|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
|
|
|
|
transform = transforms.Compose( |
|
[transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) |
|
|
|
batch_size = 4 |
|
|
|
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, |
|
download=True, transform=transform) |
|
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, |
|
shuffle=True, num_workers=2) |
|
|
|
testset = torchvision.datasets.CIFAR10(root='./data', train=False, |
|
download=True, transform=transform) |
|
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, |
|
shuffle=False, num_workers=2) |
|
|
|
classes = ('plane', 'car', 'bird', 'cat', |
|
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') |
|
|
|
|
|
class Net(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(3, 6, 5) |
|
self.pool = nn.MaxPool2d(2, 2) |
|
self.conv2 = nn.Conv2d(6, 16, 5) |
|
self.fc1 = nn.Linear(16 * 5 * 5, 120) |
|
self.fc2 = nn.Linear(120, 84) |
|
self.fc3 = nn.Linear(84, 10) |
|
|
|
def forward(self, x): |
|
x = self.pool(F.relu(self.conv1(x))) |
|
x = self.pool(F.relu(self.conv2(x))) |
|
x = torch.flatten(x, 1) |
|
x = F.relu(self.fc1(x)) |
|
x = F.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
net = Net() |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) |
|
|
|
|
|
for epoch in range(2): |
|
|
|
running_loss = 0.0 |
|
for i, data in enumerate(trainloader, 0): |
|
|
|
inputs, labels = data |
|
|
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
outputs = net(inputs) |
|
loss = criterion(outputs, labels) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
running_loss += loss.item() |
|
if i % 2000 == 1999: |
|
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') |
|
running_loss = 0.0 |
|
|
|
print('Finished Training') |
|
|
|
|
|
PATH = './cifar_net.pth' |
|
torch.save(net.state_dict(), PATH) |
|
|
|
save_file(net.state_dict(), "model.safetensors") |
|
|
|
|
|
tensors = {} |
|
with safe_open("model.safetensors", framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
tensors[key] = f.get_tensor(key) |