Update README.md
Browse files
README.md
CHANGED
@@ -5,19 +5,20 @@ license: bsd-3-clause
|
|
5 |
tags:
|
6 |
- arxiv:2506.23151
|
7 |
- optical-flow-estimation
|
|
|
8 |
pipeline_tag: image-to-image
|
9 |
library_name: pytorch
|
10 |
base_model:
|
11 |
-
- egorchistov/MEMFOF-Tartan-T-TSKH
|
12 |
---
|
13 |
|
14 |
# MEMFOF-Tartan-T-TSKH-spring
|
15 |
|
16 |
-
<a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a> | <a href="https://huggingface.co/spaces/egorchistov/MEMFOF" style="text-decoration: none;">π€ Demo</a>
|
17 |
|
18 |
-
π
|
19 |
|
20 |
-
β
**Note:** This
|
21 |
|
22 |
## π οΈ Usage
|
23 |
|
@@ -32,7 +33,7 @@ import torch
|
|
32 |
from core.memfof import MEMFOF
|
33 |
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
-
model = MEMFOF.from_pretrained("egorchistov/MEMFOF-Tartan-T-TSKH-spring").eval().to(device)
|
36 |
|
37 |
with torch.inference_mode():
|
38 |
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920]
|
|
|
5 |
tags:
|
6 |
- arxiv:2506.23151
|
7 |
- optical-flow-estimation
|
8 |
+
- optical-flow
|
9 |
pipeline_tag: image-to-image
|
10 |
library_name: pytorch
|
11 |
base_model:
|
12 |
+
- egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH
|
13 |
---
|
14 |
|
15 |
# MEMFOF-Tartan-T-TSKH-spring
|
16 |
|
17 |
+
<a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a> | <a href="https://huggingface.co/spaces/egorchistov/optical-flow-MEMFOF" style="text-decoration: none;">π€ Demo</a>
|
18 |
|
19 |
+
π **MEMFOF** is a **memory-efficient optical flow method** for **Full HD video** that combines **high accuracy** with **low VRAM usage**.
|
20 |
|
21 |
+
β
**Note:** This particular checkpoint is intended for submission to **Spring benchmark**.
|
22 |
|
23 |
## π οΈ Usage
|
24 |
|
|
|
33 |
from core.memfof import MEMFOF
|
34 |
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
model = MEMFOF.from_pretrained("egorchistov/optical-flow-MEMFOF-Tartan-T-TSKH-spring").eval().to(device)
|
37 |
|
38 |
with torch.inference_mode():
|
39 |
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920]
|