Commit
·
075c00d
0
Parent(s):
Initial commit for ner-stacked-bert-multilingual
Browse files- .gitattributes +35 -0
- generic_ner.py +791 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
generic_ner.py
ADDED
|
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from transformers import Pipeline
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import nltk
|
| 6 |
+
|
| 7 |
+
# new test
|
| 8 |
+
nltk.download("averaged_perceptron_tagger")
|
| 9 |
+
nltk.download("averaged_perceptron_tagger_eng")
|
| 10 |
+
nltk.download("stopwords")
|
| 11 |
+
from nltk.chunk import conlltags2tree
|
| 12 |
+
from nltk import pos_tag
|
| 13 |
+
from nltk.tree import Tree
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
import re, string
|
| 16 |
+
|
| 17 |
+
stop_words = set(nltk.corpus.stopwords.words("english"))
|
| 18 |
+
DEBUG = False
|
| 19 |
+
punctuation = (
|
| 20 |
+
string.punctuation
|
| 21 |
+
+ "«»—…“”"
|
| 22 |
+
+ "—."
|
| 23 |
+
+ "–"
|
| 24 |
+
+ "’"
|
| 25 |
+
+ "‘"
|
| 26 |
+
+ "´"
|
| 27 |
+
+ "•"
|
| 28 |
+
+ "°"
|
| 29 |
+
+ "»"
|
| 30 |
+
+ "“"
|
| 31 |
+
+ "”"
|
| 32 |
+
+ "–"
|
| 33 |
+
+ "—"
|
| 34 |
+
+ "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# List of additional "strange" punctuation marks
|
| 38 |
+
# additional_punctuation = "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
WHITESPACE_RULES = {
|
| 42 |
+
"fr": {
|
| 43 |
+
"pct_no_ws_before": [".", ",", ")", "]", "}", "°", "...", ".-", "%"],
|
| 44 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
| 45 |
+
"pct_no_ws_before_after": ["'", "-"],
|
| 46 |
+
"pct_number": [".", ","],
|
| 47 |
+
},
|
| 48 |
+
"de": {
|
| 49 |
+
"pct_no_ws_before": [
|
| 50 |
+
".",
|
| 51 |
+
",",
|
| 52 |
+
")",
|
| 53 |
+
"]",
|
| 54 |
+
"}",
|
| 55 |
+
"°",
|
| 56 |
+
"...",
|
| 57 |
+
"?",
|
| 58 |
+
"!",
|
| 59 |
+
":",
|
| 60 |
+
";",
|
| 61 |
+
".-",
|
| 62 |
+
"%",
|
| 63 |
+
],
|
| 64 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
| 65 |
+
"pct_no_ws_before_after": ["'", "-"],
|
| 66 |
+
"pct_number": [".", ","],
|
| 67 |
+
},
|
| 68 |
+
"other": {
|
| 69 |
+
"pct_no_ws_before": [
|
| 70 |
+
".",
|
| 71 |
+
",",
|
| 72 |
+
")",
|
| 73 |
+
"]",
|
| 74 |
+
"}",
|
| 75 |
+
"°",
|
| 76 |
+
"...",
|
| 77 |
+
"?",
|
| 78 |
+
"!",
|
| 79 |
+
":",
|
| 80 |
+
";",
|
| 81 |
+
".-",
|
| 82 |
+
"%",
|
| 83 |
+
],
|
| 84 |
+
"pct_no_ws_after": ["(", "[", "{"],
|
| 85 |
+
"pct_no_ws_before_after": ["'", "-"],
|
| 86 |
+
"pct_number": [".", ","],
|
| 87 |
+
},
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def tokenize(text: str, language: str = "other") -> list[str]:
|
| 92 |
+
"""Apply whitespace rules to the given text and language, separating it into tokens.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
text (str): The input text to separate into a list of tokens.
|
| 96 |
+
language (str): Language of the text.
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
list[str]: List of tokens with punctuation as separate tokens.
|
| 100 |
+
"""
|
| 101 |
+
# text = add_spaces_around_punctuation(text)
|
| 102 |
+
if not text:
|
| 103 |
+
return []
|
| 104 |
+
|
| 105 |
+
if language not in WHITESPACE_RULES:
|
| 106 |
+
# Default behavior for languages without specific rules:
|
| 107 |
+
# tokenize using standard whitespace splitting
|
| 108 |
+
language = "other"
|
| 109 |
+
|
| 110 |
+
wsrules = WHITESPACE_RULES[language]
|
| 111 |
+
tokenized_text = []
|
| 112 |
+
current_token = ""
|
| 113 |
+
|
| 114 |
+
for char in text:
|
| 115 |
+
if char in wsrules["pct_no_ws_before_after"]:
|
| 116 |
+
if current_token:
|
| 117 |
+
tokenized_text.append(current_token)
|
| 118 |
+
tokenized_text.append(char)
|
| 119 |
+
current_token = ""
|
| 120 |
+
elif char in wsrules["pct_no_ws_before"] or char in wsrules["pct_no_ws_after"]:
|
| 121 |
+
if current_token:
|
| 122 |
+
tokenized_text.append(current_token)
|
| 123 |
+
tokenized_text.append(char)
|
| 124 |
+
current_token = ""
|
| 125 |
+
elif char.isspace():
|
| 126 |
+
if current_token:
|
| 127 |
+
tokenized_text.append(current_token)
|
| 128 |
+
current_token = ""
|
| 129 |
+
else:
|
| 130 |
+
current_token += char
|
| 131 |
+
|
| 132 |
+
if current_token:
|
| 133 |
+
tokenized_text.append(current_token)
|
| 134 |
+
|
| 135 |
+
return tokenized_text
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def normalize_text(text):
|
| 139 |
+
# Remove spaces and tabs for the search but keep newline characters
|
| 140 |
+
return re.sub(r"[ \t]+", "", text)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def find_entity_indices(article_text, search_text):
|
| 144 |
+
# Normalize texts by removing spaces and tabs
|
| 145 |
+
normalized_article = normalize_text(article_text)
|
| 146 |
+
normalized_search = normalize_text(search_text)
|
| 147 |
+
|
| 148 |
+
# Initialize a list to hold all start and end indices
|
| 149 |
+
indices = []
|
| 150 |
+
|
| 151 |
+
# Find all occurrences of the search text in the normalized article text
|
| 152 |
+
start_index = 0
|
| 153 |
+
while True:
|
| 154 |
+
start_index = normalized_article.find(normalized_search, start_index)
|
| 155 |
+
if start_index == -1:
|
| 156 |
+
break
|
| 157 |
+
|
| 158 |
+
# Calculate the actual start and end indices in the original article text
|
| 159 |
+
original_chars = 0
|
| 160 |
+
original_start_index = 0
|
| 161 |
+
for i in range(start_index):
|
| 162 |
+
while article_text[original_start_index] in (" ", "\t"):
|
| 163 |
+
original_start_index += 1
|
| 164 |
+
if article_text[original_start_index] not in (" ", "\t", "\n"):
|
| 165 |
+
original_chars += 1
|
| 166 |
+
original_start_index += 1
|
| 167 |
+
|
| 168 |
+
original_end_index = original_start_index
|
| 169 |
+
search_chars = 0
|
| 170 |
+
while search_chars < len(normalized_search):
|
| 171 |
+
if article_text[original_end_index] not in (" ", "\t", "\n"):
|
| 172 |
+
search_chars += 1
|
| 173 |
+
original_end_index += 1 # Increment to include the last character
|
| 174 |
+
|
| 175 |
+
# Append the found indices to the list
|
| 176 |
+
if article_text[original_start_index] == " ":
|
| 177 |
+
original_start_index += 1
|
| 178 |
+
indices.append((original_start_index, original_end_index))
|
| 179 |
+
|
| 180 |
+
# Move start_index to the next position to continue searching
|
| 181 |
+
start_index += 1
|
| 182 |
+
|
| 183 |
+
return indices
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def get_entities(tokens, tags, confidences, text):
|
| 187 |
+
|
| 188 |
+
tags = [tag.replace("S-", "B-").replace("E-", "I-") for tag in tags]
|
| 189 |
+
pos_tags = [pos for token, pos in pos_tag(tokens)]
|
| 190 |
+
|
| 191 |
+
for i in range(1, len(tags)):
|
| 192 |
+
# If a 'B-' tag is followed by another 'B-' without an 'O' in between, change the second to 'I-'
|
| 193 |
+
if tags[i].startswith("B-") and tags[i - 1].startswith("I-"):
|
| 194 |
+
tags[i] = "I-" + tags[i][2:] # Change 'B-' to 'I-' for the same entity type
|
| 195 |
+
|
| 196 |
+
conlltags = [(token, pos, tg) for token, pos, tg in zip(tokens, pos_tags, tags)]
|
| 197 |
+
ne_tree = conlltags2tree(conlltags)
|
| 198 |
+
|
| 199 |
+
entities = []
|
| 200 |
+
idx: int = 0
|
| 201 |
+
already_done = []
|
| 202 |
+
for subtree in ne_tree:
|
| 203 |
+
# skipping 'O' tags
|
| 204 |
+
if isinstance(subtree, Tree):
|
| 205 |
+
original_label = subtree.label()
|
| 206 |
+
original_string = " ".join([token for token, pos in subtree.leaves()])
|
| 207 |
+
|
| 208 |
+
for indices in find_entity_indices(text, original_string):
|
| 209 |
+
entity_start_position = indices[0]
|
| 210 |
+
entity_end_position = indices[1]
|
| 211 |
+
if (
|
| 212 |
+
"_".join(
|
| 213 |
+
[original_label, original_string, str(entity_start_position)]
|
| 214 |
+
)
|
| 215 |
+
in already_done
|
| 216 |
+
):
|
| 217 |
+
continue
|
| 218 |
+
else:
|
| 219 |
+
already_done.append(
|
| 220 |
+
"_".join(
|
| 221 |
+
[
|
| 222 |
+
original_label,
|
| 223 |
+
original_string,
|
| 224 |
+
str(entity_start_position),
|
| 225 |
+
]
|
| 226 |
+
)
|
| 227 |
+
)
|
| 228 |
+
if len(text[entity_start_position:entity_end_position].strip()) < len(
|
| 229 |
+
text[entity_start_position:entity_end_position]
|
| 230 |
+
):
|
| 231 |
+
entity_start_position = (
|
| 232 |
+
entity_start_position
|
| 233 |
+
+ len(text[entity_start_position:entity_end_position])
|
| 234 |
+
- len(text[entity_start_position:entity_end_position].strip())
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
entities.append(
|
| 238 |
+
{
|
| 239 |
+
"type": original_label,
|
| 240 |
+
"confidence_ner": round(
|
| 241 |
+
np.average(confidences[idx : idx + len(subtree)]) * 100, 2
|
| 242 |
+
),
|
| 243 |
+
"index": (idx, idx + len(subtree)),
|
| 244 |
+
"surface": text[
|
| 245 |
+
entity_start_position:entity_end_position
|
| 246 |
+
], # original_string,
|
| 247 |
+
"lOffset": entity_start_position,
|
| 248 |
+
"rOffset": entity_end_position,
|
| 249 |
+
}
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
idx += len(subtree)
|
| 253 |
+
|
| 254 |
+
# Update the current character position
|
| 255 |
+
# We add the length of the original string + 1 (for the space)
|
| 256 |
+
else:
|
| 257 |
+
token, pos = subtree
|
| 258 |
+
# If it's not a named entity, we still need to update the character
|
| 259 |
+
# position
|
| 260 |
+
idx += 1
|
| 261 |
+
|
| 262 |
+
return entities
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def realign(
|
| 266 |
+
text_sentence, out_label_preds, softmax_scores, tokenizer, reverted_label_map
|
| 267 |
+
):
|
| 268 |
+
preds_list, words_list, confidence_list = [], [], []
|
| 269 |
+
word_ids = tokenizer(text_sentence, is_split_into_words=True).word_ids()
|
| 270 |
+
for idx, word in enumerate(text_sentence):
|
| 271 |
+
beginning_index = word_ids.index(idx)
|
| 272 |
+
try:
|
| 273 |
+
preds_list.append(reverted_label_map[out_label_preds[beginning_index]])
|
| 274 |
+
confidence_list.append(max(softmax_scores[beginning_index]))
|
| 275 |
+
except Exception as ex: # the sentence was longer then max_length
|
| 276 |
+
preds_list.append("O")
|
| 277 |
+
confidence_list.append(0.0)
|
| 278 |
+
words_list.append(word)
|
| 279 |
+
|
| 280 |
+
return words_list, preds_list, confidence_list
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def add_spaces_around_punctuation(text):
|
| 284 |
+
# Add a space before and after all punctuation
|
| 285 |
+
all_punctuation = string.punctuation + punctuation
|
| 286 |
+
return re.sub(r"([{}])".format(re.escape(all_punctuation)), r" \1 ", text)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def attach_comp_to_closest(entities):
|
| 290 |
+
# Define valid entity types that can receive a "comp.function" or "comp.name" attachment
|
| 291 |
+
valid_entity_types = {"org", "pers", "org.ent", "pers.ind"}
|
| 292 |
+
|
| 293 |
+
# Separate "comp.function" and "comp.name" entities from other entities
|
| 294 |
+
comp_entities = [ent for ent in entities if ent["type"].startswith("comp")]
|
| 295 |
+
other_entities = [ent for ent in entities if not ent["type"].startswith("comp")]
|
| 296 |
+
|
| 297 |
+
for comp_entity in comp_entities:
|
| 298 |
+
closest_entity = None
|
| 299 |
+
min_distance = float("inf")
|
| 300 |
+
|
| 301 |
+
# Find the closest non-"comp" entity that is valid for attaching
|
| 302 |
+
for other_entity in other_entities:
|
| 303 |
+
# Calculate distance between the comp entity and the other entity
|
| 304 |
+
if comp_entity["lOffset"] > other_entity["rOffset"]:
|
| 305 |
+
distance = comp_entity["lOffset"] - other_entity["rOffset"]
|
| 306 |
+
elif comp_entity["rOffset"] < other_entity["lOffset"]:
|
| 307 |
+
distance = other_entity["lOffset"] - comp_entity["rOffset"]
|
| 308 |
+
else:
|
| 309 |
+
distance = 0 # They overlap or touch
|
| 310 |
+
|
| 311 |
+
# Ensure the entity type is valid and check for minimal distance
|
| 312 |
+
if (
|
| 313 |
+
distance < min_distance
|
| 314 |
+
and other_entity["type"].split(".")[0] in valid_entity_types
|
| 315 |
+
):
|
| 316 |
+
min_distance = distance
|
| 317 |
+
closest_entity = other_entity
|
| 318 |
+
|
| 319 |
+
# Attach the "comp.function" or "comp.name" if a valid entity is found
|
| 320 |
+
if closest_entity:
|
| 321 |
+
suffix = comp_entity["type"].split(".")[
|
| 322 |
+
-1
|
| 323 |
+
] # Extract the suffix (e.g., 'name', 'function')
|
| 324 |
+
closest_entity[suffix] = comp_entity["surface"] # Attach the text
|
| 325 |
+
|
| 326 |
+
return other_entities
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def conflicting_context(comp_entity, target_entity):
|
| 330 |
+
"""
|
| 331 |
+
Determines if there is a conflict between the comp_entity and the target entity.
|
| 332 |
+
Prevents incorrect name and function attachments by using a rule-based approach.
|
| 333 |
+
"""
|
| 334 |
+
# Case 1: Check for correct function attachment to person or organization entities
|
| 335 |
+
if comp_entity["type"].startswith("comp.function"):
|
| 336 |
+
if not ("pers" in target_entity["type"] or "org" in target_entity["type"]):
|
| 337 |
+
return True # Conflict: Function should only attach to persons or organizations
|
| 338 |
+
|
| 339 |
+
# Case 2: Avoid attaching comp.* entities to non-person, non-organization types (like locations)
|
| 340 |
+
if "loc" in target_entity["type"]:
|
| 341 |
+
return True # Conflict: comp.* entities should not attach to locations or similar types
|
| 342 |
+
|
| 343 |
+
return False # No conflict
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def extract_name_from_text(text, partial_name):
|
| 347 |
+
"""
|
| 348 |
+
Extracts the full name from the entity's text based on the partial name.
|
| 349 |
+
This function assumes that the full name starts with capitalized letters and does not
|
| 350 |
+
include any words that come after the partial name.
|
| 351 |
+
"""
|
| 352 |
+
# Split the text and partial name into words
|
| 353 |
+
words = tokenize(text)
|
| 354 |
+
partial_words = partial_name.split()
|
| 355 |
+
|
| 356 |
+
if DEBUG:
|
| 357 |
+
print("text:", text)
|
| 358 |
+
if DEBUG:
|
| 359 |
+
print("partial_name:", partial_name)
|
| 360 |
+
|
| 361 |
+
# Find the position of the partial name in the word list
|
| 362 |
+
for i, word in enumerate(words):
|
| 363 |
+
if DEBUG:
|
| 364 |
+
print(words, "---", words[i : i + len(partial_words)])
|
| 365 |
+
if words[i : i + len(partial_words)] == partial_words:
|
| 366 |
+
# Initialize full name with the partial name
|
| 367 |
+
full_name = partial_words[:]
|
| 368 |
+
|
| 369 |
+
if DEBUG:
|
| 370 |
+
print("full_name:", full_name)
|
| 371 |
+
|
| 372 |
+
# Check previous words and only add capitalized words (skip lowercase words)
|
| 373 |
+
j = i - 1
|
| 374 |
+
while j >= 0 and words[j][0].isupper():
|
| 375 |
+
full_name.insert(0, words[j])
|
| 376 |
+
j -= 1
|
| 377 |
+
if DEBUG:
|
| 378 |
+
print("full_name:", full_name)
|
| 379 |
+
|
| 380 |
+
# Return only the full name up to the partial name (ignore words after the name)
|
| 381 |
+
return " ".join(full_name).strip() # Join the words to form the full name
|
| 382 |
+
|
| 383 |
+
# If not found, return the original text (as a fallback)
|
| 384 |
+
return text.strip()
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
def repair_names_in_entities(entities):
|
| 388 |
+
"""
|
| 389 |
+
This function repairs the names in the entities by extracting the full name
|
| 390 |
+
from the text of the entity if a partial name (e.g., 'Washington') is incorrectly attached.
|
| 391 |
+
"""
|
| 392 |
+
for entity in entities:
|
| 393 |
+
if "name" in entity and "pers" in entity["type"]:
|
| 394 |
+
name = entity["name"]
|
| 395 |
+
text = entity["surface"]
|
| 396 |
+
|
| 397 |
+
# Check if the attached name is part of the entity's text
|
| 398 |
+
if name in text:
|
| 399 |
+
# Extract the full name from the text by splitting around the attached name
|
| 400 |
+
full_name = extract_name_from_text(entity["surface"], name)
|
| 401 |
+
entity["name"] = (
|
| 402 |
+
full_name # Replace the partial name with the full name
|
| 403 |
+
)
|
| 404 |
+
# if "name" not in entity:
|
| 405 |
+
# entity["name"] = entity["surface"]
|
| 406 |
+
|
| 407 |
+
return entities
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def clean_coarse_entities(entities):
|
| 411 |
+
"""
|
| 412 |
+
This function removes entities that are not useful for the NEL process.
|
| 413 |
+
"""
|
| 414 |
+
# Define a set of entity types that are considered useful for NEL
|
| 415 |
+
useful_types = {
|
| 416 |
+
"pers", # Person
|
| 417 |
+
"loc", # Location
|
| 418 |
+
"org", # Organization
|
| 419 |
+
"date", # Product
|
| 420 |
+
"time", # Time
|
| 421 |
+
}
|
| 422 |
+
|
| 423 |
+
# Filter out entities that are not in the useful_types set unless they are comp.* entities
|
| 424 |
+
cleaned_entities = [
|
| 425 |
+
entity
|
| 426 |
+
for entity in entities
|
| 427 |
+
if entity["type"] in useful_types or "comp" in entity["type"]
|
| 428 |
+
]
|
| 429 |
+
|
| 430 |
+
return cleaned_entities
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def postprocess_entities(entities):
|
| 434 |
+
# Step 1: Filter entities with the same text, keeping the one with the most dots in the 'entity' field
|
| 435 |
+
entity_map = {}
|
| 436 |
+
|
| 437 |
+
# Loop over the entities and prioritize the one with the most dots
|
| 438 |
+
for entity in entities:
|
| 439 |
+
entity_text = entity["surface"]
|
| 440 |
+
num_dots = entity["type"].count(".")
|
| 441 |
+
|
| 442 |
+
# If the entity text is new, or this entity has more dots, update the map
|
| 443 |
+
if (
|
| 444 |
+
entity_text not in entity_map
|
| 445 |
+
or entity_map[entity_text]["type"].count(".") < num_dots
|
| 446 |
+
):
|
| 447 |
+
entity_map[entity_text] = entity
|
| 448 |
+
|
| 449 |
+
# Collect the filtered entities from the map
|
| 450 |
+
filtered_entities = list(entity_map.values())
|
| 451 |
+
|
| 452 |
+
# Step 2: Attach "comp.function" entities to the closest other entities
|
| 453 |
+
filtered_entities = attach_comp_to_closest(filtered_entities)
|
| 454 |
+
if DEBUG:
|
| 455 |
+
print("After attach_comp_to_closest:", filtered_entities, "\n")
|
| 456 |
+
filtered_entities = repair_names_in_entities(filtered_entities)
|
| 457 |
+
if DEBUG:
|
| 458 |
+
print("After repair_names_in_entities:", filtered_entities, "\n")
|
| 459 |
+
|
| 460 |
+
# Step 3: Remove entities that are not useful for NEL
|
| 461 |
+
# filtered_entities = clean_coarse_entities(filtered_entities)
|
| 462 |
+
|
| 463 |
+
# filtered_entities = remove_blacklisted_entities(filtered_entities)
|
| 464 |
+
|
| 465 |
+
return filtered_entities
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def remove_included_entities(entities):
|
| 469 |
+
# Loop through entities and remove those whose text is included in another with the same label
|
| 470 |
+
final_entities = []
|
| 471 |
+
for i, entity in enumerate(entities):
|
| 472 |
+
is_included = False
|
| 473 |
+
for other_entity in entities:
|
| 474 |
+
if entity["surface"] != other_entity["surface"]:
|
| 475 |
+
if "comp" in other_entity["type"]:
|
| 476 |
+
# Check if entity's text is a substring of another entity's text
|
| 477 |
+
if entity["surface"] in other_entity["surface"]:
|
| 478 |
+
is_included = True
|
| 479 |
+
break
|
| 480 |
+
elif (
|
| 481 |
+
entity["type"].split(".")[0] in other_entity["type"].split(".")[0]
|
| 482 |
+
or other_entity["type"].split(".")[0]
|
| 483 |
+
in entity["type"].split(".")[0]
|
| 484 |
+
):
|
| 485 |
+
if entity["surface"] in other_entity["surface"]:
|
| 486 |
+
is_included = True
|
| 487 |
+
if not is_included:
|
| 488 |
+
final_entities.append(entity)
|
| 489 |
+
return final_entities
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
def refine_entities_with_coarse(all_entities, coarse_entities):
|
| 493 |
+
"""
|
| 494 |
+
Looks through all entities and refines them based on the coarse entities.
|
| 495 |
+
If a surface match is found in the coarse entities and the types match,
|
| 496 |
+
the entity's confidence_ner and type are updated based on the coarse entity.
|
| 497 |
+
"""
|
| 498 |
+
# Create a dictionary for coarse entities based on surface and type for quick lookup
|
| 499 |
+
coarse_lookup = {}
|
| 500 |
+
for coarse_entity in coarse_entities:
|
| 501 |
+
key = (coarse_entity["surface"], coarse_entity["type"].split(".")[0])
|
| 502 |
+
coarse_lookup[key] = coarse_entity
|
| 503 |
+
|
| 504 |
+
# Iterate through all entities and compare with the coarse entities
|
| 505 |
+
for entity in all_entities:
|
| 506 |
+
key = (
|
| 507 |
+
entity["surface"],
|
| 508 |
+
entity["type"].split(".")[0],
|
| 509 |
+
) # Use the coarse type for comparison
|
| 510 |
+
|
| 511 |
+
if key in coarse_lookup:
|
| 512 |
+
coarse_entity = coarse_lookup[key]
|
| 513 |
+
# If a match is found, update the confidence_ner and type in the entity
|
| 514 |
+
if entity["confidence_ner"] < coarse_entity["confidence_ner"]:
|
| 515 |
+
entity["confidence_ner"] = coarse_entity["confidence_ner"]
|
| 516 |
+
entity["type"] = coarse_entity[
|
| 517 |
+
"type"
|
| 518 |
+
] # Update the type if the confidence is higher
|
| 519 |
+
|
| 520 |
+
# No need to append to refined_entities, we're modifying in place
|
| 521 |
+
for entity in all_entities:
|
| 522 |
+
entity["type"] = entity["type"].split(".")[0]
|
| 523 |
+
return all_entities
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def remove_trailing_stopwords(entities):
|
| 527 |
+
"""
|
| 528 |
+
This function removes stopwords and punctuation from both the beginning and end of each entity's text
|
| 529 |
+
and repairs the lOffset and rOffset accordingly.
|
| 530 |
+
"""
|
| 531 |
+
if DEBUG:
|
| 532 |
+
print(f"Initial entities: {len(entities)}")
|
| 533 |
+
new_entities = []
|
| 534 |
+
for entity in entities:
|
| 535 |
+
if "comp" not in entity["type"]:
|
| 536 |
+
entity_text = entity["surface"]
|
| 537 |
+
original_len = len(entity_text)
|
| 538 |
+
|
| 539 |
+
# Initial offsets
|
| 540 |
+
lOffset = entity.get("lOffset", 0)
|
| 541 |
+
rOffset = entity.get("rOffset", original_len)
|
| 542 |
+
|
| 543 |
+
# Remove stopwords and punctuation from the beginning
|
| 544 |
+
i = 0
|
| 545 |
+
while entity_text and (
|
| 546 |
+
entity_text.split()[0].lower() in stop_words
|
| 547 |
+
or entity_text[0] in punctuation
|
| 548 |
+
):
|
| 549 |
+
if entity_text.split()[0].lower() in stop_words:
|
| 550 |
+
stopword_len = (
|
| 551 |
+
len(entity_text.split()[0]) + 1
|
| 552 |
+
) # Adjust length for stopword and following space
|
| 553 |
+
entity_text = entity_text[stopword_len:] # Remove leading stopword
|
| 554 |
+
lOffset += stopword_len # Adjust the left offset
|
| 555 |
+
if DEBUG:
|
| 556 |
+
print(
|
| 557 |
+
f"Removed leading stopword from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
|
| 558 |
+
)
|
| 559 |
+
elif entity_text[0] in punctuation:
|
| 560 |
+
entity_text = entity_text[1:] # Remove leading punctuation
|
| 561 |
+
lOffset += 1 # Adjust the left offset
|
| 562 |
+
if DEBUG:
|
| 563 |
+
print(
|
| 564 |
+
f"Removed leading punctuation from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
|
| 565 |
+
)
|
| 566 |
+
i += 1
|
| 567 |
+
|
| 568 |
+
i = 0
|
| 569 |
+
# Remove stopwords and punctuation from the end
|
| 570 |
+
iteration = 0
|
| 571 |
+
max_iterations = len(entity_text) # Prevent infinite loops
|
| 572 |
+
|
| 573 |
+
while entity_text and iteration < max_iterations:
|
| 574 |
+
# Check if the last word is a stopword or the last character is punctuation
|
| 575 |
+
last_word = entity_text.split()[-1] if entity_text.split() else ""
|
| 576 |
+
last_char = entity_text[-1]
|
| 577 |
+
|
| 578 |
+
if last_word.lower() in stop_words:
|
| 579 |
+
# Remove trailing stopword and adjust rOffset
|
| 580 |
+
stopword_len = len(last_word) + 1 # Include space before stopword
|
| 581 |
+
entity_text = entity_text[:-stopword_len].rstrip()
|
| 582 |
+
rOffset -= stopword_len
|
| 583 |
+
if DEBUG:
|
| 584 |
+
print(
|
| 585 |
+
f"Removed trailing stopword from entity: {entity_text} (rOffset={rOffset})"
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
elif last_char in punctuation:
|
| 589 |
+
# Remove trailing punctuation and adjust rOffset
|
| 590 |
+
entity_text = entity_text[:-1].rstrip()
|
| 591 |
+
rOffset -= 1
|
| 592 |
+
if DEBUG:
|
| 593 |
+
print(
|
| 594 |
+
f"Removed trailing punctuation from entity: {entity_text} (rOffset={rOffset})"
|
| 595 |
+
)
|
| 596 |
+
else:
|
| 597 |
+
# Exit loop if neither stopwords nor punctuation are found
|
| 598 |
+
break
|
| 599 |
+
|
| 600 |
+
iteration += 1
|
| 601 |
+
# print(f"ITERATION: {iteration} [{entity['surface']}] for {entity_text}")
|
| 602 |
+
|
| 603 |
+
if len(entity_text.strip()) == 1:
|
| 604 |
+
entities.remove(entity)
|
| 605 |
+
if DEBUG:
|
| 606 |
+
print(f"Skipping entity: {entity_text}")
|
| 607 |
+
continue
|
| 608 |
+
# Skip certain entities based on rules
|
| 609 |
+
if entity_text in string.punctuation:
|
| 610 |
+
if DEBUG:
|
| 611 |
+
print(f"Skipping entity: {entity_text}")
|
| 612 |
+
entities.remove(entity)
|
| 613 |
+
continue
|
| 614 |
+
# check now if its in stopwords
|
| 615 |
+
if entity_text.lower() in stop_words:
|
| 616 |
+
if DEBUG:
|
| 617 |
+
print(f"Skipping entity: {entity_text}")
|
| 618 |
+
entities.remove(entity)
|
| 619 |
+
continue
|
| 620 |
+
# check now if the entire entity is a list of stopwords:
|
| 621 |
+
if all([word.lower() in stop_words for word in entity_text.split()]):
|
| 622 |
+
if DEBUG:
|
| 623 |
+
print(f"Skipping entity: {entity_text}")
|
| 624 |
+
entities.remove(entity)
|
| 625 |
+
continue
|
| 626 |
+
# Check if the entire entity is made up of stopwords characters
|
| 627 |
+
if all(
|
| 628 |
+
[char.lower() in stop_words for char in entity_text if char.isalpha()]
|
| 629 |
+
):
|
| 630 |
+
if DEBUG:
|
| 631 |
+
print(
|
| 632 |
+
f"Skipping entity: {entity_text} (all characters are stopwords)"
|
| 633 |
+
)
|
| 634 |
+
entities.remove(entity)
|
| 635 |
+
continue
|
| 636 |
+
# check now if all entity is in a list of punctuation
|
| 637 |
+
if all([word in string.punctuation for word in entity_text.split()]):
|
| 638 |
+
if DEBUG:
|
| 639 |
+
print(
|
| 640 |
+
f"Skipping entity: {entity_text} (all characters are punctuation)"
|
| 641 |
+
)
|
| 642 |
+
entities.remove(entity)
|
| 643 |
+
continue
|
| 644 |
+
if all(
|
| 645 |
+
[
|
| 646 |
+
char.lower() in string.punctuation
|
| 647 |
+
for char in entity_text
|
| 648 |
+
if char.isalpha()
|
| 649 |
+
]
|
| 650 |
+
):
|
| 651 |
+
if DEBUG:
|
| 652 |
+
print(
|
| 653 |
+
f"Skipping entity: {entity_text} (all characters are punctuation)"
|
| 654 |
+
)
|
| 655 |
+
entities.remove(entity)
|
| 656 |
+
continue
|
| 657 |
+
|
| 658 |
+
# if it's a number and "time" no in it, then continue
|
| 659 |
+
if entity_text.isdigit() and "time" not in entity["type"]:
|
| 660 |
+
if DEBUG:
|
| 661 |
+
print(f"Skipping entity: {entity_text}")
|
| 662 |
+
entities.remove(entity)
|
| 663 |
+
continue
|
| 664 |
+
|
| 665 |
+
if entity_text.startswith(" "):
|
| 666 |
+
entity_text = entity_text[1:]
|
| 667 |
+
# update lOffset, rOffset
|
| 668 |
+
lOffset += 1
|
| 669 |
+
if entity_text.endswith(" "):
|
| 670 |
+
entity_text = entity_text[:-1]
|
| 671 |
+
# update lOffset, rOffset
|
| 672 |
+
rOffset -= 1
|
| 673 |
+
|
| 674 |
+
# Update the entity surface and offsets
|
| 675 |
+
entity["surface"] = entity_text
|
| 676 |
+
entity["lOffset"] = lOffset
|
| 677 |
+
entity["rOffset"] = rOffset
|
| 678 |
+
|
| 679 |
+
# Remove the entity if the surface is empty after cleaning
|
| 680 |
+
if len(entity["surface"].strip()) == 0:
|
| 681 |
+
if DEBUG:
|
| 682 |
+
print(f"Deleted entity: {entity['surface']}")
|
| 683 |
+
entities.remove(entity)
|
| 684 |
+
else:
|
| 685 |
+
new_entities.append(entity)
|
| 686 |
+
|
| 687 |
+
if DEBUG:
|
| 688 |
+
print(f"Remained entities: {len(new_entities)}")
|
| 689 |
+
return new_entities
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
class MultitaskTokenClassificationPipeline(Pipeline):
|
| 693 |
+
|
| 694 |
+
def _sanitize_parameters(self, **kwargs):
|
| 695 |
+
preprocess_kwargs = {}
|
| 696 |
+
if "text" in kwargs:
|
| 697 |
+
preprocess_kwargs["text"] = kwargs["text"]
|
| 698 |
+
self.label_map = self.model.config.label_map
|
| 699 |
+
self.id2label = {
|
| 700 |
+
task: {id_: label for label, id_ in labels.items()}
|
| 701 |
+
for task, labels in self.label_map.items()
|
| 702 |
+
}
|
| 703 |
+
return preprocess_kwargs, {}, {}
|
| 704 |
+
|
| 705 |
+
def preprocess(self, text, **kwargs):
|
| 706 |
+
|
| 707 |
+
tokenized_inputs = self.tokenizer(
|
| 708 |
+
text, padding="max_length", truncation=True, max_length=512
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
text_sentence = tokenize(add_spaces_around_punctuation(text))
|
| 712 |
+
return tokenized_inputs, text_sentence, text
|
| 713 |
+
|
| 714 |
+
def _forward(self, inputs):
|
| 715 |
+
inputs, text_sentences, text = inputs
|
| 716 |
+
input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
|
| 717 |
+
self.model.device
|
| 718 |
+
)
|
| 719 |
+
attention_mask = torch.tensor([inputs["attention_mask"]], dtype=torch.long).to(
|
| 720 |
+
self.model.device
|
| 721 |
+
)
|
| 722 |
+
with torch.no_grad():
|
| 723 |
+
outputs = self.model(input_ids, attention_mask)
|
| 724 |
+
return outputs, text_sentences, text
|
| 725 |
+
|
| 726 |
+
def is_within(self, entity1, entity2):
|
| 727 |
+
"""Check if entity1 is fully within the bounds of entity2."""
|
| 728 |
+
return (
|
| 729 |
+
entity1["lOffset"] >= entity2["lOffset"]
|
| 730 |
+
and entity1["rOffset"] <= entity2["rOffset"]
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
def postprocess(self, outputs, **kwargs):
|
| 734 |
+
"""
|
| 735 |
+
Postprocess the outputs of the model
|
| 736 |
+
:param outputs:
|
| 737 |
+
:param kwargs:
|
| 738 |
+
:return:
|
| 739 |
+
"""
|
| 740 |
+
tokens_result, text_sentence, text = outputs
|
| 741 |
+
|
| 742 |
+
predictions = {}
|
| 743 |
+
confidence_scores = {}
|
| 744 |
+
for task, logits in tokens_result.logits.items():
|
| 745 |
+
predictions[task] = torch.argmax(logits, dim=-1).tolist()[0]
|
| 746 |
+
confidence_scores[task] = F.softmax(logits, dim=-1).tolist()[0]
|
| 747 |
+
|
| 748 |
+
entities = {}
|
| 749 |
+
for task in predictions.keys():
|
| 750 |
+
words_list, preds_list, confidence_list = realign(
|
| 751 |
+
text_sentence,
|
| 752 |
+
predictions[task],
|
| 753 |
+
confidence_scores[task],
|
| 754 |
+
self.tokenizer,
|
| 755 |
+
self.id2label[task],
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
entities[task] = get_entities(words_list, preds_list, confidence_list, text)
|
| 759 |
+
|
| 760 |
+
# add titles to comp entities
|
| 761 |
+
# from pprint import pprint
|
| 762 |
+
|
| 763 |
+
# print("Before:")
|
| 764 |
+
# pprint(entities)
|
| 765 |
+
|
| 766 |
+
all_entities = []
|
| 767 |
+
coarse_entities = []
|
| 768 |
+
for key in entities:
|
| 769 |
+
if key in ["NE-COARSE-LIT"]:
|
| 770 |
+
coarse_entities = entities[key]
|
| 771 |
+
all_entities.extend(entities[key])
|
| 772 |
+
|
| 773 |
+
if DEBUG:
|
| 774 |
+
print(all_entities)
|
| 775 |
+
# print("After remove_included_entities:")
|
| 776 |
+
all_entities = remove_included_entities(all_entities)
|
| 777 |
+
if DEBUG:
|
| 778 |
+
print("After remove_included_entities:", all_entities)
|
| 779 |
+
all_entities = remove_trailing_stopwords(all_entities)
|
| 780 |
+
if DEBUG:
|
| 781 |
+
print("After remove_trailing_stopwords:", all_entities)
|
| 782 |
+
all_entities = postprocess_entities(all_entities)
|
| 783 |
+
if DEBUG:
|
| 784 |
+
print("After postprocess_entities:", all_entities)
|
| 785 |
+
all_entities = refine_entities_with_coarse(all_entities, coarse_entities)
|
| 786 |
+
if DEBUG:
|
| 787 |
+
print("After refine_entities_with_coarse:", all_entities)
|
| 788 |
+
# print("After attach_comp_to_closest:")
|
| 789 |
+
# pprint(all_entities)
|
| 790 |
+
# print("\n")
|
| 791 |
+
return all_entities
|