take_1 / pytorch_classifier_gen.py
ehottl's picture
safetensor file
732c49e
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from safetensors import safe_open
from safetensors.torch import save_file
# ๋ฐ์ดํ„ฐ์…‹ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋งŒ๋“ค๊ธฐ
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # ๋ฐฐ์น˜๋ฅผ ์ œ์™ธํ•œ ๋ชจ๋“  ์ฐจ์›์„ ํ‰ํƒ„ํ™”(flatten)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# ์†์‹ค ํ•จ์ˆ˜์™€ ์˜คํ‹ฐ๋งˆ์ด์ ธ
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# ํ•™์Šตํ•˜๊ธฐ
for epoch in range(2): # ๋ฐ์ดํ„ฐ์…‹์„ ์ˆ˜์ฐจ๋ก€ ๋ฐ˜๋ณตํ•ฉ๋‹ˆ๋‹ค.
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# [inputs, labels]์˜ ๋ชฉ๋ก์ธ data๋กœ๋ถ€ํ„ฐ ์ž…๋ ฅ์„ ๋ฐ›์€ ํ›„;
inputs, labels = data
# ๋ณ€ํ™”๋„(Gradient) ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ 0์œผ๋กœ ๋งŒ๋“ค๊ณ 
optimizer.zero_grad()
# ์ˆœ์ „ํŒŒ + ์—ญ์ „ํŒŒ + ์ตœ์ ํ™”๋ฅผ ํ•œ ํ›„
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# ํ†ต๊ณ„๋ฅผ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
# ๋ชจ๋ธ ์ €์žฅํ•˜๊ธฐ
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH) # Not safe way
save_file(net.state_dict(), "model.safetensors")
# ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
tensors = {}
with safe_open("model.safetensors", framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)