eldad-akhaumere commited on
Commit
0cff88e
·
verified ·
1 Parent(s): db0304a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.72 +/- 22.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c94235ead40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c94235eade0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c94235eae80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c94235eaf20>", "_build": "<function ActorCriticPolicy._build at 0x7c94235eafc0>", "forward": "<function ActorCriticPolicy.forward at 0x7c94235eb060>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c94235eb100>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c94235eb1a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c94235eb240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c94235eb2e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c94235eb380>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c94235eb420>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c942376e840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737990036491912833, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOJjz1cO2e6OARgOl7FUDV1oT25vHiDuQAAgD8AAIA/zbe4vakIDbzG4Va7Mu8xPJAQZL3GWhk9AACAPwAAgD8zOou8H6XjOFJUpTv3maI1XK+WumBFxLoAAIA/AACAP2YAEzyF8665dVm9OkJOlTXSzVm7MJDkuQAAgD8AAIA/ZsjQvHv0lriqKtY6Oq5qNg1ETDojhAC6AACAPwAAgD9aoJ297FGnP7usk76h1OG+DtoQvhFXg70AAAAAAAAAAJoPdDwUvJa6hcXOu9sdAzgXClS6FsYttwAAgD8AAIA/GqhbvRSQobqSRpW7K2DPtXrupDr2yKs6AACAPwAAgD8zL0q8KWALuji/q7vveIi2WqYLuX4pyToAAIA/AACAPwBs5rspqEq66q8kOjNVlDPdxww6cf8/uQAAgD8AAIA/QEScPRRAkbp4SA86P4kKNXafKzr0KSa5AACAPwAAgD+TeSI+TBisPwzxBz8Hqce+9H6DPmKimD4AAAAAAAAAAM0LLL2PKiu6akJRO6azdziVRy+7Gub9uQAAgD8AAIA/mk8gva7djbodh3M7h4aBNQgaTTpisXc0AACAPwAAgD+auxG8rs2austcwDsNwbM3ZHQTOU06gTYAAIA/AACAP2YOVDxSgKK5Hr2POWZFUzTLakm7k/uruAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGtfcWTHKiMAWyUTegDjAF0lEdAqnagLVnVXnV9lChoBkdAYpIjwhGH6GgHTegDaAhHQKp51Jtix3V1fZQoaAZHQGKHxxcVxjtoB03oA2gIR0Cqe4pnpSrHdX2UKGgGR0BjXE6/7BO6aAdN6ANoCEdAqnucXm/34HV9lChoBkdAZGqwQDmr82gHTegDaAhHQKp9WKw6hg51fZQoaAZHQGQ6C0fHPu5oB03oA2gIR0CqgBN/WlMzdX2UKGgGR0Bl0W3DvVmSaAdN6ANoCEdAqoDImNR3vHV9lChoBkdAYMMwztTkyWgHTegDaAhHQKqBUv2Xb/R1fZQoaAZHQGNmHIZIg/1oB03oA2gIR0Cqglra/RE4dX2UKGgGR0Bm3g6S1Vo6aAdN6ANoCEdAqoMEkrwvx3V9lChoBkdAYlt/3nIQv2gHTegDaAhHQKqFR7BO58V1fZQoaAZHQGCBV6eGwidoB03oA2gIR0CqhdSyUs4DdX2UKGgGR0BHlj59E1EWaAdL9GgIR0CqhyGRFI/adX2UKGgGR0Bhf4B5ooNNaAdN6ANoCEdAqpYa0dBBzHV9lChoBkdAYjOPCEYfn2gHTegDaAhHQKqXf7Lt/nZ1fZQoaAZHQGX1Opjtoi9oB03oA2gIR0CqmK1iWmgrdX2UKGgGR0BjvaS3b212aAdN6ANoCEdAqp3FVktmMHV9lChoBkdAQ2RS3solU2gHTS8BaAhHQKqh2SLZSNx1fZQoaAZHQGHz801qFh5oB03oA2gIR0Cqoijebd8BdX2UKGgGR0Bg4myu6mO3aAdN6ANoCEdAqqbNA/s3Q3V9lChoBkdAXy4h3aBZp2gHTegDaAhHQKqo3IyTINp1fZQoaAZHQGQLz/hl18toB03oA2gIR0CqqO6OxSpBdX2UKGgGR0BohWIInjQzaAdN6ANoCEdAqqqlHBk7OnV9lChoBkdAZA0Jw84gimgHTegDaAhHQKquL4Glhw51fZQoaAZHQF2bXFtKqXFoB03oA2gIR0CqrsP1ct5EdX2UKGgGR0BgTUpy6tknaAdN6ANoCEdAqq/n0Cih4HV9lChoBkdAZXZr7fpD/mgHTegDaAhHQKqwnN0NjLB1fZQoaAZHQF9qREnb7CVoB03oA2gIR0Cqsxr4etCBdX2UKGgGR0Ba9RkupS75aAdN6ANoCEdAqrOuNxVAA3V9lChoBkdAZaLSJCSid2gHTegDaAhHQKq1Cse4kNZ1fZQoaAZHQGLnYr8R+SdoB03oA2gIR0CqxP5PuXu3dX2UKGgGR0BD+inHeaa1aAdL3GgIR0CqxQBH9WIXdX2UKGgGR0Bf8mFWXC0oaAdN6ANoCEdAqsXmV7hNunV9lChoBkdAY1By8SPEKmgHTegDaAhHQKrJ4z3RG+d1fZQoaAZHQGRXqWC2+f1oB03oA2gIR0CqzZBJqZc+dX2UKGgGR0BhTl7pmmLtaAdN6ANoCEdAqs3F+qioKnV9lChoBkdAY4O51eSjg2gHTegDaAhHQKrQrWIXTE11fZQoaAZHQGF4CwbEP2BoB03oA2gIR0Cq0iX7Lt/ndX2UKGgGR0Bjq0chkiD/aAdN6ANoCEdAqtI1E/jbSXV9lChoBkdAYyWO801qFmgHTegDaAhHQKrTpEORT0h1fZQoaAZHQDw4hOgxrSFoB0vuaAhHQKrUPG4I8hd1fZQoaAZHQGOc3j+717JoB03oA2gIR0Cq1n7OeJ53dX2UKGgGR0BjtKRuCPIXaAdN6ANoCEdAqtcmZw4sE3V9lChoBkdAXsKgf2bobGgHTegDaAhHQKrYQ4Pwuul1fZQoaAZHQGLqYiHIp6RoB03oA2gIR0Cq2QoLXtjTdX2UKGgGR0BioJV2icoZaAdN6ANoCEdAqtvGpjtojHV9lChoBkdAZf2nuy/sV2gHTegDaAhHQKrdnx2B8QZ1fZQoaAZHQFqrTEit7rtoB03oA2gIR0Cq67RB3RoidX2UKGgGR0Bj5KtihFmWaAdN6ANoCEdAquu2yNXHR3V9lChoBkdAYHIUNayKN2gHTegDaAhHQKrsjk1dgOV1fZQoaAZHQFD/EFGG21FoB0vbaAhHQKrtBFGXokl1fZQoaAZHQGV5kidJ8OVoB03oA2gIR0Cq8EyGahHtdX2UKGgGR0BguOdy1eByaAdN6ANoCEdAqvT8i4axYHV9lChoBkdAZTIMc6vJR2gHTegDaAhHQKr4p7tzCDV1fZQoaAZHQGAa6nzg/C9oB03oA2gIR0Cq+k7edkJ8dX2UKGgGR0BjY9rKvFFVaAdN6ANoCEdAqvpf0oScsnV9lChoBkdAYeTD8cdYGWgHTegDaAhHQKr79kXk5p91fZQoaAZHQGXVxvNu+AVoB03oA2gIR0Cq/KuejEehdX2UKGgGR0BhO6tvGZNPaAdN6ANoCEdAqv8Baq0dBHV9lChoBkdAZgbI9TxXn2gHTegDaAhHQKr/gl0o0AN1fZQoaAZHQGgWup84PwxoB03oA2gIR0CrAGiHARChdX2UKGgGR0Be9Axi5NGmaAdN6ANoCEdAqwECAz544nV9lChoBkdAY8Bjghr302gHTegDaAhHQKsDButwJgN1fZQoaAZHQGSW+NT987ZoB03oA2gIR0CrFBuYx+KCdX2UKGgGR0BjgYqqfe1saAdN6ANoCEdAqxQddcB2fXV9lChoBkdAZr+vEjxCpmgHTegDaAhHQKsU9IFNcnp1fZQoaAZHQGdFkb5uZThoB03oA2gIR0CrFXTPjXFtdX2UKGgGR0Be8vwiJO32aAdN6ANoCEdAqxivdAPd23V9lChoBkdAYDacOskpqmgHTegDaAhHQKscOorFwUB1fZQoaAZHQGRfQpvxYq5oB03oA2gIR0CrH4rLZBcBdX2UKGgGR0BplnjGT9sKaAdN6ANoCEdAqyEwIt16mnV9lChoBkdAYzNhScbzb2gHTegDaAhHQKshQYMvysl1fZQoaAZHQGLe3wkPcztoB03oA2gIR0CrIuk4NqgzdX2UKGgGR0Bfrdmxt52RaAdN6ANoCEdAqyOkNvwVkHV9lChoBkdAYUBFb3XZoWgHTegDaAhHQKsmh/G2kSF1fZQoaAZHQGJZvCVKPGRoB03oA2gIR0CrJyviLl3hdX2UKGgGR0Bllvd2xIJ7aAdN6ANoCEdAqyh+nyd4FHV9lChoBkdAZocjdHlOoGgHTegDaAhHQKspVbah6B11fZQoaAZHQGF6tBWxQi1oB03oA2gIR0CrK956MR6GdX2UKGgGR0Bh+pUzbeuWaAdN6ANoCEdAqzK/T5O8CnV9lChoBkdAZDGsDnvDxmgHTegDaAhHQKsywVY6nzh1fZQoaAZHQGbkR8UmD15oB03oA2gIR0CrPGBUrCm/dX2UKGgGR0Bh/PsRg7YDaAdN6ANoCEdAqzzMEJSiunV9lChoBkdAaWxfhMrVfGgHTegDaAhHQKtA0iRGMGZ1fZQoaAZHQGfTJsO5J9RoB03oA2gIR0CrRQW6K+BZdX2UKGgGR0BNcdGqgh8qaAdL/2gIR0CrRbrfDUExdX2UKGgGR0BlJOuaF23baAdN6ANoCEdAq0f/hfjS5XV9lChoBkdAPE6ZUkv9L2gHS+VoCEdAq0gPf8/D+HV9lChoBkdAXvcrwvxpc2gHTegDaAhHQKtJb0WdmQN1fZQoaAZHQF0xEGZ/kNpoB03oA2gIR0CrSX7QLNOedX2UKGgGR0BiXb8BMi8naAdN6ANoCEdAq0ruf/WDpXV9lChoBkdAZe+xu89Oh2gHTegDaAhHQKtLiAxSHdp1fZQoaAZHQFDQXNC7btZoB00FAWgIR0CrS+f5ULlWdX2UKGgGR0BmJJL9MsYmaAdN6ANoCEdAq02TcTJyQ3V9lChoBkdAYxrYMfA9FGgHTegDaAhHQKtN/TkyULV1fZQoaAZHQGP8YzzmOlxoB03oA2gIR0CrTr238XN1dX2UKGgGR0Bnt5h+fAbiaAdN6ANoCEdAq09EAeaKDXV9lChoBkdAZEDfhuO0cGgHTegDaAhHQKtRE3Zwn6V1fZQoaAZHQGQdV8CxNZhoB03oA2gIR0CrV8/PgNwzdX2UKGgGR0Bo0sQiA2AHaAdN6ANoCEdAq1fRlMAWBXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a389360276fd51f67ea8de8ddf3054da758dd1b4e7dc9a9a92f11ff2962b81
3
+ size 148128
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c94235ead40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c94235eade0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c94235eae80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c94235eaf20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c94235eafc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c94235eb060>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c94235eb100>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c94235eb1a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c94235eb240>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c94235eb2e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c94235eb380>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c94235eb420>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c942376e840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1737990036491912833,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOJjz1cO2e6OARgOl7FUDV1oT25vHiDuQAAgD8AAIA/zbe4vakIDbzG4Va7Mu8xPJAQZL3GWhk9AACAPwAAgD8zOou8H6XjOFJUpTv3maI1XK+WumBFxLoAAIA/AACAP2YAEzyF8665dVm9OkJOlTXSzVm7MJDkuQAAgD8AAIA/ZsjQvHv0lriqKtY6Oq5qNg1ETDojhAC6AACAPwAAgD9aoJ297FGnP7usk76h1OG+DtoQvhFXg70AAAAAAAAAAJoPdDwUvJa6hcXOu9sdAzgXClS6FsYttwAAgD8AAIA/GqhbvRSQobqSRpW7K2DPtXrupDr2yKs6AACAPwAAgD8zL0q8KWALuji/q7vveIi2WqYLuX4pyToAAIA/AACAPwBs5rspqEq66q8kOjNVlDPdxww6cf8/uQAAgD8AAIA/QEScPRRAkbp4SA86P4kKNXafKzr0KSa5AACAPwAAgD+TeSI+TBisPwzxBz8Hqce+9H6DPmKimD4AAAAAAAAAAM0LLL2PKiu6akJRO6azdziVRy+7Gub9uQAAgD8AAIA/mk8gva7djbodh3M7h4aBNQgaTTpisXc0AACAPwAAgD+auxG8rs2austcwDsNwbM3ZHQTOU06gTYAAIA/AACAP2YOVDxSgKK5Hr2POWZFUzTLakm7k/uruAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGtfcWTHKiMAWyUTegDjAF0lEdAqnagLVnVXnV9lChoBkdAYpIjwhGH6GgHTegDaAhHQKp51Jtix3V1fZQoaAZHQGKHxxcVxjtoB03oA2gIR0Cqe4pnpSrHdX2UKGgGR0BjXE6/7BO6aAdN6ANoCEdAqnucXm/34HV9lChoBkdAZGqwQDmr82gHTegDaAhHQKp9WKw6hg51fZQoaAZHQGQ6C0fHPu5oB03oA2gIR0CqgBN/WlMzdX2UKGgGR0Bl0W3DvVmSaAdN6ANoCEdAqoDImNR3vHV9lChoBkdAYMMwztTkyWgHTegDaAhHQKqBUv2Xb/R1fZQoaAZHQGNmHIZIg/1oB03oA2gIR0Cqglra/RE4dX2UKGgGR0Bm3g6S1Vo6aAdN6ANoCEdAqoMEkrwvx3V9lChoBkdAYlt/3nIQv2gHTegDaAhHQKqFR7BO58V1fZQoaAZHQGCBV6eGwidoB03oA2gIR0CqhdSyUs4DdX2UKGgGR0BHlj59E1EWaAdL9GgIR0CqhyGRFI/adX2UKGgGR0Bhf4B5ooNNaAdN6ANoCEdAqpYa0dBBzHV9lChoBkdAYjOPCEYfn2gHTegDaAhHQKqXf7Lt/nZ1fZQoaAZHQGX1Opjtoi9oB03oA2gIR0CqmK1iWmgrdX2UKGgGR0BjvaS3b212aAdN6ANoCEdAqp3FVktmMHV9lChoBkdAQ2RS3solU2gHTS8BaAhHQKqh2SLZSNx1fZQoaAZHQGHz801qFh5oB03oA2gIR0Cqoijebd8BdX2UKGgGR0Bg4myu6mO3aAdN6ANoCEdAqqbNA/s3Q3V9lChoBkdAXy4h3aBZp2gHTegDaAhHQKqo3IyTINp1fZQoaAZHQGQLz/hl18toB03oA2gIR0CqqO6OxSpBdX2UKGgGR0BohWIInjQzaAdN6ANoCEdAqqqlHBk7OnV9lChoBkdAZA0Jw84gimgHTegDaAhHQKquL4Glhw51fZQoaAZHQF2bXFtKqXFoB03oA2gIR0CqrsP1ct5EdX2UKGgGR0BgTUpy6tknaAdN6ANoCEdAqq/n0Cih4HV9lChoBkdAZXZr7fpD/mgHTegDaAhHQKqwnN0NjLB1fZQoaAZHQF9qREnb7CVoB03oA2gIR0Cqsxr4etCBdX2UKGgGR0Ba9RkupS75aAdN6ANoCEdAqrOuNxVAA3V9lChoBkdAZaLSJCSid2gHTegDaAhHQKq1Cse4kNZ1fZQoaAZHQGLnYr8R+SdoB03oA2gIR0CqxP5PuXu3dX2UKGgGR0BD+inHeaa1aAdL3GgIR0CqxQBH9WIXdX2UKGgGR0Bf8mFWXC0oaAdN6ANoCEdAqsXmV7hNunV9lChoBkdAY1By8SPEKmgHTegDaAhHQKrJ4z3RG+d1fZQoaAZHQGRXqWC2+f1oB03oA2gIR0CqzZBJqZc+dX2UKGgGR0BhTl7pmmLtaAdN6ANoCEdAqs3F+qioKnV9lChoBkdAY4O51eSjg2gHTegDaAhHQKrQrWIXTE11fZQoaAZHQGF4CwbEP2BoB03oA2gIR0Cq0iX7Lt/ndX2UKGgGR0Bjq0chkiD/aAdN6ANoCEdAqtI1E/jbSXV9lChoBkdAYyWO801qFmgHTegDaAhHQKrTpEORT0h1fZQoaAZHQDw4hOgxrSFoB0vuaAhHQKrUPG4I8hd1fZQoaAZHQGOc3j+717JoB03oA2gIR0Cq1n7OeJ53dX2UKGgGR0BjtKRuCPIXaAdN6ANoCEdAqtcmZw4sE3V9lChoBkdAXsKgf2bobGgHTegDaAhHQKrYQ4Pwuul1fZQoaAZHQGLqYiHIp6RoB03oA2gIR0Cq2QoLXtjTdX2UKGgGR0BioJV2icoZaAdN6ANoCEdAqtvGpjtojHV9lChoBkdAZf2nuy/sV2gHTegDaAhHQKrdnx2B8QZ1fZQoaAZHQFqrTEit7rtoB03oA2gIR0Cq67RB3RoidX2UKGgGR0Bj5KtihFmWaAdN6ANoCEdAquu2yNXHR3V9lChoBkdAYHIUNayKN2gHTegDaAhHQKrsjk1dgOV1fZQoaAZHQFD/EFGG21FoB0vbaAhHQKrtBFGXokl1fZQoaAZHQGV5kidJ8OVoB03oA2gIR0Cq8EyGahHtdX2UKGgGR0BguOdy1eByaAdN6ANoCEdAqvT8i4axYHV9lChoBkdAZTIMc6vJR2gHTegDaAhHQKr4p7tzCDV1fZQoaAZHQGAa6nzg/C9oB03oA2gIR0Cq+k7edkJ8dX2UKGgGR0BjY9rKvFFVaAdN6ANoCEdAqvpf0oScsnV9lChoBkdAYeTD8cdYGWgHTegDaAhHQKr79kXk5p91fZQoaAZHQGXVxvNu+AVoB03oA2gIR0Cq/KuejEehdX2UKGgGR0BhO6tvGZNPaAdN6ANoCEdAqv8Baq0dBHV9lChoBkdAZgbI9TxXn2gHTegDaAhHQKr/gl0o0AN1fZQoaAZHQGgWup84PwxoB03oA2gIR0CrAGiHARChdX2UKGgGR0Be9Axi5NGmaAdN6ANoCEdAqwECAz544nV9lChoBkdAY8Bjghr302gHTegDaAhHQKsDButwJgN1fZQoaAZHQGSW+NT987ZoB03oA2gIR0CrFBuYx+KCdX2UKGgGR0BjgYqqfe1saAdN6ANoCEdAqxQddcB2fXV9lChoBkdAZr+vEjxCpmgHTegDaAhHQKsU9IFNcnp1fZQoaAZHQGdFkb5uZThoB03oA2gIR0CrFXTPjXFtdX2UKGgGR0Be8vwiJO32aAdN6ANoCEdAqxivdAPd23V9lChoBkdAYDacOskpqmgHTegDaAhHQKscOorFwUB1fZQoaAZHQGRfQpvxYq5oB03oA2gIR0CrH4rLZBcBdX2UKGgGR0BplnjGT9sKaAdN6ANoCEdAqyEwIt16mnV9lChoBkdAYzNhScbzb2gHTegDaAhHQKshQYMvysl1fZQoaAZHQGLe3wkPcztoB03oA2gIR0CrIuk4NqgzdX2UKGgGR0Bfrdmxt52RaAdN6ANoCEdAqyOkNvwVkHV9lChoBkdAYUBFb3XZoWgHTegDaAhHQKsmh/G2kSF1fZQoaAZHQGJZvCVKPGRoB03oA2gIR0CrJyviLl3hdX2UKGgGR0Bllvd2xIJ7aAdN6ANoCEdAqyh+nyd4FHV9lChoBkdAZocjdHlOoGgHTegDaAhHQKspVbah6B11fZQoaAZHQGF6tBWxQi1oB03oA2gIR0CrK956MR6GdX2UKGgGR0Bh+pUzbeuWaAdN6ANoCEdAqzK/T5O8CnV9lChoBkdAZDGsDnvDxmgHTegDaAhHQKsywVY6nzh1fZQoaAZHQGbkR8UmD15oB03oA2gIR0CrPGBUrCm/dX2UKGgGR0Bh/PsRg7YDaAdN6ANoCEdAqzzMEJSiunV9lChoBkdAaWxfhMrVfGgHTegDaAhHQKtA0iRGMGZ1fZQoaAZHQGfTJsO5J9RoB03oA2gIR0CrRQW6K+BZdX2UKGgGR0BNcdGqgh8qaAdL/2gIR0CrRbrfDUExdX2UKGgGR0BlJOuaF23baAdN6ANoCEdAq0f/hfjS5XV9lChoBkdAPE6ZUkv9L2gHS+VoCEdAq0gPf8/D+HV9lChoBkdAXvcrwvxpc2gHTegDaAhHQKtJb0WdmQN1fZQoaAZHQF0xEGZ/kNpoB03oA2gIR0CrSX7QLNOedX2UKGgGR0BiXb8BMi8naAdN6ANoCEdAq0ruf/WDpXV9lChoBkdAZe+xu89Oh2gHTegDaAhHQKtLiAxSHdp1fZQoaAZHQFDQXNC7btZoB00FAWgIR0CrS+f5ULlWdX2UKGgGR0BmJJL9MsYmaAdN6ANoCEdAq02TcTJyQ3V9lChoBkdAYxrYMfA9FGgHTegDaAhHQKtN/TkyULV1fZQoaAZHQGP8YzzmOlxoB03oA2gIR0CrTr238XN1dX2UKGgGR0Bnt5h+fAbiaAdN6ANoCEdAq09EAeaKDXV9lChoBkdAZEDfhuO0cGgHTegDaAhHQKtRE3Zwn6V1fZQoaAZHQGQdV8CxNZhoB03oA2gIR0CrV8/PgNwzdX2UKGgGR0Bo0sQiA2AHaAdN6ANoCEdAq1fRlMAWBXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:793929660f17a40a110c5308267717822a1250fa696bb19c7de10d6003bd7728
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e3b595acc640832de42ca7dbc12c910ef991234b7dcac43f7220633c7f21db
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.7207528994312, "std_reward": 22.768332185111582, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-27T15:22:43.426168"}