926964368792
71
 
72
 
73
  ## Evaluation procedure
74
 
 
75
  It achieves the following results on the test set (10%):
76
 
77
+ #### Num examples = 100
78
 
79
+ #### Batch size = 8
80
 
81
+ #### Accuracy = 0.950
82
 
83
+ #### F1-macro = 0.944
84
 
85
  precision recall f1-score support
86