Commit
·
5a14ece
1
Parent(s):
a886816
lets try to change the pipeline
Browse files- modeling_stacked.py +180 -115
modeling_stacked.py
CHANGED
|
@@ -28,136 +28,201 @@ def get_info(label_map):
|
|
| 28 |
|
| 29 |
|
| 30 |
class ExtendedMultitaskModelForTokenClassification(PreTrainedModel):
|
| 31 |
-
|
| 32 |
config_class = ImpressoConfig
|
| 33 |
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 34 |
|
| 35 |
def __init__(self, config):
|
| 36 |
super().__init__(config)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
#
|
| 40 |
-
# self.bert = AutoModel.from_pretrained(
|
| 41 |
-
# config.pretrained_config["_name_or_path"], config=config.pretrained_config
|
| 42 |
-
# )
|
| 43 |
self.model_floret = floret.load_model(self.config.filename)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
# # Initialize weights and apply final processing
|
| 72 |
-
# self.post_init()
|
| 73 |
|
| 74 |
def get_floret_model(self):
|
| 75 |
return self.model_floret
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
@classmethod
|
| 78 |
def from_pretrained(cls, *args, **kwargs):
|
| 79 |
print("Ignoring weights and using custom initialization.")
|
| 80 |
-
|
| 81 |
# Manually create the config
|
| 82 |
-
config = ImpressoConfig()
|
| 83 |
-
|
| 84 |
# Pass the manually created config to the class
|
| 85 |
model = cls(config)
|
| 86 |
return model
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
class ExtendedMultitaskModelForTokenClassification(PreTrainedModel):
|
|
|
|
| 31 |
config_class = ImpressoConfig
|
| 32 |
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 33 |
|
| 34 |
def __init__(self, config):
|
| 35 |
super().__init__(config)
|
| 36 |
+
self.config = config
|
| 37 |
+
|
| 38 |
+
# Load floret model
|
|
|
|
|
|
|
|
|
|
| 39 |
self.model_floret = floret.load_model(self.config.filename)
|
| 40 |
+
|
| 41 |
+
def forward(self, input_ids, attention_mask=None, **kwargs):
|
| 42 |
+
# Convert input_ids to strings using tokenizer
|
| 43 |
+
if input_ids is not None:
|
| 44 |
+
tokenizer = kwargs.get("tokenizer")
|
| 45 |
+
texts = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
|
| 46 |
+
else:
|
| 47 |
+
texts = kwargs.get("text", None)
|
| 48 |
+
|
| 49 |
+
if texts:
|
| 50 |
+
# Floret expects strings, not tensors
|
| 51 |
+
predictions = [self.model_floret(text) for text in texts]
|
| 52 |
+
# Convert predictions to tensors for Hugging Face compatibility
|
| 53 |
+
return torch.tensor(predictions)
|
| 54 |
+
else:
|
| 55 |
+
# If no text is found, return dummy output
|
| 56 |
+
return torch.zeros(
|
| 57 |
+
(1, 2)
|
| 58 |
+
) # Dummy tensor with shape (batch_size, num_classes)
|
| 59 |
+
|
| 60 |
+
def state_dict(self, *args, **kwargs):
|
| 61 |
+
# Return an empty state dictionary
|
| 62 |
+
return {}
|
| 63 |
+
|
| 64 |
+
def load_state_dict(self, state_dict, strict=True):
|
| 65 |
+
# Ignore loading since there are no parameters
|
| 66 |
+
print("Ignoring state_dict since model has no parameters.")
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def get_floret_model(self):
|
| 69 |
return self.model_floret
|
| 70 |
|
| 71 |
+
def get_extended_attention_mask(
|
| 72 |
+
self, attention_mask, input_shape, device=None, dtype=torch.float
|
| 73 |
+
):
|
| 74 |
+
if attention_mask is None:
|
| 75 |
+
attention_mask = torch.ones(input_shape, device=device)
|
| 76 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
| 77 |
+
extended_attention_mask = extended_attention_mask.to(dtype=dtype)
|
| 78 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 79 |
+
return extended_attention_mask
|
| 80 |
+
|
| 81 |
+
@property
|
| 82 |
+
def device(self):
|
| 83 |
+
return next(self.parameters()).device
|
| 84 |
+
|
| 85 |
@classmethod
|
| 86 |
def from_pretrained(cls, *args, **kwargs):
|
| 87 |
print("Ignoring weights and using custom initialization.")
|
|
|
|
| 88 |
# Manually create the config
|
| 89 |
+
config = ImpressoConfig(**kwargs)
|
|
|
|
| 90 |
# Pass the manually created config to the class
|
| 91 |
model = cls(config)
|
| 92 |
return model
|
| 93 |
|
| 94 |
+
|
| 95 |
+
# class ExtendedMultitaskModelForTokenClassification(PreTrainedModel):
|
| 96 |
+
#
|
| 97 |
+
# config_class = ImpressoConfig
|
| 98 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 99 |
+
#
|
| 100 |
+
# def __init__(self, config):
|
| 101 |
+
# super().__init__(config)
|
| 102 |
+
# # self.num_token_labels_dict = get_info(config.label_map)
|
| 103 |
+
# # self.config = config
|
| 104 |
+
# # # print(f"I dont think it arrives here: {self.config}")
|
| 105 |
+
# # self.bert = AutoModel.from_pretrained(
|
| 106 |
+
# # config.pretrained_config["_name_or_path"], config=config.pretrained_config
|
| 107 |
+
# # )
|
| 108 |
+
# self.model_floret = floret.load_model(self.config.filename)
|
| 109 |
+
# # print(f"Model loaded: {self.model_floret}")
|
| 110 |
+
# # if "classifier_dropout" not in config.__dict__:
|
| 111 |
+
# # classifier_dropout = 0.1
|
| 112 |
+
# # else:
|
| 113 |
+
# # classifier_dropout = (
|
| 114 |
+
# # config.classifier_dropout
|
| 115 |
+
# # if config.classifier_dropout is not None
|
| 116 |
+
# # else config.hidden_dropout_prob
|
| 117 |
+
# # )
|
| 118 |
+
# # self.dropout = nn.Dropout(classifier_dropout)
|
| 119 |
+
# #
|
| 120 |
+
# # # Additional transformer layers
|
| 121 |
+
# # self.transformer_encoder = nn.TransformerEncoder(
|
| 122 |
+
# # nn.TransformerEncoderLayer(
|
| 123 |
+
# # d_model=config.hidden_size, nhead=config.num_attention_heads
|
| 124 |
+
# # ),
|
| 125 |
+
# # num_layers=2,
|
| 126 |
+
# # )
|
| 127 |
+
#
|
| 128 |
+
# # For token classification, create a classifier for each task
|
| 129 |
+
# # self.token_classifiers = nn.ModuleDict(
|
| 130 |
+
# # {
|
| 131 |
+
# # task: nn.Linear(config.hidden_size, num_labels)
|
| 132 |
+
# # for task, num_labels in self.num_token_labels_dict.items()
|
| 133 |
+
# # }
|
| 134 |
+
# # )
|
| 135 |
+
# #
|
| 136 |
+
# # # Initialize weights and apply final processing
|
| 137 |
+
# # self.post_init()
|
| 138 |
+
#
|
| 139 |
+
# def get_floret_model(self):
|
| 140 |
+
# return self.model_floret
|
| 141 |
+
#
|
| 142 |
+
# @classmethod
|
| 143 |
+
# def from_pretrained(cls, *args, **kwargs):
|
| 144 |
+
# print("Ignoring weights and using custom initialization.")
|
| 145 |
+
#
|
| 146 |
+
# # Manually create the config
|
| 147 |
+
# config = ImpressoConfig()
|
| 148 |
+
#
|
| 149 |
+
# # Pass the manually created config to the class
|
| 150 |
+
# model = cls(config)
|
| 151 |
+
# return model
|
| 152 |
+
#
|
| 153 |
+
# # def forward(
|
| 154 |
+
# # self,
|
| 155 |
+
# # input_ids: Optional[torch.Tensor] = None,
|
| 156 |
+
# # attention_mask: Optional[torch.Tensor] = None,
|
| 157 |
+
# # token_type_ids: Optional[torch.Tensor] = None,
|
| 158 |
+
# # position_ids: Optional[torch.Tensor] = None,
|
| 159 |
+
# # head_mask: Optional[torch.Tensor] = None,
|
| 160 |
+
# # inputs_embeds: Optional[torch.Tensor] = None,
|
| 161 |
+
# # labels: Optional[torch.Tensor] = None,
|
| 162 |
+
# # token_labels: Optional[dict] = None,
|
| 163 |
+
# # output_attentions: Optional[bool] = None,
|
| 164 |
+
# # output_hidden_states: Optional[bool] = None,
|
| 165 |
+
# # return_dict: Optional[bool] = None,
|
| 166 |
+
# # ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 167 |
+
# # r"""
|
| 168 |
+
# # token_labels (`dict` of `torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
|
| 169 |
+
# # Labels for computing the token classification loss. Keys should match the tasks.
|
| 170 |
+
# # """
|
| 171 |
+
# # return_dict = (
|
| 172 |
+
# # return_dict if return_dict is not None else self.config.use_return_dict
|
| 173 |
+
# # )
|
| 174 |
+
# #
|
| 175 |
+
# # bert_kwargs = {
|
| 176 |
+
# # "input_ids": input_ids,
|
| 177 |
+
# # "attention_mask": attention_mask,
|
| 178 |
+
# # "token_type_ids": token_type_ids,
|
| 179 |
+
# # "position_ids": position_ids,
|
| 180 |
+
# # "head_mask": head_mask,
|
| 181 |
+
# # "inputs_embeds": inputs_embeds,
|
| 182 |
+
# # "output_attentions": output_attentions,
|
| 183 |
+
# # "output_hidden_states": output_hidden_states,
|
| 184 |
+
# # "return_dict": return_dict,
|
| 185 |
+
# # }
|
| 186 |
+
# #
|
| 187 |
+
# # if any(
|
| 188 |
+
# # keyword in self.config.name_or_path.lower()
|
| 189 |
+
# # for keyword in ["llama", "deberta"]
|
| 190 |
+
# # ):
|
| 191 |
+
# # bert_kwargs.pop("token_type_ids")
|
| 192 |
+
# # bert_kwargs.pop("head_mask")
|
| 193 |
+
# #
|
| 194 |
+
# # outputs = self.bert(**bert_kwargs)
|
| 195 |
+
# #
|
| 196 |
+
# # # For token classification
|
| 197 |
+
# # token_output = outputs[0]
|
| 198 |
+
# # token_output = self.dropout(token_output)
|
| 199 |
+
# #
|
| 200 |
+
# # # Pass through additional transformer layers
|
| 201 |
+
# # token_output = self.transformer_encoder(token_output.transpose(0, 1)).transpose(
|
| 202 |
+
# # 0, 1
|
| 203 |
+
# # )
|
| 204 |
+
# #
|
| 205 |
+
# # # Collect the logits and compute the loss for each task
|
| 206 |
+
# # task_logits = {}
|
| 207 |
+
# # total_loss = 0
|
| 208 |
+
# # for task, classifier in self.token_classifiers.items():
|
| 209 |
+
# # logits = classifier(token_output)
|
| 210 |
+
# # task_logits[task] = logits
|
| 211 |
+
# # if token_labels and task in token_labels:
|
| 212 |
+
# # loss_fct = CrossEntropyLoss()
|
| 213 |
+
# # loss = loss_fct(
|
| 214 |
+
# # logits.view(-1, self.num_token_labels_dict[task]),
|
| 215 |
+
# # token_labels[task].view(-1),
|
| 216 |
+
# # )
|
| 217 |
+
# # total_loss += loss
|
| 218 |
+
# #
|
| 219 |
+
# # if not return_dict:
|
| 220 |
+
# # output = (task_logits,) + outputs[2:]
|
| 221 |
+
# # return ((total_loss,) + output) if total_loss != 0 else output
|
| 222 |
+
# # print(f"Is there anobidy coming here?")
|
| 223 |
+
# # return TokenClassifierOutput(
|
| 224 |
+
# # loss=total_loss,
|
| 225 |
+
# # logits=task_logits,
|
| 226 |
+
# # hidden_states=outputs.hidden_states,
|
| 227 |
+
# # attentions=outputs.attentions,
|
| 228 |
+
# # )
|