Training in progress, step 1000
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +0 -1
- checkpoint-1000/config.json +41 -0
- checkpoint-1000/global_step1000/mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/latest +1 -0
- checkpoint-1000/preprocessor_config.json +0 -0
- checkpoint-1000/pytorch_model.bin +3 -0
- checkpoint-1000/rng_state.pth +3 -0
- checkpoint-1000/trainer_state.json +265 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-1000/zero_to_fp32.py +482 -0
- checkpoint-12000/config.json +41 -0
- checkpoint-12000/global_step12000/mp_rank_00_model_states.pt +3 -0
- checkpoint-12000/global_step12000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-12000/latest +1 -0
- checkpoint-12000/preprocessor_config.json +0 -0
- checkpoint-12000/pytorch_model.bin +3 -0
- checkpoint-12000/rng_state.pth +3 -0
- checkpoint-12000/trainer_state.json +3004 -0
- checkpoint-12000/training_args.bin +3 -0
- checkpoint-12000/zero_to_fp32.py +482 -0
- checkpoint-17000/config.json +41 -0
- checkpoint-17000/global_step17000/mp_rank_00_model_states.pt +3 -0
- checkpoint-17000/global_step17000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-17000/latest +1 -0
- checkpoint-17000/preprocessor_config.json +0 -0
- checkpoint-17000/pytorch_model.bin +3 -0
- checkpoint-17000/rng_state.pth +3 -0
- checkpoint-17000/trainer_state.json +4249 -0
- checkpoint-17000/training_args.bin +3 -0
- checkpoint-17000/zero_to_fp32.py +482 -0
- checkpoint-18000/config.json +41 -0
- checkpoint-18000/global_step18000/mp_rank_00_model_states.pt +3 -0
- checkpoint-18000/global_step18000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-18000/latest +1 -0
- checkpoint-18000/preprocessor_config.json +0 -0
- checkpoint-18000/pytorch_model.bin +3 -0
- checkpoint-18000/rng_state.pth +3 -0
- checkpoint-18000/trainer_state.json +4498 -0
- checkpoint-18000/training_args.bin +3 -0
- checkpoint-18000/zero_to_fp32.py +482 -0
- checkpoint-19000/config.json +41 -0
- checkpoint-19000/global_step19000/mp_rank_00_model_states.pt +3 -0
- checkpoint-19000/global_step19000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-19000/latest +1 -0
- checkpoint-19000/preprocessor_config.json +0 -0
- checkpoint-19000/pytorch_model.bin +3 -0
- checkpoint-19000/rng_state.pth +3 -0
- checkpoint-19000/trainer_state.json +0 -0
- checkpoint-19000/training_args.bin +3 -0
.gitignore
CHANGED
@@ -1 +0,0 @@
|
|
1 |
-
checkpoint-*/
|
|
|
|
checkpoint-1000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilios/whisper-medium-el-n2",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-1000/global_step1000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb8f431b487681c52c81a3a62a99a63d952a5bc428be168eb056374b66b0831d
|
3 |
+
size 1527967899
|
checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2329af6bfc8cdeb9f375d3b3911f30dea002bbc406ce09034e255002ccfd7c87
|
3 |
+
size 9166378846
|
checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
checkpoint-1000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c003ccc0e40b6e5ee396b9f08631bc9a513d9d258d81e20345f01d9d83e99efd
|
3 |
+
size 1527847357
|
checkpoint-1000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e36ccd83d6f112f5f2cd8edf5ad0910ba5cb52adc5a9745e1bd9ca403d362b3
|
3 |
+
size 14575
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 10.36404160475483,
|
3 |
+
"best_model_checkpoint": "./checkpoint-1000",
|
4 |
+
"epoch": 58.8235294117647,
|
5 |
+
"global_step": 1000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.47,
|
12 |
+
"learning_rate": 1.5136083400296205e-06,
|
13 |
+
"loss": 0.0024,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 2.94,
|
18 |
+
"learning_rate": 1.8687587131475301e-06,
|
19 |
+
"loss": 0.0024,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 4.41,
|
24 |
+
"learning_rate": 2.0711488350670174e-06,
|
25 |
+
"loss": 0.0023,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 5.88,
|
30 |
+
"learning_rate": 2.213317753617305e-06,
|
31 |
+
"loss": 0.0023,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 7.35,
|
36 |
+
"learning_rate": 2.3230029693718747e-06,
|
37 |
+
"loss": 0.002,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 8.82,
|
42 |
+
"learning_rate": 2.412322158351148e-06,
|
43 |
+
"loss": 0.002,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 10.29,
|
48 |
+
"learning_rate": 2.4876668872198717e-06,
|
49 |
+
"loss": 0.0022,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 11.76,
|
54 |
+
"learning_rate": 2.552824062407326e-06,
|
55 |
+
"loss": 0.0021,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 13.24,
|
60 |
+
"learning_rate": 2.610223373296667e-06,
|
61 |
+
"loss": 0.0034,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 14.71,
|
66 |
+
"learning_rate": 2.661517182828361e-06,
|
67 |
+
"loss": 0.0019,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 16.18,
|
72 |
+
"learning_rate": 2.7078803874740543e-06,
|
73 |
+
"loss": 0.0018,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 17.65,
|
78 |
+
"learning_rate": 2.750178319990197e-06,
|
79 |
+
"loss": 0.0023,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 19.12,
|
84 |
+
"learning_rate": 2.7890667754365044e-06,
|
85 |
+
"loss": 0.0019,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 20.59,
|
90 |
+
"learning_rate": 2.8250546392106077e-06,
|
91 |
+
"loss": 0.0021,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 22.06,
|
96 |
+
"learning_rate": 2.8585447348549113e-06,
|
97 |
+
"loss": 0.0023,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 23.53,
|
102 |
+
"learning_rate": 2.889861392935294e-06,
|
103 |
+
"loss": 0.0021,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 25.0,
|
108 |
+
"learning_rate": 2.9192696063561725e-06,
|
109 |
+
"loss": 0.0016,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 26.47,
|
114 |
+
"learning_rate": 2.946988676871634e-06,
|
115 |
+
"loss": 0.0018,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 27.94,
|
120 |
+
"learning_rate": 2.973202150939645e-06,
|
121 |
+
"loss": 0.0022,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 29.41,
|
126 |
+
"learning_rate": 2.998065193492142e-06,
|
127 |
+
"loss": 0.0018,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 30.88,
|
132 |
+
"learning_rate": 2.9559999999999997e-06,
|
133 |
+
"loss": 0.0018,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 32.35,
|
138 |
+
"learning_rate": 2.9060000000000002e-06,
|
139 |
+
"loss": 0.0021,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 33.82,
|
144 |
+
"learning_rate": 2.856e-06,
|
145 |
+
"loss": 0.0017,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 35.29,
|
150 |
+
"learning_rate": 2.8060000000000003e-06,
|
151 |
+
"loss": 0.0018,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 36.76,
|
156 |
+
"learning_rate": 2.756e-06,
|
157 |
+
"loss": 0.0016,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 38.24,
|
162 |
+
"learning_rate": 2.706e-06,
|
163 |
+
"loss": 0.0017,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 39.71,
|
168 |
+
"learning_rate": 2.656e-06,
|
169 |
+
"loss": 0.0016,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 41.18,
|
174 |
+
"learning_rate": 2.606e-06,
|
175 |
+
"loss": 0.0013,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 42.65,
|
180 |
+
"learning_rate": 2.556e-06,
|
181 |
+
"loss": 0.0013,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 44.12,
|
186 |
+
"learning_rate": 2.5060000000000002e-06,
|
187 |
+
"loss": 0.0012,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 45.59,
|
192 |
+
"learning_rate": 2.456e-06,
|
193 |
+
"loss": 0.0013,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 47.06,
|
198 |
+
"learning_rate": 2.4060000000000003e-06,
|
199 |
+
"loss": 0.0013,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 48.53,
|
204 |
+
"learning_rate": 2.356e-06,
|
205 |
+
"loss": 0.0013,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 50.0,
|
210 |
+
"learning_rate": 2.306e-06,
|
211 |
+
"loss": 0.0011,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 51.47,
|
216 |
+
"learning_rate": 2.256e-06,
|
217 |
+
"loss": 0.0013,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 52.94,
|
222 |
+
"learning_rate": 2.2059999999999997e-06,
|
223 |
+
"loss": 0.0014,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 54.41,
|
228 |
+
"learning_rate": 2.156e-06,
|
229 |
+
"loss": 0.0011,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 55.88,
|
234 |
+
"learning_rate": 2.106e-06,
|
235 |
+
"loss": 0.0024,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 57.35,
|
240 |
+
"learning_rate": 2.0560000000000003e-06,
|
241 |
+
"loss": 0.0014,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 58.82,
|
246 |
+
"learning_rate": 2.006e-06,
|
247 |
+
"loss": 0.0014,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 58.82,
|
252 |
+
"eval_loss": 0.494384765625,
|
253 |
+
"eval_runtime": 154.3699,
|
254 |
+
"eval_samples_per_second": 1.762,
|
255 |
+
"eval_steps_per_second": 0.11,
|
256 |
+
"eval_wer": 10.36404160475483,
|
257 |
+
"step": 1000
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"max_steps": 2000,
|
261 |
+
"num_train_epochs": 118,
|
262 |
+
"total_flos": 3.0824308756665336e+19,
|
263 |
+
"trial_name": null,
|
264 |
+
"trial_params": null
|
265 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ed73d2b317cd1e368b1f5f7eb5b1eb41b01338f297addbfd473d2f8fb949e5d
|
3 |
+
size 4731
|
checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
checkpoint-12000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilios/whisper-medium-el-n2",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-12000/global_step12000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b1921338329bb83611c120057c3264ab1bec41f7243849ddbd999cc08e4388f
|
3 |
+
size 1527967899
|
checkpoint-12000/global_step12000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25d3e4edd40f51bf3e4552546763afb7a68abde6020caca458418d54cace498d
|
3 |
+
size 9166378846
|
checkpoint-12000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step12000
|
checkpoint-12000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-12000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da3cc32424000ff954bf49215879ed2e1a0d4eaab55388c0687d6ddcca9269e4
|
3 |
+
size 1527847357
|
checkpoint-12000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c544d588f957f253e15a4fe9c58988611a6059c716db44b3095342db8e857f6
|
3 |
+
size 14575
|
checkpoint-12000/trainer_state.json
ADDED
@@ -0,0 +1,3004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 9.778974739970282,
|
3 |
+
"best_model_checkpoint": "./checkpoint-9000",
|
4 |
+
"epoch": 705.7647058823529,
|
5 |
+
"global_step": 12000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.78,
|
12 |
+
"learning_rate": 5.0453611334320685e-06,
|
13 |
+
"loss": 0.6804,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 5.56,
|
18 |
+
"learning_rate": 6.229195710491767e-06,
|
19 |
+
"loss": 0.1847,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 8.33,
|
24 |
+
"learning_rate": 6.903829450223392e-06,
|
25 |
+
"loss": 0.0821,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 11.11,
|
30 |
+
"learning_rate": 7.377725845391017e-06,
|
31 |
+
"loss": 0.0485,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 13.89,
|
36 |
+
"learning_rate": 7.743343231239583e-06,
|
37 |
+
"loss": 0.0432,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 16.67,
|
42 |
+
"learning_rate": 8.041073861170494e-06,
|
43 |
+
"loss": 0.0328,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 19.44,
|
48 |
+
"learning_rate": 8.292222957399574e-06,
|
49 |
+
"loss": 0.0291,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 22.22,
|
54 |
+
"learning_rate": 8.509413541357755e-06,
|
55 |
+
"loss": 0.0298,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 25.0,
|
60 |
+
"learning_rate": 8.700744577655557e-06,
|
61 |
+
"loss": 0.0269,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 27.78,
|
66 |
+
"learning_rate": 8.871723942761204e-06,
|
67 |
+
"loss": 0.0272,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 30.56,
|
72 |
+
"learning_rate": 9.026267958246849e-06,
|
73 |
+
"loss": 0.027,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 33.33,
|
78 |
+
"learning_rate": 9.16726106663399e-06,
|
79 |
+
"loss": 0.0213,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 36.11,
|
84 |
+
"learning_rate": 9.296889251455016e-06,
|
85 |
+
"loss": 0.0215,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 38.89,
|
90 |
+
"learning_rate": 9.416848797368692e-06,
|
91 |
+
"loss": 0.0195,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 41.67,
|
96 |
+
"learning_rate": 9.528482449516371e-06,
|
97 |
+
"loss": 0.0167,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 44.44,
|
102 |
+
"learning_rate": 9.632871309784314e-06,
|
103 |
+
"loss": 0.0184,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 47.22,
|
108 |
+
"learning_rate": 9.73089868785391e-06,
|
109 |
+
"loss": 0.0159,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 50.0,
|
114 |
+
"learning_rate": 9.823295589572114e-06,
|
115 |
+
"loss": 0.0172,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 52.78,
|
120 |
+
"learning_rate": 9.910673836465484e-06,
|
121 |
+
"loss": 0.0123,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 55.56,
|
126 |
+
"learning_rate": 9.993550644973805e-06,
|
127 |
+
"loss": 0.0144,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 58.33,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.0135,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 61.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.0128,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 63.89,
|
144 |
+
"learning_rate": 9.84e-06,
|
145 |
+
"loss": 0.0115,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 66.67,
|
150 |
+
"learning_rate": 9.784444444444445e-06,
|
151 |
+
"loss": 0.0105,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 69.44,
|
156 |
+
"learning_rate": 9.72888888888889e-06,
|
157 |
+
"loss": 0.0104,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 72.22,
|
162 |
+
"learning_rate": 9.673333333333334e-06,
|
163 |
+
"loss": 0.0087,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 75.0,
|
168 |
+
"learning_rate": 9.617777777777778e-06,
|
169 |
+
"loss": 0.0091,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 77.78,
|
174 |
+
"learning_rate": 9.562222222222223e-06,
|
175 |
+
"loss": 0.0085,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 80.56,
|
180 |
+
"learning_rate": 9.506666666666667e-06,
|
181 |
+
"loss": 0.011,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 83.33,
|
186 |
+
"learning_rate": 9.451111111111112e-06,
|
187 |
+
"loss": 0.0117,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 86.11,
|
192 |
+
"learning_rate": 9.395555555555556e-06,
|
193 |
+
"loss": 0.0088,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 88.89,
|
198 |
+
"learning_rate": 9.340000000000002e-06,
|
199 |
+
"loss": 0.0077,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 91.67,
|
204 |
+
"learning_rate": 9.284444444444444e-06,
|
205 |
+
"loss": 0.0091,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 94.44,
|
210 |
+
"learning_rate": 9.22888888888889e-06,
|
211 |
+
"loss": 0.0067,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 97.22,
|
216 |
+
"learning_rate": 9.173333333333334e-06,
|
217 |
+
"loss": 0.0082,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 100.0,
|
222 |
+
"learning_rate": 9.117777777777778e-06,
|
223 |
+
"loss": 0.0055,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 102.78,
|
228 |
+
"learning_rate": 9.062222222222224e-06,
|
229 |
+
"loss": 0.0077,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 105.56,
|
234 |
+
"learning_rate": 9.006666666666666e-06,
|
235 |
+
"loss": 0.0055,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 108.33,
|
240 |
+
"learning_rate": 8.951111111111112e-06,
|
241 |
+
"loss": 0.005,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 111.11,
|
246 |
+
"learning_rate": 8.895555555555556e-06,
|
247 |
+
"loss": 0.0066,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 111.11,
|
252 |
+
"eval_loss": 0.2357177734375,
|
253 |
+
"eval_runtime": 64.7785,
|
254 |
+
"eval_samples_per_second": 2.022,
|
255 |
+
"eval_steps_per_second": 0.139,
|
256 |
+
"eval_wer": 23.044096728307252,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 113.89,
|
261 |
+
"learning_rate": 8.844444444444445e-06,
|
262 |
+
"loss": 0.0057,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 116.67,
|
267 |
+
"learning_rate": 8.788888888888891e-06,
|
268 |
+
"loss": 0.0096,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 119.44,
|
273 |
+
"learning_rate": 8.733333333333333e-06,
|
274 |
+
"loss": 0.0063,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 122.22,
|
279 |
+
"learning_rate": 8.677777777777779e-06,
|
280 |
+
"loss": 0.0069,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 125.0,
|
285 |
+
"learning_rate": 8.622222222222223e-06,
|
286 |
+
"loss": 0.0069,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 127.78,
|
291 |
+
"learning_rate": 8.566666666666667e-06,
|
292 |
+
"loss": 0.0046,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 130.56,
|
297 |
+
"learning_rate": 8.511111111111113e-06,
|
298 |
+
"loss": 0.0051,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 133.33,
|
303 |
+
"learning_rate": 8.455555555555555e-06,
|
304 |
+
"loss": 0.0055,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 136.11,
|
309 |
+
"learning_rate": 8.400000000000001e-06,
|
310 |
+
"loss": 0.0042,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 138.89,
|
315 |
+
"learning_rate": 8.344444444444445e-06,
|
316 |
+
"loss": 0.0042,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 141.67,
|
321 |
+
"learning_rate": 8.288888888888889e-06,
|
322 |
+
"loss": 0.005,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 144.44,
|
327 |
+
"learning_rate": 8.233333333333335e-06,
|
328 |
+
"loss": 0.0054,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 147.22,
|
333 |
+
"learning_rate": 8.177777777777779e-06,
|
334 |
+
"loss": 0.0052,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 150.0,
|
339 |
+
"learning_rate": 8.122222222222223e-06,
|
340 |
+
"loss": 0.0057,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 152.78,
|
345 |
+
"learning_rate": 8.066666666666667e-06,
|
346 |
+
"loss": 0.0039,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 155.56,
|
351 |
+
"learning_rate": 8.011111111111113e-06,
|
352 |
+
"loss": 0.0032,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 158.33,
|
357 |
+
"learning_rate": 7.955555555555557e-06,
|
358 |
+
"loss": 0.0034,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 161.11,
|
363 |
+
"learning_rate": 7.902222222222223e-06,
|
364 |
+
"loss": 0.0068,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 163.89,
|
369 |
+
"learning_rate": 7.846666666666667e-06,
|
370 |
+
"loss": 0.0034,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 166.67,
|
375 |
+
"learning_rate": 7.791111111111111e-06,
|
376 |
+
"loss": 0.0026,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 169.44,
|
381 |
+
"learning_rate": 7.735555555555557e-06,
|
382 |
+
"loss": 0.0036,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 172.22,
|
387 |
+
"learning_rate": 7.680000000000001e-06,
|
388 |
+
"loss": 0.0033,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 175.0,
|
393 |
+
"learning_rate": 7.624444444444445e-06,
|
394 |
+
"loss": 0.0021,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 177.78,
|
399 |
+
"learning_rate": 7.56888888888889e-06,
|
400 |
+
"loss": 0.0033,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 180.56,
|
405 |
+
"learning_rate": 7.513333333333334e-06,
|
406 |
+
"loss": 0.0037,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 183.33,
|
411 |
+
"learning_rate": 7.457777777777778e-06,
|
412 |
+
"loss": 0.0032,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 186.11,
|
417 |
+
"learning_rate": 7.402222222222223e-06,
|
418 |
+
"loss": 0.0037,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 188.89,
|
423 |
+
"learning_rate": 7.346666666666668e-06,
|
424 |
+
"loss": 0.0022,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 191.67,
|
429 |
+
"learning_rate": 7.291111111111112e-06,
|
430 |
+
"loss": 0.0024,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 194.44,
|
435 |
+
"learning_rate": 7.235555555555556e-06,
|
436 |
+
"loss": 0.0026,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 197.22,
|
441 |
+
"learning_rate": 7.180000000000001e-06,
|
442 |
+
"loss": 0.0022,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 200.0,
|
447 |
+
"learning_rate": 7.124444444444445e-06,
|
448 |
+
"loss": 0.0026,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 202.78,
|
453 |
+
"learning_rate": 7.06888888888889e-06,
|
454 |
+
"loss": 0.0032,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 205.56,
|
459 |
+
"learning_rate": 7.0133333333333345e-06,
|
460 |
+
"loss": 0.0033,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 208.33,
|
465 |
+
"learning_rate": 6.9577777777777785e-06,
|
466 |
+
"loss": 0.0027,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 211.11,
|
471 |
+
"learning_rate": 6.902222222222223e-06,
|
472 |
+
"loss": 0.0043,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 213.89,
|
477 |
+
"learning_rate": 6.846666666666667e-06,
|
478 |
+
"loss": 0.0028,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 216.67,
|
483 |
+
"learning_rate": 6.7911111111111115e-06,
|
484 |
+
"loss": 0.0012,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 219.44,
|
489 |
+
"learning_rate": 6.735555555555556e-06,
|
490 |
+
"loss": 0.0015,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 222.22,
|
495 |
+
"learning_rate": 6.680000000000001e-06,
|
496 |
+
"loss": 0.0024,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 222.22,
|
501 |
+
"eval_loss": 0.2607421875,
|
502 |
+
"eval_runtime": 57.0802,
|
503 |
+
"eval_samples_per_second": 2.295,
|
504 |
+
"eval_steps_per_second": 0.158,
|
505 |
+
"eval_wer": 19.665718349928877,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 225.0,
|
510 |
+
"learning_rate": 6.6244444444444445e-06,
|
511 |
+
"loss": 0.0029,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 227.78,
|
516 |
+
"learning_rate": 6.568888888888889e-06,
|
517 |
+
"loss": 0.0021,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 230.56,
|
522 |
+
"learning_rate": 6.513333333333333e-06,
|
523 |
+
"loss": 0.0022,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 233.33,
|
528 |
+
"learning_rate": 6.457777777777778e-06,
|
529 |
+
"loss": 0.0022,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 236.11,
|
534 |
+
"learning_rate": 6.402222222222223e-06,
|
535 |
+
"loss": 0.0011,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 238.89,
|
540 |
+
"learning_rate": 6.346666666666668e-06,
|
541 |
+
"loss": 0.0026,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 241.67,
|
546 |
+
"learning_rate": 6.291111111111111e-06,
|
547 |
+
"loss": 0.0021,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 244.44,
|
552 |
+
"learning_rate": 6.235555555555556e-06,
|
553 |
+
"loss": 0.0016,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 247.22,
|
558 |
+
"learning_rate": 6.18e-06,
|
559 |
+
"loss": 0.0024,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 250.0,
|
564 |
+
"learning_rate": 6.124444444444445e-06,
|
565 |
+
"loss": 0.0046,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 252.78,
|
570 |
+
"learning_rate": 6.06888888888889e-06,
|
571 |
+
"loss": 0.0018,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 255.56,
|
576 |
+
"learning_rate": 6.013333333333335e-06,
|
577 |
+
"loss": 0.0012,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 258.33,
|
582 |
+
"learning_rate": 5.957777777777778e-06,
|
583 |
+
"loss": 0.0014,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 261.11,
|
588 |
+
"learning_rate": 5.902222222222223e-06,
|
589 |
+
"loss": 0.0007,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 263.89,
|
594 |
+
"learning_rate": 5.846666666666667e-06,
|
595 |
+
"loss": 0.0014,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 266.67,
|
600 |
+
"learning_rate": 5.791111111111112e-06,
|
601 |
+
"loss": 0.0009,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 269.44,
|
606 |
+
"learning_rate": 5.735555555555557e-06,
|
607 |
+
"loss": 0.0008,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 272.22,
|
612 |
+
"learning_rate": 5.68e-06,
|
613 |
+
"loss": 0.0028,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 275.0,
|
618 |
+
"learning_rate": 5.624444444444445e-06,
|
619 |
+
"loss": 0.002,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 277.78,
|
624 |
+
"learning_rate": 5.56888888888889e-06,
|
625 |
+
"loss": 0.0011,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 280.56,
|
630 |
+
"learning_rate": 5.513333333333334e-06,
|
631 |
+
"loss": 0.001,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 283.33,
|
636 |
+
"learning_rate": 5.4577777777777785e-06,
|
637 |
+
"loss": 0.0007,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 286.11,
|
642 |
+
"learning_rate": 5.402222222222223e-06,
|
643 |
+
"loss": 0.0007,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 288.89,
|
648 |
+
"learning_rate": 5.346666666666667e-06,
|
649 |
+
"loss": 0.0008,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 291.67,
|
654 |
+
"learning_rate": 5.2911111111111115e-06,
|
655 |
+
"loss": 0.0012,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 294.44,
|
660 |
+
"learning_rate": 5.235555555555556e-06,
|
661 |
+
"loss": 0.0016,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 297.22,
|
666 |
+
"learning_rate": 5.18e-06,
|
667 |
+
"loss": 0.0012,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 300.0,
|
672 |
+
"learning_rate": 5.124444444444445e-06,
|
673 |
+
"loss": 0.001,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 302.78,
|
678 |
+
"learning_rate": 5.06888888888889e-06,
|
679 |
+
"loss": 0.0012,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 305.56,
|
684 |
+
"learning_rate": 5.013333333333333e-06,
|
685 |
+
"loss": 0.001,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 308.33,
|
690 |
+
"learning_rate": 4.957777777777778e-06,
|
691 |
+
"loss": 0.0013,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 311.11,
|
696 |
+
"learning_rate": 4.902222222222222e-06,
|
697 |
+
"loss": 0.0015,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 313.89,
|
702 |
+
"learning_rate": 4.846666666666667e-06,
|
703 |
+
"loss": 0.0014,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 316.67,
|
708 |
+
"learning_rate": 4.791111111111111e-06,
|
709 |
+
"loss": 0.0007,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 319.44,
|
714 |
+
"learning_rate": 4.735555555555556e-06,
|
715 |
+
"loss": 0.0009,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 322.22,
|
720 |
+
"learning_rate": 4.680000000000001e-06,
|
721 |
+
"loss": 0.0021,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 325.0,
|
726 |
+
"learning_rate": 4.624444444444445e-06,
|
727 |
+
"loss": 0.0015,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 327.78,
|
732 |
+
"learning_rate": 4.568888888888889e-06,
|
733 |
+
"loss": 0.0012,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 330.56,
|
738 |
+
"learning_rate": 4.513333333333333e-06,
|
739 |
+
"loss": 0.0009,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 333.33,
|
744 |
+
"learning_rate": 4.457777777777778e-06,
|
745 |
+
"loss": 0.0011,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 333.33,
|
750 |
+
"eval_loss": 0.277099609375,
|
751 |
+
"eval_runtime": 58.1634,
|
752 |
+
"eval_samples_per_second": 2.252,
|
753 |
+
"eval_steps_per_second": 0.155,
|
754 |
+
"eval_wer": 20.874822190611663,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 177.47,
|
759 |
+
"learning_rate": 1.760888888888889e-06,
|
760 |
+
"loss": 0.5801,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 178.94,
|
765 |
+
"learning_rate": 1.7386666666666666e-06,
|
766 |
+
"loss": 0.1501,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 180.41,
|
771 |
+
"learning_rate": 1.7164444444444444e-06,
|
772 |
+
"loss": 0.0789,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 181.88,
|
777 |
+
"learning_rate": 1.6942222222222222e-06,
|
778 |
+
"loss": 0.0531,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 183.35,
|
783 |
+
"learning_rate": 1.6719999999999998e-06,
|
784 |
+
"loss": 0.0409,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 184.82,
|
789 |
+
"learning_rate": 1.6497777777777777e-06,
|
790 |
+
"loss": 0.032,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 186.29,
|
795 |
+
"learning_rate": 1.6275555555555555e-06,
|
796 |
+
"loss": 0.0251,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 187.76,
|
801 |
+
"learning_rate": 1.6053333333333333e-06,
|
802 |
+
"loss": 0.0203,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 189.24,
|
807 |
+
"learning_rate": 1.5831111111111111e-06,
|
808 |
+
"loss": 0.0167,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 190.71,
|
813 |
+
"learning_rate": 1.560888888888889e-06,
|
814 |
+
"loss": 0.0159,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 192.18,
|
819 |
+
"learning_rate": 1.5386666666666666e-06,
|
820 |
+
"loss": 0.0137,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 193.65,
|
825 |
+
"learning_rate": 1.5164444444444444e-06,
|
826 |
+
"loss": 0.0122,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 195.12,
|
831 |
+
"learning_rate": 1.494222222222222e-06,
|
832 |
+
"loss": 0.0106,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 196.59,
|
837 |
+
"learning_rate": 1.4719999999999998e-06,
|
838 |
+
"loss": 0.0094,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 198.06,
|
843 |
+
"learning_rate": 1.4497777777777777e-06,
|
844 |
+
"loss": 0.009,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 199.53,
|
849 |
+
"learning_rate": 1.4275555555555555e-06,
|
850 |
+
"loss": 0.0104,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 201.0,
|
855 |
+
"learning_rate": 1.4053333333333333e-06,
|
856 |
+
"loss": 0.0069,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 202.47,
|
861 |
+
"learning_rate": 1.3848888888888889e-06,
|
862 |
+
"loss": 0.0073,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 203.94,
|
867 |
+
"learning_rate": 1.3626666666666667e-06,
|
868 |
+
"loss": 0.0073,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 205.41,
|
873 |
+
"learning_rate": 1.3404444444444445e-06,
|
874 |
+
"loss": 0.0063,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 206.88,
|
879 |
+
"learning_rate": 1.3182222222222221e-06,
|
880 |
+
"loss": 0.007,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 208.35,
|
885 |
+
"learning_rate": 1.296e-06,
|
886 |
+
"loss": 0.0061,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 209.82,
|
891 |
+
"learning_rate": 1.2737777777777776e-06,
|
892 |
+
"loss": 0.0053,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 211.29,
|
897 |
+
"learning_rate": 1.2515555555555554e-06,
|
898 |
+
"loss": 0.0056,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 212.76,
|
903 |
+
"learning_rate": 1.2293333333333334e-06,
|
904 |
+
"loss": 0.005,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 214.24,
|
909 |
+
"learning_rate": 1.207111111111111e-06,
|
910 |
+
"loss": 0.0047,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 215.71,
|
915 |
+
"learning_rate": 1.1848888888888889e-06,
|
916 |
+
"loss": 0.0052,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 217.18,
|
921 |
+
"learning_rate": 1.1626666666666667e-06,
|
922 |
+
"loss": 0.0044,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 218.65,
|
927 |
+
"learning_rate": 1.1404444444444443e-06,
|
928 |
+
"loss": 0.0046,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 220.12,
|
933 |
+
"learning_rate": 1.1182222222222221e-06,
|
934 |
+
"loss": 0.0045,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 221.59,
|
939 |
+
"learning_rate": 1.096e-06,
|
940 |
+
"loss": 0.0041,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 223.06,
|
945 |
+
"learning_rate": 1.0737777777777776e-06,
|
946 |
+
"loss": 0.0054,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 224.53,
|
951 |
+
"learning_rate": 1.0515555555555556e-06,
|
952 |
+
"loss": 0.0038,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 226.0,
|
957 |
+
"learning_rate": 1.0293333333333334e-06,
|
958 |
+
"loss": 0.0038,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 227.47,
|
963 |
+
"learning_rate": 1.007111111111111e-06,
|
964 |
+
"loss": 0.004,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 228.94,
|
969 |
+
"learning_rate": 9.848888888888889e-07,
|
970 |
+
"loss": 0.0036,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 230.41,
|
975 |
+
"learning_rate": 9.626666666666667e-07,
|
976 |
+
"loss": 0.0041,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 231.88,
|
981 |
+
"learning_rate": 9.404444444444443e-07,
|
982 |
+
"loss": 0.0032,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 233.35,
|
987 |
+
"learning_rate": 9.182222222222223e-07,
|
988 |
+
"loss": 0.0038,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 234.82,
|
993 |
+
"learning_rate": 8.96e-07,
|
994 |
+
"loss": 0.0043,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 234.82,
|
999 |
+
"eval_loss": 0.45361328125,
|
1000 |
+
"eval_runtime": 157.593,
|
1001 |
+
"eval_samples_per_second": 1.726,
|
1002 |
+
"eval_steps_per_second": 0.108,
|
1003 |
+
"eval_wer": 10.707652303120357,
|
1004 |
+
"step": 4000
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 236.29,
|
1008 |
+
"learning_rate": 8.737777777777777e-07,
|
1009 |
+
"loss": 0.004,
|
1010 |
+
"step": 4025
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 237.76,
|
1014 |
+
"learning_rate": 8.515555555555555e-07,
|
1015 |
+
"loss": 0.0029,
|
1016 |
+
"step": 4050
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 239.24,
|
1020 |
+
"learning_rate": 8.293333333333333e-07,
|
1021 |
+
"loss": 0.0034,
|
1022 |
+
"step": 4075
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 240.71,
|
1026 |
+
"learning_rate": 8.071111111111111e-07,
|
1027 |
+
"loss": 0.0032,
|
1028 |
+
"step": 4100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 242.18,
|
1032 |
+
"learning_rate": 7.848888888888888e-07,
|
1033 |
+
"loss": 0.003,
|
1034 |
+
"step": 4125
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 243.65,
|
1038 |
+
"learning_rate": 7.626666666666667e-07,
|
1039 |
+
"loss": 0.0034,
|
1040 |
+
"step": 4150
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 245.12,
|
1044 |
+
"learning_rate": 7.404444444444444e-07,
|
1045 |
+
"loss": 0.0032,
|
1046 |
+
"step": 4175
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 246.59,
|
1050 |
+
"learning_rate": 7.182222222222222e-07,
|
1051 |
+
"loss": 0.0032,
|
1052 |
+
"step": 4200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 248.06,
|
1056 |
+
"learning_rate": 6.959999999999999e-07,
|
1057 |
+
"loss": 0.0028,
|
1058 |
+
"step": 4225
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 249.53,
|
1062 |
+
"learning_rate": 6.737777777777778e-07,
|
1063 |
+
"loss": 0.0028,
|
1064 |
+
"step": 4250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 251.0,
|
1068 |
+
"learning_rate": 6.515555555555555e-07,
|
1069 |
+
"loss": 0.0025,
|
1070 |
+
"step": 4275
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 252.47,
|
1074 |
+
"learning_rate": 6.293333333333333e-07,
|
1075 |
+
"loss": 0.0026,
|
1076 |
+
"step": 4300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 253.94,
|
1080 |
+
"learning_rate": 6.071111111111111e-07,
|
1081 |
+
"loss": 0.003,
|
1082 |
+
"step": 4325
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 255.41,
|
1086 |
+
"learning_rate": 5.848888888888889e-07,
|
1087 |
+
"loss": 0.0026,
|
1088 |
+
"step": 4350
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 256.88,
|
1092 |
+
"learning_rate": 5.626666666666666e-07,
|
1093 |
+
"loss": 0.0027,
|
1094 |
+
"step": 4375
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 258.35,
|
1098 |
+
"learning_rate": 5.404444444444443e-07,
|
1099 |
+
"loss": 0.003,
|
1100 |
+
"step": 4400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 259.82,
|
1104 |
+
"learning_rate": 5.182222222222223e-07,
|
1105 |
+
"loss": 0.0027,
|
1106 |
+
"step": 4425
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 261.29,
|
1110 |
+
"learning_rate": 4.977777777777777e-07,
|
1111 |
+
"loss": 0.0026,
|
1112 |
+
"step": 4450
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 262.76,
|
1116 |
+
"learning_rate": 4.7555555555555554e-07,
|
1117 |
+
"loss": 0.0023,
|
1118 |
+
"step": 4475
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 264.24,
|
1122 |
+
"learning_rate": 4.5333333333333326e-07,
|
1123 |
+
"loss": 0.0021,
|
1124 |
+
"step": 4500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 265.71,
|
1128 |
+
"learning_rate": 4.311111111111111e-07,
|
1129 |
+
"loss": 0.0022,
|
1130 |
+
"step": 4525
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 267.18,
|
1134 |
+
"learning_rate": 4.088888888888889e-07,
|
1135 |
+
"loss": 0.0034,
|
1136 |
+
"step": 4550
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 268.65,
|
1140 |
+
"learning_rate": 3.8666666666666664e-07,
|
1141 |
+
"loss": 0.0023,
|
1142 |
+
"step": 4575
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 270.12,
|
1146 |
+
"learning_rate": 3.6444444444444446e-07,
|
1147 |
+
"loss": 0.0022,
|
1148 |
+
"step": 4600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 271.59,
|
1152 |
+
"learning_rate": 3.422222222222222e-07,
|
1153 |
+
"loss": 0.0022,
|
1154 |
+
"step": 4625
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 273.06,
|
1158 |
+
"learning_rate": 3.2e-07,
|
1159 |
+
"loss": 0.0024,
|
1160 |
+
"step": 4650
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 274.53,
|
1164 |
+
"learning_rate": 2.9777777777777773e-07,
|
1165 |
+
"loss": 0.0031,
|
1166 |
+
"step": 4675
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 276.0,
|
1170 |
+
"learning_rate": 2.7555555555555555e-07,
|
1171 |
+
"loss": 0.0022,
|
1172 |
+
"step": 4700
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 277.47,
|
1176 |
+
"learning_rate": 2.533333333333333e-07,
|
1177 |
+
"loss": 0.0022,
|
1178 |
+
"step": 4725
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 278.94,
|
1182 |
+
"learning_rate": 2.311111111111111e-07,
|
1183 |
+
"loss": 0.0021,
|
1184 |
+
"step": 4750
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 280.41,
|
1188 |
+
"learning_rate": 2.088888888888889e-07,
|
1189 |
+
"loss": 0.0023,
|
1190 |
+
"step": 4775
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 281.88,
|
1194 |
+
"learning_rate": 1.8666666666666667e-07,
|
1195 |
+
"loss": 0.0025,
|
1196 |
+
"step": 4800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 283.35,
|
1200 |
+
"learning_rate": 1.6444444444444444e-07,
|
1201 |
+
"loss": 0.0022,
|
1202 |
+
"step": 4825
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 284.82,
|
1206 |
+
"learning_rate": 1.4222222222222222e-07,
|
1207 |
+
"loss": 0.0022,
|
1208 |
+
"step": 4850
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 286.29,
|
1212 |
+
"learning_rate": 1.2e-07,
|
1213 |
+
"loss": 0.0021,
|
1214 |
+
"step": 4875
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 287.76,
|
1218 |
+
"learning_rate": 9.777777777777778e-08,
|
1219 |
+
"loss": 0.0023,
|
1220 |
+
"step": 4900
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 289.24,
|
1224 |
+
"learning_rate": 7.555555555555555e-08,
|
1225 |
+
"loss": 0.002,
|
1226 |
+
"step": 4925
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 290.71,
|
1230 |
+
"learning_rate": 5.3333333333333334e-08,
|
1231 |
+
"loss": 0.0025,
|
1232 |
+
"step": 4950
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 292.18,
|
1236 |
+
"learning_rate": 3.111111111111111e-08,
|
1237 |
+
"loss": 0.002,
|
1238 |
+
"step": 4975
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 293.65,
|
1242 |
+
"learning_rate": 8.888888888888889e-09,
|
1243 |
+
"loss": 0.0024,
|
1244 |
+
"step": 5000
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 293.65,
|
1248 |
+
"eval_loss": 0.465576171875,
|
1249 |
+
"eval_runtime": 158.123,
|
1250 |
+
"eval_samples_per_second": 1.72,
|
1251 |
+
"eval_steps_per_second": 0.108,
|
1252 |
+
"eval_wer": 10.642644873699851,
|
1253 |
+
"step": 5000
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 295.47,
|
1257 |
+
"learning_rate": 2.7544827586206896e-06,
|
1258 |
+
"loss": 0.0021,
|
1259 |
+
"step": 5025
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 296.94,
|
1263 |
+
"learning_rate": 2.7475862068965512e-06,
|
1264 |
+
"loss": 0.0024,
|
1265 |
+
"step": 5050
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 298.41,
|
1269 |
+
"learning_rate": 2.7406896551724137e-06,
|
1270 |
+
"loss": 0.0025,
|
1271 |
+
"step": 5075
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 299.88,
|
1275 |
+
"learning_rate": 2.7337931034482757e-06,
|
1276 |
+
"loss": 0.0022,
|
1277 |
+
"step": 5100
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 301.35,
|
1281 |
+
"learning_rate": 2.7268965517241378e-06,
|
1282 |
+
"loss": 0.0027,
|
1283 |
+
"step": 5125
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 302.82,
|
1287 |
+
"learning_rate": 2.7200000000000002e-06,
|
1288 |
+
"loss": 0.0024,
|
1289 |
+
"step": 5150
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 304.29,
|
1293 |
+
"learning_rate": 2.713103448275862e-06,
|
1294 |
+
"loss": 0.0024,
|
1295 |
+
"step": 5175
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 305.76,
|
1299 |
+
"learning_rate": 2.7062068965517243e-06,
|
1300 |
+
"loss": 0.0023,
|
1301 |
+
"step": 5200
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 307.24,
|
1305 |
+
"learning_rate": 2.699310344827586e-06,
|
1306 |
+
"loss": 0.0027,
|
1307 |
+
"step": 5225
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 308.71,
|
1311 |
+
"learning_rate": 2.6924137931034483e-06,
|
1312 |
+
"loss": 0.0023,
|
1313 |
+
"step": 5250
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 310.18,
|
1317 |
+
"learning_rate": 2.68551724137931e-06,
|
1318 |
+
"loss": 0.0021,
|
1319 |
+
"step": 5275
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 311.65,
|
1323 |
+
"learning_rate": 2.6786206896551724e-06,
|
1324 |
+
"loss": 0.0025,
|
1325 |
+
"step": 5300
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 313.12,
|
1329 |
+
"learning_rate": 2.6717241379310344e-06,
|
1330 |
+
"loss": 0.0021,
|
1331 |
+
"step": 5325
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 314.59,
|
1335 |
+
"learning_rate": 2.6648275862068965e-06,
|
1336 |
+
"loss": 0.0019,
|
1337 |
+
"step": 5350
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 316.06,
|
1341 |
+
"learning_rate": 2.6579310344827585e-06,
|
1342 |
+
"loss": 0.0019,
|
1343 |
+
"step": 5375
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 317.53,
|
1347 |
+
"learning_rate": 2.6510344827586205e-06,
|
1348 |
+
"loss": 0.0018,
|
1349 |
+
"step": 5400
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 319.0,
|
1353 |
+
"learning_rate": 2.6441379310344826e-06,
|
1354 |
+
"loss": 0.0022,
|
1355 |
+
"step": 5425
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 320.47,
|
1359 |
+
"learning_rate": 2.6377931034482757e-06,
|
1360 |
+
"loss": 0.0019,
|
1361 |
+
"step": 5450
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 321.94,
|
1365 |
+
"learning_rate": 2.6308965517241377e-06,
|
1366 |
+
"loss": 0.0016,
|
1367 |
+
"step": 5475
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 323.41,
|
1371 |
+
"learning_rate": 2.624e-06,
|
1372 |
+
"loss": 0.0013,
|
1373 |
+
"step": 5500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 324.88,
|
1377 |
+
"learning_rate": 2.617103448275862e-06,
|
1378 |
+
"loss": 0.0019,
|
1379 |
+
"step": 5525
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 326.35,
|
1383 |
+
"learning_rate": 2.6102068965517243e-06,
|
1384 |
+
"loss": 0.0017,
|
1385 |
+
"step": 5550
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 327.82,
|
1389 |
+
"learning_rate": 2.603310344827586e-06,
|
1390 |
+
"loss": 0.0018,
|
1391 |
+
"step": 5575
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 329.29,
|
1395 |
+
"learning_rate": 2.5964137931034483e-06,
|
1396 |
+
"loss": 0.0013,
|
1397 |
+
"step": 5600
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 330.76,
|
1401 |
+
"learning_rate": 2.58951724137931e-06,
|
1402 |
+
"loss": 0.0016,
|
1403 |
+
"step": 5625
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 332.24,
|
1407 |
+
"learning_rate": 2.5826206896551724e-06,
|
1408 |
+
"loss": 0.0013,
|
1409 |
+
"step": 5650
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 333.71,
|
1413 |
+
"learning_rate": 2.575724137931034e-06,
|
1414 |
+
"loss": 0.0018,
|
1415 |
+
"step": 5675
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 335.18,
|
1419 |
+
"learning_rate": 2.5688275862068965e-06,
|
1420 |
+
"loss": 0.0014,
|
1421 |
+
"step": 5700
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 336.65,
|
1425 |
+
"learning_rate": 2.561931034482759e-06,
|
1426 |
+
"loss": 0.0013,
|
1427 |
+
"step": 5725
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 338.12,
|
1431 |
+
"learning_rate": 2.5550344827586205e-06,
|
1432 |
+
"loss": 0.0011,
|
1433 |
+
"step": 5750
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 339.59,
|
1437 |
+
"learning_rate": 2.548137931034483e-06,
|
1438 |
+
"loss": 0.0018,
|
1439 |
+
"step": 5775
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 341.06,
|
1443 |
+
"learning_rate": 2.5412413793103446e-06,
|
1444 |
+
"loss": 0.0013,
|
1445 |
+
"step": 5800
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 342.53,
|
1449 |
+
"learning_rate": 2.534344827586207e-06,
|
1450 |
+
"loss": 0.0012,
|
1451 |
+
"step": 5825
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 344.0,
|
1455 |
+
"learning_rate": 2.5274482758620687e-06,
|
1456 |
+
"loss": 0.0014,
|
1457 |
+
"step": 5850
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 345.47,
|
1461 |
+
"learning_rate": 2.520551724137931e-06,
|
1462 |
+
"loss": 0.001,
|
1463 |
+
"step": 5875
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 346.94,
|
1467 |
+
"learning_rate": 2.5136551724137927e-06,
|
1468 |
+
"loss": 0.0012,
|
1469 |
+
"step": 5900
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 348.41,
|
1473 |
+
"learning_rate": 2.506758620689655e-06,
|
1474 |
+
"loss": 0.0012,
|
1475 |
+
"step": 5925
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 349.88,
|
1479 |
+
"learning_rate": 2.499862068965517e-06,
|
1480 |
+
"loss": 0.0012,
|
1481 |
+
"step": 5950
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 351.35,
|
1485 |
+
"learning_rate": 2.4929655172413792e-06,
|
1486 |
+
"loss": 0.0013,
|
1487 |
+
"step": 5975
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 352.82,
|
1491 |
+
"learning_rate": 2.4860689655172413e-06,
|
1492 |
+
"loss": 0.0015,
|
1493 |
+
"step": 6000
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 352.82,
|
1497 |
+
"eval_loss": 0.497802734375,
|
1498 |
+
"eval_runtime": 156.7207,
|
1499 |
+
"eval_samples_per_second": 1.736,
|
1500 |
+
"eval_steps_per_second": 0.108,
|
1501 |
+
"eval_wer": 10.503343239227341,
|
1502 |
+
"step": 6000
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 354.29,
|
1506 |
+
"learning_rate": 2.4791724137931033e-06,
|
1507 |
+
"loss": 0.0013,
|
1508 |
+
"step": 6025
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 355.76,
|
1512 |
+
"learning_rate": 2.4722758620689653e-06,
|
1513 |
+
"loss": 0.0012,
|
1514 |
+
"step": 6050
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 357.24,
|
1518 |
+
"learning_rate": 2.4653793103448274e-06,
|
1519 |
+
"loss": 0.0011,
|
1520 |
+
"step": 6075
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 358.71,
|
1524 |
+
"learning_rate": 2.4584827586206894e-06,
|
1525 |
+
"loss": 0.0008,
|
1526 |
+
"step": 6100
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 360.18,
|
1530 |
+
"learning_rate": 2.4515862068965514e-06,
|
1531 |
+
"loss": 0.0008,
|
1532 |
+
"step": 6125
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 361.65,
|
1536 |
+
"learning_rate": 2.444689655172414e-06,
|
1537 |
+
"loss": 0.0011,
|
1538 |
+
"step": 6150
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 363.12,
|
1542 |
+
"learning_rate": 2.4377931034482755e-06,
|
1543 |
+
"loss": 0.0012,
|
1544 |
+
"step": 6175
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 364.59,
|
1548 |
+
"learning_rate": 2.430896551724138e-06,
|
1549 |
+
"loss": 0.0013,
|
1550 |
+
"step": 6200
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 366.06,
|
1554 |
+
"learning_rate": 2.424e-06,
|
1555 |
+
"loss": 0.0011,
|
1556 |
+
"step": 6225
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 367.53,
|
1560 |
+
"learning_rate": 2.417103448275862e-06,
|
1561 |
+
"loss": 0.0012,
|
1562 |
+
"step": 6250
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 369.0,
|
1566 |
+
"learning_rate": 2.410206896551724e-06,
|
1567 |
+
"loss": 0.0011,
|
1568 |
+
"step": 6275
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 370.47,
|
1572 |
+
"learning_rate": 2.403310344827586e-06,
|
1573 |
+
"loss": 0.0009,
|
1574 |
+
"step": 6300
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 371.94,
|
1578 |
+
"learning_rate": 2.396413793103448e-06,
|
1579 |
+
"loss": 0.0014,
|
1580 |
+
"step": 6325
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 373.41,
|
1584 |
+
"learning_rate": 2.38951724137931e-06,
|
1585 |
+
"loss": 0.0018,
|
1586 |
+
"step": 6350
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 374.88,
|
1590 |
+
"learning_rate": 2.382620689655172e-06,
|
1591 |
+
"loss": 0.0009,
|
1592 |
+
"step": 6375
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 376.35,
|
1596 |
+
"learning_rate": 2.3757241379310342e-06,
|
1597 |
+
"loss": 0.001,
|
1598 |
+
"step": 6400
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 377.82,
|
1602 |
+
"learning_rate": 2.3688275862068963e-06,
|
1603 |
+
"loss": 0.0009,
|
1604 |
+
"step": 6425
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 379.29,
|
1608 |
+
"learning_rate": 2.36248275862069e-06,
|
1609 |
+
"loss": 0.0008,
|
1610 |
+
"step": 6450
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 380.76,
|
1614 |
+
"learning_rate": 2.3555862068965514e-06,
|
1615 |
+
"loss": 0.0009,
|
1616 |
+
"step": 6475
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 382.24,
|
1620 |
+
"learning_rate": 2.348689655172414e-06,
|
1621 |
+
"loss": 0.0009,
|
1622 |
+
"step": 6500
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 383.71,
|
1626 |
+
"learning_rate": 2.3417931034482755e-06,
|
1627 |
+
"loss": 0.0011,
|
1628 |
+
"step": 6525
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 385.18,
|
1632 |
+
"learning_rate": 2.334896551724138e-06,
|
1633 |
+
"loss": 0.0008,
|
1634 |
+
"step": 6550
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 386.65,
|
1638 |
+
"learning_rate": 2.3279999999999996e-06,
|
1639 |
+
"loss": 0.0006,
|
1640 |
+
"step": 6575
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 388.12,
|
1644 |
+
"learning_rate": 2.321103448275862e-06,
|
1645 |
+
"loss": 0.001,
|
1646 |
+
"step": 6600
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 389.59,
|
1650 |
+
"learning_rate": 2.314206896551724e-06,
|
1651 |
+
"loss": 0.0009,
|
1652 |
+
"step": 6625
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 391.06,
|
1656 |
+
"learning_rate": 2.307310344827586e-06,
|
1657 |
+
"loss": 0.0008,
|
1658 |
+
"step": 6650
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 392.53,
|
1662 |
+
"learning_rate": 2.300413793103448e-06,
|
1663 |
+
"loss": 0.001,
|
1664 |
+
"step": 6675
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 394.0,
|
1668 |
+
"learning_rate": 2.29351724137931e-06,
|
1669 |
+
"loss": 0.0009,
|
1670 |
+
"step": 6700
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 395.47,
|
1674 |
+
"learning_rate": 2.2866206896551726e-06,
|
1675 |
+
"loss": 0.0011,
|
1676 |
+
"step": 6725
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 396.94,
|
1680 |
+
"learning_rate": 2.2797241379310342e-06,
|
1681 |
+
"loss": 0.0008,
|
1682 |
+
"step": 6750
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 398.41,
|
1686 |
+
"learning_rate": 2.2728275862068967e-06,
|
1687 |
+
"loss": 0.0007,
|
1688 |
+
"step": 6775
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 399.88,
|
1692 |
+
"learning_rate": 2.2659310344827583e-06,
|
1693 |
+
"loss": 0.0006,
|
1694 |
+
"step": 6800
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 401.35,
|
1698 |
+
"learning_rate": 2.2590344827586207e-06,
|
1699 |
+
"loss": 0.0007,
|
1700 |
+
"step": 6825
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 402.82,
|
1704 |
+
"learning_rate": 2.2521379310344828e-06,
|
1705 |
+
"loss": 0.0011,
|
1706 |
+
"step": 6850
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 404.29,
|
1710 |
+
"learning_rate": 2.245241379310345e-06,
|
1711 |
+
"loss": 0.001,
|
1712 |
+
"step": 6875
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 405.76,
|
1716 |
+
"learning_rate": 2.238344827586207e-06,
|
1717 |
+
"loss": 0.0007,
|
1718 |
+
"step": 6900
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 407.24,
|
1722 |
+
"learning_rate": 2.231448275862069e-06,
|
1723 |
+
"loss": 0.0008,
|
1724 |
+
"step": 6925
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 408.71,
|
1728 |
+
"learning_rate": 2.224551724137931e-06,
|
1729 |
+
"loss": 0.0007,
|
1730 |
+
"step": 6950
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 410.18,
|
1734 |
+
"learning_rate": 2.217655172413793e-06,
|
1735 |
+
"loss": 0.0008,
|
1736 |
+
"step": 6975
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 411.65,
|
1740 |
+
"learning_rate": 2.210758620689655e-06,
|
1741 |
+
"loss": 0.0007,
|
1742 |
+
"step": 7000
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 411.65,
|
1746 |
+
"eval_loss": 0.5146484375,
|
1747 |
+
"eval_runtime": 159.9051,
|
1748 |
+
"eval_samples_per_second": 1.701,
|
1749 |
+
"eval_steps_per_second": 0.106,
|
1750 |
+
"eval_wer": 10.057578008915305,
|
1751 |
+
"step": 7000
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 413.12,
|
1755 |
+
"learning_rate": 2.203862068965517e-06,
|
1756 |
+
"loss": 0.0007,
|
1757 |
+
"step": 7025
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 414.59,
|
1761 |
+
"learning_rate": 2.196965517241379e-06,
|
1762 |
+
"loss": 0.0006,
|
1763 |
+
"step": 7050
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 416.06,
|
1767 |
+
"learning_rate": 2.1900689655172415e-06,
|
1768 |
+
"loss": 0.0009,
|
1769 |
+
"step": 7075
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 417.53,
|
1773 |
+
"learning_rate": 2.183172413793103e-06,
|
1774 |
+
"loss": 0.0008,
|
1775 |
+
"step": 7100
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 419.0,
|
1779 |
+
"learning_rate": 2.1762758620689656e-06,
|
1780 |
+
"loss": 0.0007,
|
1781 |
+
"step": 7125
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 420.47,
|
1785 |
+
"learning_rate": 2.1693793103448276e-06,
|
1786 |
+
"loss": 0.0008,
|
1787 |
+
"step": 7150
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 421.94,
|
1791 |
+
"learning_rate": 2.1624827586206896e-06,
|
1792 |
+
"loss": 0.0007,
|
1793 |
+
"step": 7175
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 423.41,
|
1797 |
+
"learning_rate": 2.1555862068965517e-06,
|
1798 |
+
"loss": 0.0005,
|
1799 |
+
"step": 7200
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 424.88,
|
1803 |
+
"learning_rate": 2.1486896551724137e-06,
|
1804 |
+
"loss": 0.0008,
|
1805 |
+
"step": 7225
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 426.35,
|
1809 |
+
"learning_rate": 2.1417931034482757e-06,
|
1810 |
+
"loss": 0.0009,
|
1811 |
+
"step": 7250
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 427.82,
|
1815 |
+
"learning_rate": 2.1348965517241378e-06,
|
1816 |
+
"loss": 0.0009,
|
1817 |
+
"step": 7275
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 429.29,
|
1821 |
+
"learning_rate": 2.128e-06,
|
1822 |
+
"loss": 0.0006,
|
1823 |
+
"step": 7300
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 430.76,
|
1827 |
+
"learning_rate": 2.121103448275862e-06,
|
1828 |
+
"loss": 0.0006,
|
1829 |
+
"step": 7325
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 432.24,
|
1833 |
+
"learning_rate": 2.1142068965517243e-06,
|
1834 |
+
"loss": 0.0006,
|
1835 |
+
"step": 7350
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 433.71,
|
1839 |
+
"learning_rate": 2.107310344827586e-06,
|
1840 |
+
"loss": 0.0006,
|
1841 |
+
"step": 7375
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 435.18,
|
1845 |
+
"learning_rate": 2.1004137931034483e-06,
|
1846 |
+
"loss": 0.0007,
|
1847 |
+
"step": 7400
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 436.65,
|
1851 |
+
"learning_rate": 2.09351724137931e-06,
|
1852 |
+
"loss": 0.0006,
|
1853 |
+
"step": 7425
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 438.12,
|
1857 |
+
"learning_rate": 2.0871724137931035e-06,
|
1858 |
+
"loss": 0.0007,
|
1859 |
+
"step": 7450
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 439.59,
|
1863 |
+
"learning_rate": 2.080275862068965e-06,
|
1864 |
+
"loss": 0.0006,
|
1865 |
+
"step": 7475
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 441.06,
|
1869 |
+
"learning_rate": 2.0733793103448276e-06,
|
1870 |
+
"loss": 0.0009,
|
1871 |
+
"step": 7500
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 442.53,
|
1875 |
+
"learning_rate": 2.0664827586206896e-06,
|
1876 |
+
"loss": 0.0008,
|
1877 |
+
"step": 7525
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 444.0,
|
1881 |
+
"learning_rate": 2.0595862068965516e-06,
|
1882 |
+
"loss": 0.0005,
|
1883 |
+
"step": 7550
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 445.47,
|
1887 |
+
"learning_rate": 2.0526896551724137e-06,
|
1888 |
+
"loss": 0.0004,
|
1889 |
+
"step": 7575
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 446.94,
|
1893 |
+
"learning_rate": 2.0457931034482757e-06,
|
1894 |
+
"loss": 0.0006,
|
1895 |
+
"step": 7600
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 448.41,
|
1899 |
+
"learning_rate": 2.0388965517241377e-06,
|
1900 |
+
"loss": 0.0007,
|
1901 |
+
"step": 7625
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 449.88,
|
1905 |
+
"learning_rate": 2.0319999999999998e-06,
|
1906 |
+
"loss": 0.0005,
|
1907 |
+
"step": 7650
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 451.35,
|
1911 |
+
"learning_rate": 2.025103448275862e-06,
|
1912 |
+
"loss": 0.0005,
|
1913 |
+
"step": 7675
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 452.82,
|
1917 |
+
"learning_rate": 2.018206896551724e-06,
|
1918 |
+
"loss": 0.0009,
|
1919 |
+
"step": 7700
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 454.29,
|
1923 |
+
"learning_rate": 2.0113103448275863e-06,
|
1924 |
+
"loss": 0.0005,
|
1925 |
+
"step": 7725
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 455.76,
|
1929 |
+
"learning_rate": 2.0044137931034483e-06,
|
1930 |
+
"loss": 0.0005,
|
1931 |
+
"step": 7750
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 457.24,
|
1935 |
+
"learning_rate": 1.9975172413793104e-06,
|
1936 |
+
"loss": 0.0006,
|
1937 |
+
"step": 7775
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 458.71,
|
1941 |
+
"learning_rate": 1.9906206896551724e-06,
|
1942 |
+
"loss": 0.0005,
|
1943 |
+
"step": 7800
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 460.18,
|
1947 |
+
"learning_rate": 1.9837241379310344e-06,
|
1948 |
+
"loss": 0.0005,
|
1949 |
+
"step": 7825
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 461.65,
|
1953 |
+
"learning_rate": 1.9768275862068965e-06,
|
1954 |
+
"loss": 0.0006,
|
1955 |
+
"step": 7850
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 463.12,
|
1959 |
+
"learning_rate": 1.9699310344827585e-06,
|
1960 |
+
"loss": 0.0004,
|
1961 |
+
"step": 7875
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 464.59,
|
1965 |
+
"learning_rate": 1.9630344827586205e-06,
|
1966 |
+
"loss": 0.0007,
|
1967 |
+
"step": 7900
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 466.06,
|
1971 |
+
"learning_rate": 1.956137931034483e-06,
|
1972 |
+
"loss": 0.0005,
|
1973 |
+
"step": 7925
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 467.53,
|
1977 |
+
"learning_rate": 1.949241379310345e-06,
|
1978 |
+
"loss": 0.0006,
|
1979 |
+
"step": 7950
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 469.0,
|
1983 |
+
"learning_rate": 1.942344827586207e-06,
|
1984 |
+
"loss": 0.0006,
|
1985 |
+
"step": 7975
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 470.47,
|
1989 |
+
"learning_rate": 1.935448275862069e-06,
|
1990 |
+
"loss": 0.0007,
|
1991 |
+
"step": 8000
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 470.47,
|
1995 |
+
"eval_loss": 0.53857421875,
|
1996 |
+
"eval_runtime": 158.4391,
|
1997 |
+
"eval_samples_per_second": 1.717,
|
1998 |
+
"eval_steps_per_second": 0.107,
|
1999 |
+
"eval_wer": 10.131872213967311,
|
2000 |
+
"step": 8000
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 471.94,
|
2004 |
+
"learning_rate": 1.928551724137931e-06,
|
2005 |
+
"loss": 0.0005,
|
2006 |
+
"step": 8025
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 473.41,
|
2010 |
+
"learning_rate": 1.921655172413793e-06,
|
2011 |
+
"loss": 0.0008,
|
2012 |
+
"step": 8050
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 474.88,
|
2016 |
+
"learning_rate": 1.914758620689655e-06,
|
2017 |
+
"loss": 0.0005,
|
2018 |
+
"step": 8075
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 476.35,
|
2022 |
+
"learning_rate": 1.907862068965517e-06,
|
2023 |
+
"loss": 0.0004,
|
2024 |
+
"step": 8100
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 477.82,
|
2028 |
+
"learning_rate": 1.9009655172413792e-06,
|
2029 |
+
"loss": 0.0005,
|
2030 |
+
"step": 8125
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 479.29,
|
2034 |
+
"learning_rate": 1.8940689655172413e-06,
|
2035 |
+
"loss": 0.0004,
|
2036 |
+
"step": 8150
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 480.76,
|
2040 |
+
"learning_rate": 1.8871724137931033e-06,
|
2041 |
+
"loss": 0.0007,
|
2042 |
+
"step": 8175
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 482.24,
|
2046 |
+
"learning_rate": 1.8802758620689653e-06,
|
2047 |
+
"loss": 0.0005,
|
2048 |
+
"step": 8200
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 483.71,
|
2052 |
+
"learning_rate": 1.8733793103448274e-06,
|
2053 |
+
"loss": 0.0007,
|
2054 |
+
"step": 8225
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 485.18,
|
2058 |
+
"learning_rate": 1.8664827586206894e-06,
|
2059 |
+
"loss": 0.0005,
|
2060 |
+
"step": 8250
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 486.65,
|
2064 |
+
"learning_rate": 1.8595862068965517e-06,
|
2065 |
+
"loss": 0.0004,
|
2066 |
+
"step": 8275
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 488.12,
|
2070 |
+
"learning_rate": 1.8526896551724137e-06,
|
2071 |
+
"loss": 0.0005,
|
2072 |
+
"step": 8300
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 489.59,
|
2076 |
+
"learning_rate": 1.845793103448276e-06,
|
2077 |
+
"loss": 0.0004,
|
2078 |
+
"step": 8325
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 491.06,
|
2082 |
+
"learning_rate": 1.838896551724138e-06,
|
2083 |
+
"loss": 0.0004,
|
2084 |
+
"step": 8350
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 492.53,
|
2088 |
+
"learning_rate": 1.832e-06,
|
2089 |
+
"loss": 0.0005,
|
2090 |
+
"step": 8375
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 494.0,
|
2094 |
+
"learning_rate": 1.825103448275862e-06,
|
2095 |
+
"loss": 0.0004,
|
2096 |
+
"step": 8400
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 495.47,
|
2100 |
+
"learning_rate": 1.818206896551724e-06,
|
2101 |
+
"loss": 0.0007,
|
2102 |
+
"step": 8425
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 496.94,
|
2106 |
+
"learning_rate": 1.811862068965517e-06,
|
2107 |
+
"loss": 0.0008,
|
2108 |
+
"step": 8450
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 498.41,
|
2112 |
+
"learning_rate": 1.8049655172413792e-06,
|
2113 |
+
"loss": 0.0005,
|
2114 |
+
"step": 8475
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 499.88,
|
2118 |
+
"learning_rate": 1.7980689655172413e-06,
|
2119 |
+
"loss": 0.0006,
|
2120 |
+
"step": 8500
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 501.35,
|
2124 |
+
"learning_rate": 1.7911724137931035e-06,
|
2125 |
+
"loss": 0.0004,
|
2126 |
+
"step": 8525
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 502.82,
|
2130 |
+
"learning_rate": 1.7842758620689655e-06,
|
2131 |
+
"loss": 0.0004,
|
2132 |
+
"step": 8550
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 504.29,
|
2136 |
+
"learning_rate": 1.7773793103448276e-06,
|
2137 |
+
"loss": 0.0006,
|
2138 |
+
"step": 8575
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 505.76,
|
2142 |
+
"learning_rate": 1.7704827586206896e-06,
|
2143 |
+
"loss": 0.0004,
|
2144 |
+
"step": 8600
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 507.24,
|
2148 |
+
"learning_rate": 1.7635862068965516e-06,
|
2149 |
+
"loss": 0.0004,
|
2150 |
+
"step": 8625
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 508.71,
|
2154 |
+
"learning_rate": 1.7566896551724137e-06,
|
2155 |
+
"loss": 0.0006,
|
2156 |
+
"step": 8650
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 510.18,
|
2160 |
+
"learning_rate": 1.7497931034482757e-06,
|
2161 |
+
"loss": 0.0004,
|
2162 |
+
"step": 8675
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 511.65,
|
2166 |
+
"learning_rate": 1.742896551724138e-06,
|
2167 |
+
"loss": 0.0005,
|
2168 |
+
"step": 8700
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 513.12,
|
2172 |
+
"learning_rate": 1.736e-06,
|
2173 |
+
"loss": 0.0006,
|
2174 |
+
"step": 8725
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 514.59,
|
2178 |
+
"learning_rate": 1.729103448275862e-06,
|
2179 |
+
"loss": 0.0006,
|
2180 |
+
"step": 8750
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 516.06,
|
2184 |
+
"learning_rate": 1.722206896551724e-06,
|
2185 |
+
"loss": 0.0004,
|
2186 |
+
"step": 8775
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 517.53,
|
2190 |
+
"learning_rate": 1.715310344827586e-06,
|
2191 |
+
"loss": 0.0003,
|
2192 |
+
"step": 8800
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 519.0,
|
2196 |
+
"learning_rate": 1.7084137931034481e-06,
|
2197 |
+
"loss": 0.0003,
|
2198 |
+
"step": 8825
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 520.47,
|
2202 |
+
"learning_rate": 1.7015172413793101e-06,
|
2203 |
+
"loss": 0.0004,
|
2204 |
+
"step": 8850
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 521.94,
|
2208 |
+
"learning_rate": 1.6946206896551722e-06,
|
2209 |
+
"loss": 0.0006,
|
2210 |
+
"step": 8875
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 523.41,
|
2214 |
+
"learning_rate": 1.6877241379310342e-06,
|
2215 |
+
"loss": 0.0005,
|
2216 |
+
"step": 8900
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 524.88,
|
2220 |
+
"learning_rate": 1.6808275862068967e-06,
|
2221 |
+
"loss": 0.0029,
|
2222 |
+
"step": 8925
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 526.35,
|
2226 |
+
"learning_rate": 1.6739310344827587e-06,
|
2227 |
+
"loss": 0.0004,
|
2228 |
+
"step": 8950
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 527.82,
|
2232 |
+
"learning_rate": 1.6670344827586207e-06,
|
2233 |
+
"loss": 0.0003,
|
2234 |
+
"step": 8975
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 529.29,
|
2238 |
+
"learning_rate": 1.6601379310344828e-06,
|
2239 |
+
"loss": 0.0004,
|
2240 |
+
"step": 9000
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 529.29,
|
2244 |
+
"eval_loss": 0.5361328125,
|
2245 |
+
"eval_runtime": 156.9399,
|
2246 |
+
"eval_samples_per_second": 1.733,
|
2247 |
+
"eval_steps_per_second": 0.108,
|
2248 |
+
"eval_wer": 9.778974739970282,
|
2249 |
+
"step": 9000
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 530.76,
|
2253 |
+
"learning_rate": 1.6532413793103448e-06,
|
2254 |
+
"loss": 0.0006,
|
2255 |
+
"step": 9025
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 532.24,
|
2259 |
+
"learning_rate": 1.6463448275862068e-06,
|
2260 |
+
"loss": 0.0003,
|
2261 |
+
"step": 9050
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 533.71,
|
2265 |
+
"learning_rate": 1.6394482758620689e-06,
|
2266 |
+
"loss": 0.0003,
|
2267 |
+
"step": 9075
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 535.18,
|
2271 |
+
"learning_rate": 1.632551724137931e-06,
|
2272 |
+
"loss": 0.0005,
|
2273 |
+
"step": 9100
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 536.65,
|
2277 |
+
"learning_rate": 1.625655172413793e-06,
|
2278 |
+
"loss": 0.0006,
|
2279 |
+
"step": 9125
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 538.12,
|
2283 |
+
"learning_rate": 1.6187586206896552e-06,
|
2284 |
+
"loss": 0.0003,
|
2285 |
+
"step": 9150
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 539.59,
|
2289 |
+
"learning_rate": 1.6118620689655172e-06,
|
2290 |
+
"loss": 0.0004,
|
2291 |
+
"step": 9175
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 541.06,
|
2295 |
+
"learning_rate": 1.6049655172413792e-06,
|
2296 |
+
"loss": 0.0003,
|
2297 |
+
"step": 9200
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 542.53,
|
2301 |
+
"learning_rate": 1.5980689655172413e-06,
|
2302 |
+
"loss": 0.0004,
|
2303 |
+
"step": 9225
|
2304 |
+
},
|
2305 |
+
{
|
2306 |
+
"epoch": 544.0,
|
2307 |
+
"learning_rate": 1.5911724137931033e-06,
|
2308 |
+
"loss": 0.0006,
|
2309 |
+
"step": 9250
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 545.47,
|
2313 |
+
"learning_rate": 1.5842758620689653e-06,
|
2314 |
+
"loss": 0.0002,
|
2315 |
+
"step": 9275
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 546.94,
|
2319 |
+
"learning_rate": 1.5773793103448274e-06,
|
2320 |
+
"loss": 0.0003,
|
2321 |
+
"step": 9300
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 548.41,
|
2325 |
+
"learning_rate": 1.5704827586206896e-06,
|
2326 |
+
"loss": 0.0003,
|
2327 |
+
"step": 9325
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 549.88,
|
2331 |
+
"learning_rate": 1.5635862068965516e-06,
|
2332 |
+
"loss": 0.0003,
|
2333 |
+
"step": 9350
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 551.35,
|
2337 |
+
"learning_rate": 1.5566896551724139e-06,
|
2338 |
+
"loss": 0.0004,
|
2339 |
+
"step": 9375
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 552.82,
|
2343 |
+
"learning_rate": 1.549793103448276e-06,
|
2344 |
+
"loss": 0.0004,
|
2345 |
+
"step": 9400
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 554.29,
|
2349 |
+
"learning_rate": 1.542896551724138e-06,
|
2350 |
+
"loss": 0.0005,
|
2351 |
+
"step": 9425
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 555.76,
|
2355 |
+
"learning_rate": 1.5365517241379309e-06,
|
2356 |
+
"loss": 0.0004,
|
2357 |
+
"step": 9450
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 557.24,
|
2361 |
+
"learning_rate": 1.529655172413793e-06,
|
2362 |
+
"loss": 0.0003,
|
2363 |
+
"step": 9475
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 558.71,
|
2367 |
+
"learning_rate": 1.522758620689655e-06,
|
2368 |
+
"loss": 0.0003,
|
2369 |
+
"step": 9500
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 560.18,
|
2373 |
+
"learning_rate": 1.5158620689655172e-06,
|
2374 |
+
"loss": 0.0003,
|
2375 |
+
"step": 9525
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 561.65,
|
2379 |
+
"learning_rate": 1.5089655172413792e-06,
|
2380 |
+
"loss": 0.0005,
|
2381 |
+
"step": 9550
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 563.12,
|
2385 |
+
"learning_rate": 1.5020689655172415e-06,
|
2386 |
+
"loss": 0.0004,
|
2387 |
+
"step": 9575
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 564.59,
|
2391 |
+
"learning_rate": 1.4951724137931035e-06,
|
2392 |
+
"loss": 0.0004,
|
2393 |
+
"step": 9600
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 566.06,
|
2397 |
+
"learning_rate": 1.4882758620689655e-06,
|
2398 |
+
"loss": 0.0003,
|
2399 |
+
"step": 9625
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 567.53,
|
2403 |
+
"learning_rate": 1.4813793103448276e-06,
|
2404 |
+
"loss": 0.0005,
|
2405 |
+
"step": 9650
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 569.0,
|
2409 |
+
"learning_rate": 1.4744827586206896e-06,
|
2410 |
+
"loss": 0.0003,
|
2411 |
+
"step": 9675
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 570.47,
|
2415 |
+
"learning_rate": 1.4675862068965516e-06,
|
2416 |
+
"loss": 0.0003,
|
2417 |
+
"step": 9700
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 571.94,
|
2421 |
+
"learning_rate": 1.4606896551724137e-06,
|
2422 |
+
"loss": 0.0003,
|
2423 |
+
"step": 9725
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 573.41,
|
2427 |
+
"learning_rate": 1.4537931034482757e-06,
|
2428 |
+
"loss": 0.0002,
|
2429 |
+
"step": 9750
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 574.88,
|
2433 |
+
"learning_rate": 1.4468965517241377e-06,
|
2434 |
+
"loss": 0.0002,
|
2435 |
+
"step": 9775
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 576.35,
|
2439 |
+
"learning_rate": 1.44e-06,
|
2440 |
+
"loss": 0.0004,
|
2441 |
+
"step": 9800
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 577.82,
|
2445 |
+
"learning_rate": 1.433103448275862e-06,
|
2446 |
+
"loss": 0.0002,
|
2447 |
+
"step": 9825
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 579.29,
|
2451 |
+
"learning_rate": 1.426206896551724e-06,
|
2452 |
+
"loss": 0.0005,
|
2453 |
+
"step": 9850
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 580.76,
|
2457 |
+
"learning_rate": 1.419310344827586e-06,
|
2458 |
+
"loss": 0.0004,
|
2459 |
+
"step": 9875
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 582.24,
|
2463 |
+
"learning_rate": 1.4124137931034481e-06,
|
2464 |
+
"loss": 0.0003,
|
2465 |
+
"step": 9900
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 583.71,
|
2469 |
+
"learning_rate": 1.4055172413793104e-06,
|
2470 |
+
"loss": 0.0004,
|
2471 |
+
"step": 9925
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 585.18,
|
2475 |
+
"learning_rate": 1.3986206896551724e-06,
|
2476 |
+
"loss": 0.0004,
|
2477 |
+
"step": 9950
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 586.65,
|
2481 |
+
"learning_rate": 1.3917241379310344e-06,
|
2482 |
+
"loss": 0.0004,
|
2483 |
+
"step": 9975
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 588.12,
|
2487 |
+
"learning_rate": 1.3848275862068965e-06,
|
2488 |
+
"loss": 0.0003,
|
2489 |
+
"step": 10000
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 588.12,
|
2493 |
+
"eval_loss": 0.54296875,
|
2494 |
+
"eval_runtime": 156.5622,
|
2495 |
+
"eval_samples_per_second": 1.737,
|
2496 |
+
"eval_steps_per_second": 0.109,
|
2497 |
+
"eval_wer": 9.973997028231798,
|
2498 |
+
"step": 10000
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 589.59,
|
2502 |
+
"learning_rate": 1.3779310344827587e-06,
|
2503 |
+
"loss": 0.0002,
|
2504 |
+
"step": 10025
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 591.06,
|
2508 |
+
"learning_rate": 1.3710344827586207e-06,
|
2509 |
+
"loss": 0.0003,
|
2510 |
+
"step": 10050
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 592.53,
|
2514 |
+
"learning_rate": 1.3641379310344828e-06,
|
2515 |
+
"loss": 0.0002,
|
2516 |
+
"step": 10075
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 594.0,
|
2520 |
+
"learning_rate": 1.3572413793103448e-06,
|
2521 |
+
"loss": 0.0003,
|
2522 |
+
"step": 10100
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 595.47,
|
2526 |
+
"learning_rate": 1.3503448275862068e-06,
|
2527 |
+
"loss": 0.0003,
|
2528 |
+
"step": 10125
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 596.94,
|
2532 |
+
"learning_rate": 1.3434482758620689e-06,
|
2533 |
+
"loss": 0.0002,
|
2534 |
+
"step": 10150
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 598.41,
|
2538 |
+
"learning_rate": 1.3365517241379309e-06,
|
2539 |
+
"loss": 0.0004,
|
2540 |
+
"step": 10175
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 599.88,
|
2544 |
+
"learning_rate": 1.329655172413793e-06,
|
2545 |
+
"loss": 0.0002,
|
2546 |
+
"step": 10200
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 601.35,
|
2550 |
+
"learning_rate": 1.322758620689655e-06,
|
2551 |
+
"loss": 0.0003,
|
2552 |
+
"step": 10225
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 602.82,
|
2556 |
+
"learning_rate": 1.3158620689655172e-06,
|
2557 |
+
"loss": 0.0003,
|
2558 |
+
"step": 10250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 604.29,
|
2562 |
+
"learning_rate": 1.3089655172413792e-06,
|
2563 |
+
"loss": 0.0002,
|
2564 |
+
"step": 10275
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 605.76,
|
2568 |
+
"learning_rate": 1.3020689655172413e-06,
|
2569 |
+
"loss": 0.0002,
|
2570 |
+
"step": 10300
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 607.24,
|
2574 |
+
"learning_rate": 1.2951724137931035e-06,
|
2575 |
+
"loss": 0.0003,
|
2576 |
+
"step": 10325
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 608.71,
|
2580 |
+
"learning_rate": 1.2882758620689655e-06,
|
2581 |
+
"loss": 0.0002,
|
2582 |
+
"step": 10350
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 610.18,
|
2586 |
+
"learning_rate": 1.2813793103448276e-06,
|
2587 |
+
"loss": 0.0003,
|
2588 |
+
"step": 10375
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 611.65,
|
2592 |
+
"learning_rate": 1.2744827586206896e-06,
|
2593 |
+
"loss": 0.0003,
|
2594 |
+
"step": 10400
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 613.12,
|
2598 |
+
"learning_rate": 1.2675862068965516e-06,
|
2599 |
+
"loss": 0.0003,
|
2600 |
+
"step": 10425
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 614.59,
|
2604 |
+
"learning_rate": 1.2612413793103448e-06,
|
2605 |
+
"loss": 0.0005,
|
2606 |
+
"step": 10450
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 616.06,
|
2610 |
+
"learning_rate": 1.2543448275862068e-06,
|
2611 |
+
"loss": 0.0003,
|
2612 |
+
"step": 10475
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 617.53,
|
2616 |
+
"learning_rate": 1.2474482758620688e-06,
|
2617 |
+
"loss": 0.0003,
|
2618 |
+
"step": 10500
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 619.0,
|
2622 |
+
"learning_rate": 1.240551724137931e-06,
|
2623 |
+
"loss": 0.0001,
|
2624 |
+
"step": 10525
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 620.47,
|
2628 |
+
"learning_rate": 1.2336551724137931e-06,
|
2629 |
+
"loss": 0.0002,
|
2630 |
+
"step": 10550
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 621.94,
|
2634 |
+
"learning_rate": 1.2267586206896552e-06,
|
2635 |
+
"loss": 0.0005,
|
2636 |
+
"step": 10575
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 623.41,
|
2640 |
+
"learning_rate": 1.2198620689655172e-06,
|
2641 |
+
"loss": 0.0002,
|
2642 |
+
"step": 10600
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 624.88,
|
2646 |
+
"learning_rate": 1.2129655172413792e-06,
|
2647 |
+
"loss": 0.0003,
|
2648 |
+
"step": 10625
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 626.35,
|
2652 |
+
"learning_rate": 1.2060689655172413e-06,
|
2653 |
+
"loss": 0.0002,
|
2654 |
+
"step": 10650
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 627.82,
|
2658 |
+
"learning_rate": 1.1991724137931035e-06,
|
2659 |
+
"loss": 0.0003,
|
2660 |
+
"step": 10675
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 629.29,
|
2664 |
+
"learning_rate": 1.1922758620689655e-06,
|
2665 |
+
"loss": 0.0003,
|
2666 |
+
"step": 10700
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 630.76,
|
2670 |
+
"learning_rate": 1.1853793103448276e-06,
|
2671 |
+
"loss": 0.0003,
|
2672 |
+
"step": 10725
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 632.24,
|
2676 |
+
"learning_rate": 1.1784827586206896e-06,
|
2677 |
+
"loss": 0.0002,
|
2678 |
+
"step": 10750
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 633.71,
|
2682 |
+
"learning_rate": 1.1715862068965516e-06,
|
2683 |
+
"loss": 0.0002,
|
2684 |
+
"step": 10775
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 635.18,
|
2688 |
+
"learning_rate": 1.1646896551724137e-06,
|
2689 |
+
"loss": 0.0004,
|
2690 |
+
"step": 10800
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 636.65,
|
2694 |
+
"learning_rate": 1.1577931034482757e-06,
|
2695 |
+
"loss": 0.0003,
|
2696 |
+
"step": 10825
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 638.12,
|
2700 |
+
"learning_rate": 1.1508965517241377e-06,
|
2701 |
+
"loss": 0.0002,
|
2702 |
+
"step": 10850
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 639.59,
|
2706 |
+
"learning_rate": 1.1439999999999998e-06,
|
2707 |
+
"loss": 0.0002,
|
2708 |
+
"step": 10875
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 641.06,
|
2712 |
+
"learning_rate": 1.137103448275862e-06,
|
2713 |
+
"loss": 0.0003,
|
2714 |
+
"step": 10900
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 642.53,
|
2718 |
+
"learning_rate": 1.1302068965517243e-06,
|
2719 |
+
"loss": 0.0002,
|
2720 |
+
"step": 10925
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 644.0,
|
2724 |
+
"learning_rate": 1.1233103448275863e-06,
|
2725 |
+
"loss": 0.0004,
|
2726 |
+
"step": 10950
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 645.47,
|
2730 |
+
"learning_rate": 1.1164137931034483e-06,
|
2731 |
+
"loss": 0.0004,
|
2732 |
+
"step": 10975
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 646.94,
|
2736 |
+
"learning_rate": 1.1095172413793103e-06,
|
2737 |
+
"loss": 0.0002,
|
2738 |
+
"step": 11000
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 646.94,
|
2742 |
+
"eval_loss": 0.5458984375,
|
2743 |
+
"eval_runtime": 157.5866,
|
2744 |
+
"eval_samples_per_second": 1.726,
|
2745 |
+
"eval_steps_per_second": 0.108,
|
2746 |
+
"eval_wer": 9.955423476968797,
|
2747 |
+
"step": 11000
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 648.41,
|
2751 |
+
"learning_rate": 1.1026206896551724e-06,
|
2752 |
+
"loss": 0.0003,
|
2753 |
+
"step": 11025
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 649.88,
|
2757 |
+
"learning_rate": 1.0957241379310344e-06,
|
2758 |
+
"loss": 0.0002,
|
2759 |
+
"step": 11050
|
2760 |
+
},
|
2761 |
+
{
|
2762 |
+
"epoch": 651.35,
|
2763 |
+
"learning_rate": 1.0888275862068964e-06,
|
2764 |
+
"loss": 0.0002,
|
2765 |
+
"step": 11075
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"epoch": 652.82,
|
2769 |
+
"learning_rate": 1.0819310344827585e-06,
|
2770 |
+
"loss": 0.0003,
|
2771 |
+
"step": 11100
|
2772 |
+
},
|
2773 |
+
{
|
2774 |
+
"epoch": 654.29,
|
2775 |
+
"learning_rate": 1.0750344827586207e-06,
|
2776 |
+
"loss": 0.0002,
|
2777 |
+
"step": 11125
|
2778 |
+
},
|
2779 |
+
{
|
2780 |
+
"epoch": 655.76,
|
2781 |
+
"learning_rate": 1.0681379310344828e-06,
|
2782 |
+
"loss": 0.0003,
|
2783 |
+
"step": 11150
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 657.24,
|
2787 |
+
"learning_rate": 1.0612413793103448e-06,
|
2788 |
+
"loss": 0.0003,
|
2789 |
+
"step": 11175
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 658.71,
|
2793 |
+
"learning_rate": 1.0543448275862068e-06,
|
2794 |
+
"loss": 0.0005,
|
2795 |
+
"step": 11200
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 660.18,
|
2799 |
+
"learning_rate": 1.0474482758620689e-06,
|
2800 |
+
"loss": 0.0002,
|
2801 |
+
"step": 11225
|
2802 |
+
},
|
2803 |
+
{
|
2804 |
+
"epoch": 661.65,
|
2805 |
+
"learning_rate": 1.0405517241379309e-06,
|
2806 |
+
"loss": 0.0002,
|
2807 |
+
"step": 11250
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 663.12,
|
2811 |
+
"learning_rate": 1.033655172413793e-06,
|
2812 |
+
"loss": 0.0003,
|
2813 |
+
"step": 11275
|
2814 |
+
},
|
2815 |
+
{
|
2816 |
+
"epoch": 664.59,
|
2817 |
+
"learning_rate": 1.026758620689655e-06,
|
2818 |
+
"loss": 0.0002,
|
2819 |
+
"step": 11300
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"epoch": 666.06,
|
2823 |
+
"learning_rate": 1.0198620689655172e-06,
|
2824 |
+
"loss": 0.0002,
|
2825 |
+
"step": 11325
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 667.53,
|
2829 |
+
"learning_rate": 1.0129655172413794e-06,
|
2830 |
+
"loss": 0.0003,
|
2831 |
+
"step": 11350
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 669.0,
|
2835 |
+
"learning_rate": 1.0060689655172415e-06,
|
2836 |
+
"loss": 0.0009,
|
2837 |
+
"step": 11375
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 670.47,
|
2841 |
+
"learning_rate": 9.991724137931033e-07,
|
2842 |
+
"loss": 0.0002,
|
2843 |
+
"step": 11400
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"epoch": 671.94,
|
2847 |
+
"learning_rate": 9.922758620689655e-07,
|
2848 |
+
"loss": 0.0002,
|
2849 |
+
"step": 11425
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 673.41,
|
2853 |
+
"learning_rate": 9.859310344827587e-07,
|
2854 |
+
"loss": 0.0003,
|
2855 |
+
"step": 11450
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 674.88,
|
2859 |
+
"learning_rate": 9.790344827586207e-07,
|
2860 |
+
"loss": 0.0002,
|
2861 |
+
"step": 11475
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 676.35,
|
2865 |
+
"learning_rate": 9.721379310344827e-07,
|
2866 |
+
"loss": 0.0002,
|
2867 |
+
"step": 11500
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 677.82,
|
2871 |
+
"learning_rate": 9.652413793103448e-07,
|
2872 |
+
"loss": 0.0002,
|
2873 |
+
"step": 11525
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 679.29,
|
2877 |
+
"learning_rate": 9.583448275862068e-07,
|
2878 |
+
"loss": 0.0003,
|
2879 |
+
"step": 11550
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 680.76,
|
2883 |
+
"learning_rate": 9.514482758620688e-07,
|
2884 |
+
"loss": 0.0003,
|
2885 |
+
"step": 11575
|
2886 |
+
},
|
2887 |
+
{
|
2888 |
+
"epoch": 682.24,
|
2889 |
+
"learning_rate": 9.44551724137931e-07,
|
2890 |
+
"loss": 0.0003,
|
2891 |
+
"step": 11600
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 683.71,
|
2895 |
+
"learning_rate": 9.376551724137931e-07,
|
2896 |
+
"loss": 0.0002,
|
2897 |
+
"step": 11625
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 685.18,
|
2901 |
+
"learning_rate": 9.307586206896552e-07,
|
2902 |
+
"loss": 0.0002,
|
2903 |
+
"step": 11650
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 686.65,
|
2907 |
+
"learning_rate": 9.238620689655172e-07,
|
2908 |
+
"loss": 0.0003,
|
2909 |
+
"step": 11675
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"epoch": 688.12,
|
2913 |
+
"learning_rate": 9.169655172413792e-07,
|
2914 |
+
"loss": 0.0003,
|
2915 |
+
"step": 11700
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 689.59,
|
2919 |
+
"learning_rate": 9.100689655172414e-07,
|
2920 |
+
"loss": 0.0001,
|
2921 |
+
"step": 11725
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 691.06,
|
2925 |
+
"learning_rate": 9.031724137931034e-07,
|
2926 |
+
"loss": 0.0004,
|
2927 |
+
"step": 11750
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 692.53,
|
2931 |
+
"learning_rate": 8.962758620689654e-07,
|
2932 |
+
"loss": 0.0003,
|
2933 |
+
"step": 11775
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 694.0,
|
2937 |
+
"learning_rate": 8.893793103448275e-07,
|
2938 |
+
"loss": 0.0005,
|
2939 |
+
"step": 11800
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 695.47,
|
2943 |
+
"learning_rate": 8.824827586206897e-07,
|
2944 |
+
"loss": 0.0002,
|
2945 |
+
"step": 11825
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 696.94,
|
2949 |
+
"learning_rate": 8.755862068965517e-07,
|
2950 |
+
"loss": 0.0002,
|
2951 |
+
"step": 11850
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 698.41,
|
2955 |
+
"learning_rate": 8.686896551724138e-07,
|
2956 |
+
"loss": 0.0002,
|
2957 |
+
"step": 11875
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 699.88,
|
2961 |
+
"learning_rate": 8.617931034482758e-07,
|
2962 |
+
"loss": 0.0002,
|
2963 |
+
"step": 11900
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 701.35,
|
2967 |
+
"learning_rate": 8.548965517241378e-07,
|
2968 |
+
"loss": 0.0003,
|
2969 |
+
"step": 11925
|
2970 |
+
},
|
2971 |
+
{
|
2972 |
+
"epoch": 702.82,
|
2973 |
+
"learning_rate": 8.48e-07,
|
2974 |
+
"loss": 0.0002,
|
2975 |
+
"step": 11950
|
2976 |
+
},
|
2977 |
+
{
|
2978 |
+
"epoch": 704.29,
|
2979 |
+
"learning_rate": 8.41103448275862e-07,
|
2980 |
+
"loss": 0.0002,
|
2981 |
+
"step": 11975
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 705.76,
|
2985 |
+
"learning_rate": 8.34206896551724e-07,
|
2986 |
+
"loss": 0.0003,
|
2987 |
+
"step": 12000
|
2988 |
+
},
|
2989 |
+
{
|
2990 |
+
"epoch": 705.76,
|
2991 |
+
"eval_loss": 0.55615234375,
|
2992 |
+
"eval_runtime": 158.1148,
|
2993 |
+
"eval_samples_per_second": 1.72,
|
2994 |
+
"eval_steps_per_second": 0.108,
|
2995 |
+
"eval_wer": 9.9832838038633,
|
2996 |
+
"step": 12000
|
2997 |
+
}
|
2998 |
+
],
|
2999 |
+
"max_steps": 15000,
|
3000 |
+
"num_train_epochs": 883,
|
3001 |
+
"total_flos": 3.7112868308030325e+20,
|
3002 |
+
"trial_name": null,
|
3003 |
+
"trial_params": null
|
3004 |
+
}
|
checkpoint-12000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ace94bd686a3b86a956daef6b1762ce143186f5cba98160acd0413dfd90d6e56
|
3 |
+
size 4795
|
checkpoint-12000/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
checkpoint-17000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilios/whisper-medium-el-n2",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-17000/global_step17000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96607ca6b5b82f3f0d2424f2865fcce2168723ca17a494e51444d00f0dcaf232
|
3 |
+
size 1527967899
|
checkpoint-17000/global_step17000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032229e6f538be4579c8648b034364d5f2107de2701e361cde50d96bfe61d009
|
3 |
+
size 9166378846
|
checkpoint-17000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step17000
|
checkpoint-17000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-17000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9fa2de829d24e99eb20c8dd7280e503f96b588ca8051fab51af5f6ba304a842
|
3 |
+
size 1527847357
|
checkpoint-17000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ec4fc26fdaa6459af915c01326877a645e4e4b0be7d9a250bf019a689d1dba3
|
3 |
+
size 14639
|
checkpoint-17000/trainer_state.json
ADDED
@@ -0,0 +1,4249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 9.778974739970282,
|
3 |
+
"best_model_checkpoint": "./checkpoint-9000",
|
4 |
+
"epoch": 999.4705882352941,
|
5 |
+
"global_step": 17000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.78,
|
12 |
+
"learning_rate": 5.0453611334320685e-06,
|
13 |
+
"loss": 0.6804,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 5.56,
|
18 |
+
"learning_rate": 6.229195710491767e-06,
|
19 |
+
"loss": 0.1847,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 8.33,
|
24 |
+
"learning_rate": 6.903829450223392e-06,
|
25 |
+
"loss": 0.0821,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 11.11,
|
30 |
+
"learning_rate": 7.377725845391017e-06,
|
31 |
+
"loss": 0.0485,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 13.89,
|
36 |
+
"learning_rate": 7.743343231239583e-06,
|
37 |
+
"loss": 0.0432,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 16.67,
|
42 |
+
"learning_rate": 8.041073861170494e-06,
|
43 |
+
"loss": 0.0328,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 19.44,
|
48 |
+
"learning_rate": 8.292222957399574e-06,
|
49 |
+
"loss": 0.0291,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 22.22,
|
54 |
+
"learning_rate": 8.509413541357755e-06,
|
55 |
+
"loss": 0.0298,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 25.0,
|
60 |
+
"learning_rate": 8.700744577655557e-06,
|
61 |
+
"loss": 0.0269,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 27.78,
|
66 |
+
"learning_rate": 8.871723942761204e-06,
|
67 |
+
"loss": 0.0272,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 30.56,
|
72 |
+
"learning_rate": 9.026267958246849e-06,
|
73 |
+
"loss": 0.027,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 33.33,
|
78 |
+
"learning_rate": 9.16726106663399e-06,
|
79 |
+
"loss": 0.0213,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 36.11,
|
84 |
+
"learning_rate": 9.296889251455016e-06,
|
85 |
+
"loss": 0.0215,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 38.89,
|
90 |
+
"learning_rate": 9.416848797368692e-06,
|
91 |
+
"loss": 0.0195,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 41.67,
|
96 |
+
"learning_rate": 9.528482449516371e-06,
|
97 |
+
"loss": 0.0167,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 44.44,
|
102 |
+
"learning_rate": 9.632871309784314e-06,
|
103 |
+
"loss": 0.0184,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 47.22,
|
108 |
+
"learning_rate": 9.73089868785391e-06,
|
109 |
+
"loss": 0.0159,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 50.0,
|
114 |
+
"learning_rate": 9.823295589572114e-06,
|
115 |
+
"loss": 0.0172,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 52.78,
|
120 |
+
"learning_rate": 9.910673836465484e-06,
|
121 |
+
"loss": 0.0123,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 55.56,
|
126 |
+
"learning_rate": 9.993550644973805e-06,
|
127 |
+
"loss": 0.0144,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 58.33,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.0135,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 61.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.0128,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 63.89,
|
144 |
+
"learning_rate": 9.84e-06,
|
145 |
+
"loss": 0.0115,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 66.67,
|
150 |
+
"learning_rate": 9.784444444444445e-06,
|
151 |
+
"loss": 0.0105,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 69.44,
|
156 |
+
"learning_rate": 9.72888888888889e-06,
|
157 |
+
"loss": 0.0104,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 72.22,
|
162 |
+
"learning_rate": 9.673333333333334e-06,
|
163 |
+
"loss": 0.0087,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 75.0,
|
168 |
+
"learning_rate": 9.617777777777778e-06,
|
169 |
+
"loss": 0.0091,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 77.78,
|
174 |
+
"learning_rate": 9.562222222222223e-06,
|
175 |
+
"loss": 0.0085,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 80.56,
|
180 |
+
"learning_rate": 9.506666666666667e-06,
|
181 |
+
"loss": 0.011,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 83.33,
|
186 |
+
"learning_rate": 9.451111111111112e-06,
|
187 |
+
"loss": 0.0117,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 86.11,
|
192 |
+
"learning_rate": 9.395555555555556e-06,
|
193 |
+
"loss": 0.0088,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 88.89,
|
198 |
+
"learning_rate": 9.340000000000002e-06,
|
199 |
+
"loss": 0.0077,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 91.67,
|
204 |
+
"learning_rate": 9.284444444444444e-06,
|
205 |
+
"loss": 0.0091,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 94.44,
|
210 |
+
"learning_rate": 9.22888888888889e-06,
|
211 |
+
"loss": 0.0067,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 97.22,
|
216 |
+
"learning_rate": 9.173333333333334e-06,
|
217 |
+
"loss": 0.0082,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 100.0,
|
222 |
+
"learning_rate": 9.117777777777778e-06,
|
223 |
+
"loss": 0.0055,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 102.78,
|
228 |
+
"learning_rate": 9.062222222222224e-06,
|
229 |
+
"loss": 0.0077,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 105.56,
|
234 |
+
"learning_rate": 9.006666666666666e-06,
|
235 |
+
"loss": 0.0055,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 108.33,
|
240 |
+
"learning_rate": 8.951111111111112e-06,
|
241 |
+
"loss": 0.005,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 111.11,
|
246 |
+
"learning_rate": 8.895555555555556e-06,
|
247 |
+
"loss": 0.0066,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 111.11,
|
252 |
+
"eval_loss": 0.2357177734375,
|
253 |
+
"eval_runtime": 64.7785,
|
254 |
+
"eval_samples_per_second": 2.022,
|
255 |
+
"eval_steps_per_second": 0.139,
|
256 |
+
"eval_wer": 23.044096728307252,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 113.89,
|
261 |
+
"learning_rate": 8.844444444444445e-06,
|
262 |
+
"loss": 0.0057,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 116.67,
|
267 |
+
"learning_rate": 8.788888888888891e-06,
|
268 |
+
"loss": 0.0096,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 119.44,
|
273 |
+
"learning_rate": 8.733333333333333e-06,
|
274 |
+
"loss": 0.0063,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 122.22,
|
279 |
+
"learning_rate": 8.677777777777779e-06,
|
280 |
+
"loss": 0.0069,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 125.0,
|
285 |
+
"learning_rate": 8.622222222222223e-06,
|
286 |
+
"loss": 0.0069,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 127.78,
|
291 |
+
"learning_rate": 8.566666666666667e-06,
|
292 |
+
"loss": 0.0046,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 130.56,
|
297 |
+
"learning_rate": 8.511111111111113e-06,
|
298 |
+
"loss": 0.0051,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 133.33,
|
303 |
+
"learning_rate": 8.455555555555555e-06,
|
304 |
+
"loss": 0.0055,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 136.11,
|
309 |
+
"learning_rate": 8.400000000000001e-06,
|
310 |
+
"loss": 0.0042,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 138.89,
|
315 |
+
"learning_rate": 8.344444444444445e-06,
|
316 |
+
"loss": 0.0042,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 141.67,
|
321 |
+
"learning_rate": 8.288888888888889e-06,
|
322 |
+
"loss": 0.005,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 144.44,
|
327 |
+
"learning_rate": 8.233333333333335e-06,
|
328 |
+
"loss": 0.0054,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 147.22,
|
333 |
+
"learning_rate": 8.177777777777779e-06,
|
334 |
+
"loss": 0.0052,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 150.0,
|
339 |
+
"learning_rate": 8.122222222222223e-06,
|
340 |
+
"loss": 0.0057,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 152.78,
|
345 |
+
"learning_rate": 8.066666666666667e-06,
|
346 |
+
"loss": 0.0039,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 155.56,
|
351 |
+
"learning_rate": 8.011111111111113e-06,
|
352 |
+
"loss": 0.0032,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 158.33,
|
357 |
+
"learning_rate": 7.955555555555557e-06,
|
358 |
+
"loss": 0.0034,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 161.11,
|
363 |
+
"learning_rate": 7.902222222222223e-06,
|
364 |
+
"loss": 0.0068,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 163.89,
|
369 |
+
"learning_rate": 7.846666666666667e-06,
|
370 |
+
"loss": 0.0034,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 166.67,
|
375 |
+
"learning_rate": 7.791111111111111e-06,
|
376 |
+
"loss": 0.0026,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 169.44,
|
381 |
+
"learning_rate": 7.735555555555557e-06,
|
382 |
+
"loss": 0.0036,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 172.22,
|
387 |
+
"learning_rate": 7.680000000000001e-06,
|
388 |
+
"loss": 0.0033,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 175.0,
|
393 |
+
"learning_rate": 7.624444444444445e-06,
|
394 |
+
"loss": 0.0021,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 177.78,
|
399 |
+
"learning_rate": 7.56888888888889e-06,
|
400 |
+
"loss": 0.0033,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 180.56,
|
405 |
+
"learning_rate": 7.513333333333334e-06,
|
406 |
+
"loss": 0.0037,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 183.33,
|
411 |
+
"learning_rate": 7.457777777777778e-06,
|
412 |
+
"loss": 0.0032,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 186.11,
|
417 |
+
"learning_rate": 7.402222222222223e-06,
|
418 |
+
"loss": 0.0037,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 188.89,
|
423 |
+
"learning_rate": 7.346666666666668e-06,
|
424 |
+
"loss": 0.0022,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 191.67,
|
429 |
+
"learning_rate": 7.291111111111112e-06,
|
430 |
+
"loss": 0.0024,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 194.44,
|
435 |
+
"learning_rate": 7.235555555555556e-06,
|
436 |
+
"loss": 0.0026,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 197.22,
|
441 |
+
"learning_rate": 7.180000000000001e-06,
|
442 |
+
"loss": 0.0022,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 200.0,
|
447 |
+
"learning_rate": 7.124444444444445e-06,
|
448 |
+
"loss": 0.0026,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 202.78,
|
453 |
+
"learning_rate": 7.06888888888889e-06,
|
454 |
+
"loss": 0.0032,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 205.56,
|
459 |
+
"learning_rate": 7.0133333333333345e-06,
|
460 |
+
"loss": 0.0033,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 208.33,
|
465 |
+
"learning_rate": 6.9577777777777785e-06,
|
466 |
+
"loss": 0.0027,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 211.11,
|
471 |
+
"learning_rate": 6.902222222222223e-06,
|
472 |
+
"loss": 0.0043,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 213.89,
|
477 |
+
"learning_rate": 6.846666666666667e-06,
|
478 |
+
"loss": 0.0028,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 216.67,
|
483 |
+
"learning_rate": 6.7911111111111115e-06,
|
484 |
+
"loss": 0.0012,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 219.44,
|
489 |
+
"learning_rate": 6.735555555555556e-06,
|
490 |
+
"loss": 0.0015,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 222.22,
|
495 |
+
"learning_rate": 6.680000000000001e-06,
|
496 |
+
"loss": 0.0024,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 222.22,
|
501 |
+
"eval_loss": 0.2607421875,
|
502 |
+
"eval_runtime": 57.0802,
|
503 |
+
"eval_samples_per_second": 2.295,
|
504 |
+
"eval_steps_per_second": 0.158,
|
505 |
+
"eval_wer": 19.665718349928877,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 225.0,
|
510 |
+
"learning_rate": 6.6244444444444445e-06,
|
511 |
+
"loss": 0.0029,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 227.78,
|
516 |
+
"learning_rate": 6.568888888888889e-06,
|
517 |
+
"loss": 0.0021,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 230.56,
|
522 |
+
"learning_rate": 6.513333333333333e-06,
|
523 |
+
"loss": 0.0022,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 233.33,
|
528 |
+
"learning_rate": 6.457777777777778e-06,
|
529 |
+
"loss": 0.0022,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 236.11,
|
534 |
+
"learning_rate": 6.402222222222223e-06,
|
535 |
+
"loss": 0.0011,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 238.89,
|
540 |
+
"learning_rate": 6.346666666666668e-06,
|
541 |
+
"loss": 0.0026,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 241.67,
|
546 |
+
"learning_rate": 6.291111111111111e-06,
|
547 |
+
"loss": 0.0021,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 244.44,
|
552 |
+
"learning_rate": 6.235555555555556e-06,
|
553 |
+
"loss": 0.0016,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 247.22,
|
558 |
+
"learning_rate": 6.18e-06,
|
559 |
+
"loss": 0.0024,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 250.0,
|
564 |
+
"learning_rate": 6.124444444444445e-06,
|
565 |
+
"loss": 0.0046,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 252.78,
|
570 |
+
"learning_rate": 6.06888888888889e-06,
|
571 |
+
"loss": 0.0018,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 255.56,
|
576 |
+
"learning_rate": 6.013333333333335e-06,
|
577 |
+
"loss": 0.0012,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 258.33,
|
582 |
+
"learning_rate": 5.957777777777778e-06,
|
583 |
+
"loss": 0.0014,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 261.11,
|
588 |
+
"learning_rate": 5.902222222222223e-06,
|
589 |
+
"loss": 0.0007,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 263.89,
|
594 |
+
"learning_rate": 5.846666666666667e-06,
|
595 |
+
"loss": 0.0014,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 266.67,
|
600 |
+
"learning_rate": 5.791111111111112e-06,
|
601 |
+
"loss": 0.0009,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 269.44,
|
606 |
+
"learning_rate": 5.735555555555557e-06,
|
607 |
+
"loss": 0.0008,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 272.22,
|
612 |
+
"learning_rate": 5.68e-06,
|
613 |
+
"loss": 0.0028,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 275.0,
|
618 |
+
"learning_rate": 5.624444444444445e-06,
|
619 |
+
"loss": 0.002,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 277.78,
|
624 |
+
"learning_rate": 5.56888888888889e-06,
|
625 |
+
"loss": 0.0011,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 280.56,
|
630 |
+
"learning_rate": 5.513333333333334e-06,
|
631 |
+
"loss": 0.001,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 283.33,
|
636 |
+
"learning_rate": 5.4577777777777785e-06,
|
637 |
+
"loss": 0.0007,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 286.11,
|
642 |
+
"learning_rate": 5.402222222222223e-06,
|
643 |
+
"loss": 0.0007,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 288.89,
|
648 |
+
"learning_rate": 5.346666666666667e-06,
|
649 |
+
"loss": 0.0008,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 291.67,
|
654 |
+
"learning_rate": 5.2911111111111115e-06,
|
655 |
+
"loss": 0.0012,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 294.44,
|
660 |
+
"learning_rate": 5.235555555555556e-06,
|
661 |
+
"loss": 0.0016,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 297.22,
|
666 |
+
"learning_rate": 5.18e-06,
|
667 |
+
"loss": 0.0012,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 300.0,
|
672 |
+
"learning_rate": 5.124444444444445e-06,
|
673 |
+
"loss": 0.001,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 302.78,
|
678 |
+
"learning_rate": 5.06888888888889e-06,
|
679 |
+
"loss": 0.0012,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 305.56,
|
684 |
+
"learning_rate": 5.013333333333333e-06,
|
685 |
+
"loss": 0.001,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 308.33,
|
690 |
+
"learning_rate": 4.957777777777778e-06,
|
691 |
+
"loss": 0.0013,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 311.11,
|
696 |
+
"learning_rate": 4.902222222222222e-06,
|
697 |
+
"loss": 0.0015,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 313.89,
|
702 |
+
"learning_rate": 4.846666666666667e-06,
|
703 |
+
"loss": 0.0014,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 316.67,
|
708 |
+
"learning_rate": 4.791111111111111e-06,
|
709 |
+
"loss": 0.0007,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 319.44,
|
714 |
+
"learning_rate": 4.735555555555556e-06,
|
715 |
+
"loss": 0.0009,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 322.22,
|
720 |
+
"learning_rate": 4.680000000000001e-06,
|
721 |
+
"loss": 0.0021,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 325.0,
|
726 |
+
"learning_rate": 4.624444444444445e-06,
|
727 |
+
"loss": 0.0015,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 327.78,
|
732 |
+
"learning_rate": 4.568888888888889e-06,
|
733 |
+
"loss": 0.0012,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 330.56,
|
738 |
+
"learning_rate": 4.513333333333333e-06,
|
739 |
+
"loss": 0.0009,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 333.33,
|
744 |
+
"learning_rate": 4.457777777777778e-06,
|
745 |
+
"loss": 0.0011,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 333.33,
|
750 |
+
"eval_loss": 0.277099609375,
|
751 |
+
"eval_runtime": 58.1634,
|
752 |
+
"eval_samples_per_second": 2.252,
|
753 |
+
"eval_steps_per_second": 0.155,
|
754 |
+
"eval_wer": 20.874822190611663,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 177.47,
|
759 |
+
"learning_rate": 1.760888888888889e-06,
|
760 |
+
"loss": 0.5801,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 178.94,
|
765 |
+
"learning_rate": 1.7386666666666666e-06,
|
766 |
+
"loss": 0.1501,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 180.41,
|
771 |
+
"learning_rate": 1.7164444444444444e-06,
|
772 |
+
"loss": 0.0789,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 181.88,
|
777 |
+
"learning_rate": 1.6942222222222222e-06,
|
778 |
+
"loss": 0.0531,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 183.35,
|
783 |
+
"learning_rate": 1.6719999999999998e-06,
|
784 |
+
"loss": 0.0409,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 184.82,
|
789 |
+
"learning_rate": 1.6497777777777777e-06,
|
790 |
+
"loss": 0.032,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 186.29,
|
795 |
+
"learning_rate": 1.6275555555555555e-06,
|
796 |
+
"loss": 0.0251,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 187.76,
|
801 |
+
"learning_rate": 1.6053333333333333e-06,
|
802 |
+
"loss": 0.0203,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 189.24,
|
807 |
+
"learning_rate": 1.5831111111111111e-06,
|
808 |
+
"loss": 0.0167,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 190.71,
|
813 |
+
"learning_rate": 1.560888888888889e-06,
|
814 |
+
"loss": 0.0159,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 192.18,
|
819 |
+
"learning_rate": 1.5386666666666666e-06,
|
820 |
+
"loss": 0.0137,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 193.65,
|
825 |
+
"learning_rate": 1.5164444444444444e-06,
|
826 |
+
"loss": 0.0122,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 195.12,
|
831 |
+
"learning_rate": 1.494222222222222e-06,
|
832 |
+
"loss": 0.0106,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 196.59,
|
837 |
+
"learning_rate": 1.4719999999999998e-06,
|
838 |
+
"loss": 0.0094,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 198.06,
|
843 |
+
"learning_rate": 1.4497777777777777e-06,
|
844 |
+
"loss": 0.009,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 199.53,
|
849 |
+
"learning_rate": 1.4275555555555555e-06,
|
850 |
+
"loss": 0.0104,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 201.0,
|
855 |
+
"learning_rate": 1.4053333333333333e-06,
|
856 |
+
"loss": 0.0069,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 202.47,
|
861 |
+
"learning_rate": 1.3848888888888889e-06,
|
862 |
+
"loss": 0.0073,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 203.94,
|
867 |
+
"learning_rate": 1.3626666666666667e-06,
|
868 |
+
"loss": 0.0073,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 205.41,
|
873 |
+
"learning_rate": 1.3404444444444445e-06,
|
874 |
+
"loss": 0.0063,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 206.88,
|
879 |
+
"learning_rate": 1.3182222222222221e-06,
|
880 |
+
"loss": 0.007,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 208.35,
|
885 |
+
"learning_rate": 1.296e-06,
|
886 |
+
"loss": 0.0061,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 209.82,
|
891 |
+
"learning_rate": 1.2737777777777776e-06,
|
892 |
+
"loss": 0.0053,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 211.29,
|
897 |
+
"learning_rate": 1.2515555555555554e-06,
|
898 |
+
"loss": 0.0056,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 212.76,
|
903 |
+
"learning_rate": 1.2293333333333334e-06,
|
904 |
+
"loss": 0.005,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 214.24,
|
909 |
+
"learning_rate": 1.207111111111111e-06,
|
910 |
+
"loss": 0.0047,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 215.71,
|
915 |
+
"learning_rate": 1.1848888888888889e-06,
|
916 |
+
"loss": 0.0052,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 217.18,
|
921 |
+
"learning_rate": 1.1626666666666667e-06,
|
922 |
+
"loss": 0.0044,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 218.65,
|
927 |
+
"learning_rate": 1.1404444444444443e-06,
|
928 |
+
"loss": 0.0046,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 220.12,
|
933 |
+
"learning_rate": 1.1182222222222221e-06,
|
934 |
+
"loss": 0.0045,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 221.59,
|
939 |
+
"learning_rate": 1.096e-06,
|
940 |
+
"loss": 0.0041,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 223.06,
|
945 |
+
"learning_rate": 1.0737777777777776e-06,
|
946 |
+
"loss": 0.0054,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 224.53,
|
951 |
+
"learning_rate": 1.0515555555555556e-06,
|
952 |
+
"loss": 0.0038,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 226.0,
|
957 |
+
"learning_rate": 1.0293333333333334e-06,
|
958 |
+
"loss": 0.0038,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 227.47,
|
963 |
+
"learning_rate": 1.007111111111111e-06,
|
964 |
+
"loss": 0.004,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 228.94,
|
969 |
+
"learning_rate": 9.848888888888889e-07,
|
970 |
+
"loss": 0.0036,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 230.41,
|
975 |
+
"learning_rate": 9.626666666666667e-07,
|
976 |
+
"loss": 0.0041,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 231.88,
|
981 |
+
"learning_rate": 9.404444444444443e-07,
|
982 |
+
"loss": 0.0032,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 233.35,
|
987 |
+
"learning_rate": 9.182222222222223e-07,
|
988 |
+
"loss": 0.0038,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 234.82,
|
993 |
+
"learning_rate": 8.96e-07,
|
994 |
+
"loss": 0.0043,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 234.82,
|
999 |
+
"eval_loss": 0.45361328125,
|
1000 |
+
"eval_runtime": 157.593,
|
1001 |
+
"eval_samples_per_second": 1.726,
|
1002 |
+
"eval_steps_per_second": 0.108,
|
1003 |
+
"eval_wer": 10.707652303120357,
|
1004 |
+
"step": 4000
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 236.29,
|
1008 |
+
"learning_rate": 8.737777777777777e-07,
|
1009 |
+
"loss": 0.004,
|
1010 |
+
"step": 4025
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 237.76,
|
1014 |
+
"learning_rate": 8.515555555555555e-07,
|
1015 |
+
"loss": 0.0029,
|
1016 |
+
"step": 4050
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 239.24,
|
1020 |
+
"learning_rate": 8.293333333333333e-07,
|
1021 |
+
"loss": 0.0034,
|
1022 |
+
"step": 4075
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 240.71,
|
1026 |
+
"learning_rate": 8.071111111111111e-07,
|
1027 |
+
"loss": 0.0032,
|
1028 |
+
"step": 4100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 242.18,
|
1032 |
+
"learning_rate": 7.848888888888888e-07,
|
1033 |
+
"loss": 0.003,
|
1034 |
+
"step": 4125
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 243.65,
|
1038 |
+
"learning_rate": 7.626666666666667e-07,
|
1039 |
+
"loss": 0.0034,
|
1040 |
+
"step": 4150
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 245.12,
|
1044 |
+
"learning_rate": 7.404444444444444e-07,
|
1045 |
+
"loss": 0.0032,
|
1046 |
+
"step": 4175
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 246.59,
|
1050 |
+
"learning_rate": 7.182222222222222e-07,
|
1051 |
+
"loss": 0.0032,
|
1052 |
+
"step": 4200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 248.06,
|
1056 |
+
"learning_rate": 6.959999999999999e-07,
|
1057 |
+
"loss": 0.0028,
|
1058 |
+
"step": 4225
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 249.53,
|
1062 |
+
"learning_rate": 6.737777777777778e-07,
|
1063 |
+
"loss": 0.0028,
|
1064 |
+
"step": 4250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 251.0,
|
1068 |
+
"learning_rate": 6.515555555555555e-07,
|
1069 |
+
"loss": 0.0025,
|
1070 |
+
"step": 4275
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 252.47,
|
1074 |
+
"learning_rate": 6.293333333333333e-07,
|
1075 |
+
"loss": 0.0026,
|
1076 |
+
"step": 4300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 253.94,
|
1080 |
+
"learning_rate": 6.071111111111111e-07,
|
1081 |
+
"loss": 0.003,
|
1082 |
+
"step": 4325
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 255.41,
|
1086 |
+
"learning_rate": 5.848888888888889e-07,
|
1087 |
+
"loss": 0.0026,
|
1088 |
+
"step": 4350
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 256.88,
|
1092 |
+
"learning_rate": 5.626666666666666e-07,
|
1093 |
+
"loss": 0.0027,
|
1094 |
+
"step": 4375
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 258.35,
|
1098 |
+
"learning_rate": 5.404444444444443e-07,
|
1099 |
+
"loss": 0.003,
|
1100 |
+
"step": 4400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 259.82,
|
1104 |
+
"learning_rate": 5.182222222222223e-07,
|
1105 |
+
"loss": 0.0027,
|
1106 |
+
"step": 4425
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 261.29,
|
1110 |
+
"learning_rate": 4.977777777777777e-07,
|
1111 |
+
"loss": 0.0026,
|
1112 |
+
"step": 4450
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 262.76,
|
1116 |
+
"learning_rate": 4.7555555555555554e-07,
|
1117 |
+
"loss": 0.0023,
|
1118 |
+
"step": 4475
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 264.24,
|
1122 |
+
"learning_rate": 4.5333333333333326e-07,
|
1123 |
+
"loss": 0.0021,
|
1124 |
+
"step": 4500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 265.71,
|
1128 |
+
"learning_rate": 4.311111111111111e-07,
|
1129 |
+
"loss": 0.0022,
|
1130 |
+
"step": 4525
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 267.18,
|
1134 |
+
"learning_rate": 4.088888888888889e-07,
|
1135 |
+
"loss": 0.0034,
|
1136 |
+
"step": 4550
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 268.65,
|
1140 |
+
"learning_rate": 3.8666666666666664e-07,
|
1141 |
+
"loss": 0.0023,
|
1142 |
+
"step": 4575
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 270.12,
|
1146 |
+
"learning_rate": 3.6444444444444446e-07,
|
1147 |
+
"loss": 0.0022,
|
1148 |
+
"step": 4600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 271.59,
|
1152 |
+
"learning_rate": 3.422222222222222e-07,
|
1153 |
+
"loss": 0.0022,
|
1154 |
+
"step": 4625
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 273.06,
|
1158 |
+
"learning_rate": 3.2e-07,
|
1159 |
+
"loss": 0.0024,
|
1160 |
+
"step": 4650
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 274.53,
|
1164 |
+
"learning_rate": 2.9777777777777773e-07,
|
1165 |
+
"loss": 0.0031,
|
1166 |
+
"step": 4675
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 276.0,
|
1170 |
+
"learning_rate": 2.7555555555555555e-07,
|
1171 |
+
"loss": 0.0022,
|
1172 |
+
"step": 4700
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 277.47,
|
1176 |
+
"learning_rate": 2.533333333333333e-07,
|
1177 |
+
"loss": 0.0022,
|
1178 |
+
"step": 4725
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 278.94,
|
1182 |
+
"learning_rate": 2.311111111111111e-07,
|
1183 |
+
"loss": 0.0021,
|
1184 |
+
"step": 4750
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 280.41,
|
1188 |
+
"learning_rate": 2.088888888888889e-07,
|
1189 |
+
"loss": 0.0023,
|
1190 |
+
"step": 4775
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 281.88,
|
1194 |
+
"learning_rate": 1.8666666666666667e-07,
|
1195 |
+
"loss": 0.0025,
|
1196 |
+
"step": 4800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 283.35,
|
1200 |
+
"learning_rate": 1.6444444444444444e-07,
|
1201 |
+
"loss": 0.0022,
|
1202 |
+
"step": 4825
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 284.82,
|
1206 |
+
"learning_rate": 1.4222222222222222e-07,
|
1207 |
+
"loss": 0.0022,
|
1208 |
+
"step": 4850
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 286.29,
|
1212 |
+
"learning_rate": 1.2e-07,
|
1213 |
+
"loss": 0.0021,
|
1214 |
+
"step": 4875
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 287.76,
|
1218 |
+
"learning_rate": 9.777777777777778e-08,
|
1219 |
+
"loss": 0.0023,
|
1220 |
+
"step": 4900
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 289.24,
|
1224 |
+
"learning_rate": 7.555555555555555e-08,
|
1225 |
+
"loss": 0.002,
|
1226 |
+
"step": 4925
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 290.71,
|
1230 |
+
"learning_rate": 5.3333333333333334e-08,
|
1231 |
+
"loss": 0.0025,
|
1232 |
+
"step": 4950
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 292.18,
|
1236 |
+
"learning_rate": 3.111111111111111e-08,
|
1237 |
+
"loss": 0.002,
|
1238 |
+
"step": 4975
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 293.65,
|
1242 |
+
"learning_rate": 8.888888888888889e-09,
|
1243 |
+
"loss": 0.0024,
|
1244 |
+
"step": 5000
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 293.65,
|
1248 |
+
"eval_loss": 0.465576171875,
|
1249 |
+
"eval_runtime": 158.123,
|
1250 |
+
"eval_samples_per_second": 1.72,
|
1251 |
+
"eval_steps_per_second": 0.108,
|
1252 |
+
"eval_wer": 10.642644873699851,
|
1253 |
+
"step": 5000
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 295.47,
|
1257 |
+
"learning_rate": 2.7544827586206896e-06,
|
1258 |
+
"loss": 0.0021,
|
1259 |
+
"step": 5025
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 296.94,
|
1263 |
+
"learning_rate": 2.7475862068965512e-06,
|
1264 |
+
"loss": 0.0024,
|
1265 |
+
"step": 5050
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 298.41,
|
1269 |
+
"learning_rate": 2.7406896551724137e-06,
|
1270 |
+
"loss": 0.0025,
|
1271 |
+
"step": 5075
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 299.88,
|
1275 |
+
"learning_rate": 2.7337931034482757e-06,
|
1276 |
+
"loss": 0.0022,
|
1277 |
+
"step": 5100
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 301.35,
|
1281 |
+
"learning_rate": 2.7268965517241378e-06,
|
1282 |
+
"loss": 0.0027,
|
1283 |
+
"step": 5125
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 302.82,
|
1287 |
+
"learning_rate": 2.7200000000000002e-06,
|
1288 |
+
"loss": 0.0024,
|
1289 |
+
"step": 5150
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 304.29,
|
1293 |
+
"learning_rate": 2.713103448275862e-06,
|
1294 |
+
"loss": 0.0024,
|
1295 |
+
"step": 5175
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 305.76,
|
1299 |
+
"learning_rate": 2.7062068965517243e-06,
|
1300 |
+
"loss": 0.0023,
|
1301 |
+
"step": 5200
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 307.24,
|
1305 |
+
"learning_rate": 2.699310344827586e-06,
|
1306 |
+
"loss": 0.0027,
|
1307 |
+
"step": 5225
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 308.71,
|
1311 |
+
"learning_rate": 2.6924137931034483e-06,
|
1312 |
+
"loss": 0.0023,
|
1313 |
+
"step": 5250
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 310.18,
|
1317 |
+
"learning_rate": 2.68551724137931e-06,
|
1318 |
+
"loss": 0.0021,
|
1319 |
+
"step": 5275
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 311.65,
|
1323 |
+
"learning_rate": 2.6786206896551724e-06,
|
1324 |
+
"loss": 0.0025,
|
1325 |
+
"step": 5300
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 313.12,
|
1329 |
+
"learning_rate": 2.6717241379310344e-06,
|
1330 |
+
"loss": 0.0021,
|
1331 |
+
"step": 5325
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 314.59,
|
1335 |
+
"learning_rate": 2.6648275862068965e-06,
|
1336 |
+
"loss": 0.0019,
|
1337 |
+
"step": 5350
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 316.06,
|
1341 |
+
"learning_rate": 2.6579310344827585e-06,
|
1342 |
+
"loss": 0.0019,
|
1343 |
+
"step": 5375
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 317.53,
|
1347 |
+
"learning_rate": 2.6510344827586205e-06,
|
1348 |
+
"loss": 0.0018,
|
1349 |
+
"step": 5400
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 319.0,
|
1353 |
+
"learning_rate": 2.6441379310344826e-06,
|
1354 |
+
"loss": 0.0022,
|
1355 |
+
"step": 5425
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 320.47,
|
1359 |
+
"learning_rate": 2.6377931034482757e-06,
|
1360 |
+
"loss": 0.0019,
|
1361 |
+
"step": 5450
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 321.94,
|
1365 |
+
"learning_rate": 2.6308965517241377e-06,
|
1366 |
+
"loss": 0.0016,
|
1367 |
+
"step": 5475
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 323.41,
|
1371 |
+
"learning_rate": 2.624e-06,
|
1372 |
+
"loss": 0.0013,
|
1373 |
+
"step": 5500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 324.88,
|
1377 |
+
"learning_rate": 2.617103448275862e-06,
|
1378 |
+
"loss": 0.0019,
|
1379 |
+
"step": 5525
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 326.35,
|
1383 |
+
"learning_rate": 2.6102068965517243e-06,
|
1384 |
+
"loss": 0.0017,
|
1385 |
+
"step": 5550
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 327.82,
|
1389 |
+
"learning_rate": 2.603310344827586e-06,
|
1390 |
+
"loss": 0.0018,
|
1391 |
+
"step": 5575
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 329.29,
|
1395 |
+
"learning_rate": 2.5964137931034483e-06,
|
1396 |
+
"loss": 0.0013,
|
1397 |
+
"step": 5600
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 330.76,
|
1401 |
+
"learning_rate": 2.58951724137931e-06,
|
1402 |
+
"loss": 0.0016,
|
1403 |
+
"step": 5625
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 332.24,
|
1407 |
+
"learning_rate": 2.5826206896551724e-06,
|
1408 |
+
"loss": 0.0013,
|
1409 |
+
"step": 5650
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 333.71,
|
1413 |
+
"learning_rate": 2.575724137931034e-06,
|
1414 |
+
"loss": 0.0018,
|
1415 |
+
"step": 5675
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 335.18,
|
1419 |
+
"learning_rate": 2.5688275862068965e-06,
|
1420 |
+
"loss": 0.0014,
|
1421 |
+
"step": 5700
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 336.65,
|
1425 |
+
"learning_rate": 2.561931034482759e-06,
|
1426 |
+
"loss": 0.0013,
|
1427 |
+
"step": 5725
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 338.12,
|
1431 |
+
"learning_rate": 2.5550344827586205e-06,
|
1432 |
+
"loss": 0.0011,
|
1433 |
+
"step": 5750
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 339.59,
|
1437 |
+
"learning_rate": 2.548137931034483e-06,
|
1438 |
+
"loss": 0.0018,
|
1439 |
+
"step": 5775
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 341.06,
|
1443 |
+
"learning_rate": 2.5412413793103446e-06,
|
1444 |
+
"loss": 0.0013,
|
1445 |
+
"step": 5800
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 342.53,
|
1449 |
+
"learning_rate": 2.534344827586207e-06,
|
1450 |
+
"loss": 0.0012,
|
1451 |
+
"step": 5825
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 344.0,
|
1455 |
+
"learning_rate": 2.5274482758620687e-06,
|
1456 |
+
"loss": 0.0014,
|
1457 |
+
"step": 5850
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 345.47,
|
1461 |
+
"learning_rate": 2.520551724137931e-06,
|
1462 |
+
"loss": 0.001,
|
1463 |
+
"step": 5875
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 346.94,
|
1467 |
+
"learning_rate": 2.5136551724137927e-06,
|
1468 |
+
"loss": 0.0012,
|
1469 |
+
"step": 5900
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 348.41,
|
1473 |
+
"learning_rate": 2.506758620689655e-06,
|
1474 |
+
"loss": 0.0012,
|
1475 |
+
"step": 5925
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 349.88,
|
1479 |
+
"learning_rate": 2.499862068965517e-06,
|
1480 |
+
"loss": 0.0012,
|
1481 |
+
"step": 5950
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 351.35,
|
1485 |
+
"learning_rate": 2.4929655172413792e-06,
|
1486 |
+
"loss": 0.0013,
|
1487 |
+
"step": 5975
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 352.82,
|
1491 |
+
"learning_rate": 2.4860689655172413e-06,
|
1492 |
+
"loss": 0.0015,
|
1493 |
+
"step": 6000
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 352.82,
|
1497 |
+
"eval_loss": 0.497802734375,
|
1498 |
+
"eval_runtime": 156.7207,
|
1499 |
+
"eval_samples_per_second": 1.736,
|
1500 |
+
"eval_steps_per_second": 0.108,
|
1501 |
+
"eval_wer": 10.503343239227341,
|
1502 |
+
"step": 6000
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 354.29,
|
1506 |
+
"learning_rate": 2.4791724137931033e-06,
|
1507 |
+
"loss": 0.0013,
|
1508 |
+
"step": 6025
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 355.76,
|
1512 |
+
"learning_rate": 2.4722758620689653e-06,
|
1513 |
+
"loss": 0.0012,
|
1514 |
+
"step": 6050
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 357.24,
|
1518 |
+
"learning_rate": 2.4653793103448274e-06,
|
1519 |
+
"loss": 0.0011,
|
1520 |
+
"step": 6075
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 358.71,
|
1524 |
+
"learning_rate": 2.4584827586206894e-06,
|
1525 |
+
"loss": 0.0008,
|
1526 |
+
"step": 6100
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 360.18,
|
1530 |
+
"learning_rate": 2.4515862068965514e-06,
|
1531 |
+
"loss": 0.0008,
|
1532 |
+
"step": 6125
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 361.65,
|
1536 |
+
"learning_rate": 2.444689655172414e-06,
|
1537 |
+
"loss": 0.0011,
|
1538 |
+
"step": 6150
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 363.12,
|
1542 |
+
"learning_rate": 2.4377931034482755e-06,
|
1543 |
+
"loss": 0.0012,
|
1544 |
+
"step": 6175
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 364.59,
|
1548 |
+
"learning_rate": 2.430896551724138e-06,
|
1549 |
+
"loss": 0.0013,
|
1550 |
+
"step": 6200
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 366.06,
|
1554 |
+
"learning_rate": 2.424e-06,
|
1555 |
+
"loss": 0.0011,
|
1556 |
+
"step": 6225
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 367.53,
|
1560 |
+
"learning_rate": 2.417103448275862e-06,
|
1561 |
+
"loss": 0.0012,
|
1562 |
+
"step": 6250
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 369.0,
|
1566 |
+
"learning_rate": 2.410206896551724e-06,
|
1567 |
+
"loss": 0.0011,
|
1568 |
+
"step": 6275
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 370.47,
|
1572 |
+
"learning_rate": 2.403310344827586e-06,
|
1573 |
+
"loss": 0.0009,
|
1574 |
+
"step": 6300
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 371.94,
|
1578 |
+
"learning_rate": 2.396413793103448e-06,
|
1579 |
+
"loss": 0.0014,
|
1580 |
+
"step": 6325
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 373.41,
|
1584 |
+
"learning_rate": 2.38951724137931e-06,
|
1585 |
+
"loss": 0.0018,
|
1586 |
+
"step": 6350
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 374.88,
|
1590 |
+
"learning_rate": 2.382620689655172e-06,
|
1591 |
+
"loss": 0.0009,
|
1592 |
+
"step": 6375
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 376.35,
|
1596 |
+
"learning_rate": 2.3757241379310342e-06,
|
1597 |
+
"loss": 0.001,
|
1598 |
+
"step": 6400
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 377.82,
|
1602 |
+
"learning_rate": 2.3688275862068963e-06,
|
1603 |
+
"loss": 0.0009,
|
1604 |
+
"step": 6425
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 379.29,
|
1608 |
+
"learning_rate": 2.36248275862069e-06,
|
1609 |
+
"loss": 0.0008,
|
1610 |
+
"step": 6450
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 380.76,
|
1614 |
+
"learning_rate": 2.3555862068965514e-06,
|
1615 |
+
"loss": 0.0009,
|
1616 |
+
"step": 6475
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 382.24,
|
1620 |
+
"learning_rate": 2.348689655172414e-06,
|
1621 |
+
"loss": 0.0009,
|
1622 |
+
"step": 6500
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 383.71,
|
1626 |
+
"learning_rate": 2.3417931034482755e-06,
|
1627 |
+
"loss": 0.0011,
|
1628 |
+
"step": 6525
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 385.18,
|
1632 |
+
"learning_rate": 2.334896551724138e-06,
|
1633 |
+
"loss": 0.0008,
|
1634 |
+
"step": 6550
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 386.65,
|
1638 |
+
"learning_rate": 2.3279999999999996e-06,
|
1639 |
+
"loss": 0.0006,
|
1640 |
+
"step": 6575
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 388.12,
|
1644 |
+
"learning_rate": 2.321103448275862e-06,
|
1645 |
+
"loss": 0.001,
|
1646 |
+
"step": 6600
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 389.59,
|
1650 |
+
"learning_rate": 2.314206896551724e-06,
|
1651 |
+
"loss": 0.0009,
|
1652 |
+
"step": 6625
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 391.06,
|
1656 |
+
"learning_rate": 2.307310344827586e-06,
|
1657 |
+
"loss": 0.0008,
|
1658 |
+
"step": 6650
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 392.53,
|
1662 |
+
"learning_rate": 2.300413793103448e-06,
|
1663 |
+
"loss": 0.001,
|
1664 |
+
"step": 6675
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 394.0,
|
1668 |
+
"learning_rate": 2.29351724137931e-06,
|
1669 |
+
"loss": 0.0009,
|
1670 |
+
"step": 6700
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 395.47,
|
1674 |
+
"learning_rate": 2.2866206896551726e-06,
|
1675 |
+
"loss": 0.0011,
|
1676 |
+
"step": 6725
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 396.94,
|
1680 |
+
"learning_rate": 2.2797241379310342e-06,
|
1681 |
+
"loss": 0.0008,
|
1682 |
+
"step": 6750
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 398.41,
|
1686 |
+
"learning_rate": 2.2728275862068967e-06,
|
1687 |
+
"loss": 0.0007,
|
1688 |
+
"step": 6775
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 399.88,
|
1692 |
+
"learning_rate": 2.2659310344827583e-06,
|
1693 |
+
"loss": 0.0006,
|
1694 |
+
"step": 6800
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 401.35,
|
1698 |
+
"learning_rate": 2.2590344827586207e-06,
|
1699 |
+
"loss": 0.0007,
|
1700 |
+
"step": 6825
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 402.82,
|
1704 |
+
"learning_rate": 2.2521379310344828e-06,
|
1705 |
+
"loss": 0.0011,
|
1706 |
+
"step": 6850
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 404.29,
|
1710 |
+
"learning_rate": 2.245241379310345e-06,
|
1711 |
+
"loss": 0.001,
|
1712 |
+
"step": 6875
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 405.76,
|
1716 |
+
"learning_rate": 2.238344827586207e-06,
|
1717 |
+
"loss": 0.0007,
|
1718 |
+
"step": 6900
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 407.24,
|
1722 |
+
"learning_rate": 2.231448275862069e-06,
|
1723 |
+
"loss": 0.0008,
|
1724 |
+
"step": 6925
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 408.71,
|
1728 |
+
"learning_rate": 2.224551724137931e-06,
|
1729 |
+
"loss": 0.0007,
|
1730 |
+
"step": 6950
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 410.18,
|
1734 |
+
"learning_rate": 2.217655172413793e-06,
|
1735 |
+
"loss": 0.0008,
|
1736 |
+
"step": 6975
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 411.65,
|
1740 |
+
"learning_rate": 2.210758620689655e-06,
|
1741 |
+
"loss": 0.0007,
|
1742 |
+
"step": 7000
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 411.65,
|
1746 |
+
"eval_loss": 0.5146484375,
|
1747 |
+
"eval_runtime": 159.9051,
|
1748 |
+
"eval_samples_per_second": 1.701,
|
1749 |
+
"eval_steps_per_second": 0.106,
|
1750 |
+
"eval_wer": 10.057578008915305,
|
1751 |
+
"step": 7000
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 413.12,
|
1755 |
+
"learning_rate": 2.203862068965517e-06,
|
1756 |
+
"loss": 0.0007,
|
1757 |
+
"step": 7025
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 414.59,
|
1761 |
+
"learning_rate": 2.196965517241379e-06,
|
1762 |
+
"loss": 0.0006,
|
1763 |
+
"step": 7050
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 416.06,
|
1767 |
+
"learning_rate": 2.1900689655172415e-06,
|
1768 |
+
"loss": 0.0009,
|
1769 |
+
"step": 7075
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 417.53,
|
1773 |
+
"learning_rate": 2.183172413793103e-06,
|
1774 |
+
"loss": 0.0008,
|
1775 |
+
"step": 7100
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 419.0,
|
1779 |
+
"learning_rate": 2.1762758620689656e-06,
|
1780 |
+
"loss": 0.0007,
|
1781 |
+
"step": 7125
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 420.47,
|
1785 |
+
"learning_rate": 2.1693793103448276e-06,
|
1786 |
+
"loss": 0.0008,
|
1787 |
+
"step": 7150
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 421.94,
|
1791 |
+
"learning_rate": 2.1624827586206896e-06,
|
1792 |
+
"loss": 0.0007,
|
1793 |
+
"step": 7175
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 423.41,
|
1797 |
+
"learning_rate": 2.1555862068965517e-06,
|
1798 |
+
"loss": 0.0005,
|
1799 |
+
"step": 7200
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 424.88,
|
1803 |
+
"learning_rate": 2.1486896551724137e-06,
|
1804 |
+
"loss": 0.0008,
|
1805 |
+
"step": 7225
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 426.35,
|
1809 |
+
"learning_rate": 2.1417931034482757e-06,
|
1810 |
+
"loss": 0.0009,
|
1811 |
+
"step": 7250
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 427.82,
|
1815 |
+
"learning_rate": 2.1348965517241378e-06,
|
1816 |
+
"loss": 0.0009,
|
1817 |
+
"step": 7275
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 429.29,
|
1821 |
+
"learning_rate": 2.128e-06,
|
1822 |
+
"loss": 0.0006,
|
1823 |
+
"step": 7300
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 430.76,
|
1827 |
+
"learning_rate": 2.121103448275862e-06,
|
1828 |
+
"loss": 0.0006,
|
1829 |
+
"step": 7325
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 432.24,
|
1833 |
+
"learning_rate": 2.1142068965517243e-06,
|
1834 |
+
"loss": 0.0006,
|
1835 |
+
"step": 7350
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 433.71,
|
1839 |
+
"learning_rate": 2.107310344827586e-06,
|
1840 |
+
"loss": 0.0006,
|
1841 |
+
"step": 7375
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 435.18,
|
1845 |
+
"learning_rate": 2.1004137931034483e-06,
|
1846 |
+
"loss": 0.0007,
|
1847 |
+
"step": 7400
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 436.65,
|
1851 |
+
"learning_rate": 2.09351724137931e-06,
|
1852 |
+
"loss": 0.0006,
|
1853 |
+
"step": 7425
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 438.12,
|
1857 |
+
"learning_rate": 2.0871724137931035e-06,
|
1858 |
+
"loss": 0.0007,
|
1859 |
+
"step": 7450
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 439.59,
|
1863 |
+
"learning_rate": 2.080275862068965e-06,
|
1864 |
+
"loss": 0.0006,
|
1865 |
+
"step": 7475
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 441.06,
|
1869 |
+
"learning_rate": 2.0733793103448276e-06,
|
1870 |
+
"loss": 0.0009,
|
1871 |
+
"step": 7500
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 442.53,
|
1875 |
+
"learning_rate": 2.0664827586206896e-06,
|
1876 |
+
"loss": 0.0008,
|
1877 |
+
"step": 7525
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 444.0,
|
1881 |
+
"learning_rate": 2.0595862068965516e-06,
|
1882 |
+
"loss": 0.0005,
|
1883 |
+
"step": 7550
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 445.47,
|
1887 |
+
"learning_rate": 2.0526896551724137e-06,
|
1888 |
+
"loss": 0.0004,
|
1889 |
+
"step": 7575
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 446.94,
|
1893 |
+
"learning_rate": 2.0457931034482757e-06,
|
1894 |
+
"loss": 0.0006,
|
1895 |
+
"step": 7600
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 448.41,
|
1899 |
+
"learning_rate": 2.0388965517241377e-06,
|
1900 |
+
"loss": 0.0007,
|
1901 |
+
"step": 7625
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 449.88,
|
1905 |
+
"learning_rate": 2.0319999999999998e-06,
|
1906 |
+
"loss": 0.0005,
|
1907 |
+
"step": 7650
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 451.35,
|
1911 |
+
"learning_rate": 2.025103448275862e-06,
|
1912 |
+
"loss": 0.0005,
|
1913 |
+
"step": 7675
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 452.82,
|
1917 |
+
"learning_rate": 2.018206896551724e-06,
|
1918 |
+
"loss": 0.0009,
|
1919 |
+
"step": 7700
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 454.29,
|
1923 |
+
"learning_rate": 2.0113103448275863e-06,
|
1924 |
+
"loss": 0.0005,
|
1925 |
+
"step": 7725
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 455.76,
|
1929 |
+
"learning_rate": 2.0044137931034483e-06,
|
1930 |
+
"loss": 0.0005,
|
1931 |
+
"step": 7750
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 457.24,
|
1935 |
+
"learning_rate": 1.9975172413793104e-06,
|
1936 |
+
"loss": 0.0006,
|
1937 |
+
"step": 7775
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 458.71,
|
1941 |
+
"learning_rate": 1.9906206896551724e-06,
|
1942 |
+
"loss": 0.0005,
|
1943 |
+
"step": 7800
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 460.18,
|
1947 |
+
"learning_rate": 1.9837241379310344e-06,
|
1948 |
+
"loss": 0.0005,
|
1949 |
+
"step": 7825
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 461.65,
|
1953 |
+
"learning_rate": 1.9768275862068965e-06,
|
1954 |
+
"loss": 0.0006,
|
1955 |
+
"step": 7850
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 463.12,
|
1959 |
+
"learning_rate": 1.9699310344827585e-06,
|
1960 |
+
"loss": 0.0004,
|
1961 |
+
"step": 7875
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 464.59,
|
1965 |
+
"learning_rate": 1.9630344827586205e-06,
|
1966 |
+
"loss": 0.0007,
|
1967 |
+
"step": 7900
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 466.06,
|
1971 |
+
"learning_rate": 1.956137931034483e-06,
|
1972 |
+
"loss": 0.0005,
|
1973 |
+
"step": 7925
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 467.53,
|
1977 |
+
"learning_rate": 1.949241379310345e-06,
|
1978 |
+
"loss": 0.0006,
|
1979 |
+
"step": 7950
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 469.0,
|
1983 |
+
"learning_rate": 1.942344827586207e-06,
|
1984 |
+
"loss": 0.0006,
|
1985 |
+
"step": 7975
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 470.47,
|
1989 |
+
"learning_rate": 1.935448275862069e-06,
|
1990 |
+
"loss": 0.0007,
|
1991 |
+
"step": 8000
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 470.47,
|
1995 |
+
"eval_loss": 0.53857421875,
|
1996 |
+
"eval_runtime": 158.4391,
|
1997 |
+
"eval_samples_per_second": 1.717,
|
1998 |
+
"eval_steps_per_second": 0.107,
|
1999 |
+
"eval_wer": 10.131872213967311,
|
2000 |
+
"step": 8000
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 471.94,
|
2004 |
+
"learning_rate": 1.928551724137931e-06,
|
2005 |
+
"loss": 0.0005,
|
2006 |
+
"step": 8025
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 473.41,
|
2010 |
+
"learning_rate": 1.921655172413793e-06,
|
2011 |
+
"loss": 0.0008,
|
2012 |
+
"step": 8050
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 474.88,
|
2016 |
+
"learning_rate": 1.914758620689655e-06,
|
2017 |
+
"loss": 0.0005,
|
2018 |
+
"step": 8075
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 476.35,
|
2022 |
+
"learning_rate": 1.907862068965517e-06,
|
2023 |
+
"loss": 0.0004,
|
2024 |
+
"step": 8100
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 477.82,
|
2028 |
+
"learning_rate": 1.9009655172413792e-06,
|
2029 |
+
"loss": 0.0005,
|
2030 |
+
"step": 8125
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 479.29,
|
2034 |
+
"learning_rate": 1.8940689655172413e-06,
|
2035 |
+
"loss": 0.0004,
|
2036 |
+
"step": 8150
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 480.76,
|
2040 |
+
"learning_rate": 1.8871724137931033e-06,
|
2041 |
+
"loss": 0.0007,
|
2042 |
+
"step": 8175
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 482.24,
|
2046 |
+
"learning_rate": 1.8802758620689653e-06,
|
2047 |
+
"loss": 0.0005,
|
2048 |
+
"step": 8200
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 483.71,
|
2052 |
+
"learning_rate": 1.8733793103448274e-06,
|
2053 |
+
"loss": 0.0007,
|
2054 |
+
"step": 8225
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 485.18,
|
2058 |
+
"learning_rate": 1.8664827586206894e-06,
|
2059 |
+
"loss": 0.0005,
|
2060 |
+
"step": 8250
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 486.65,
|
2064 |
+
"learning_rate": 1.8595862068965517e-06,
|
2065 |
+
"loss": 0.0004,
|
2066 |
+
"step": 8275
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 488.12,
|
2070 |
+
"learning_rate": 1.8526896551724137e-06,
|
2071 |
+
"loss": 0.0005,
|
2072 |
+
"step": 8300
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 489.59,
|
2076 |
+
"learning_rate": 1.845793103448276e-06,
|
2077 |
+
"loss": 0.0004,
|
2078 |
+
"step": 8325
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 491.06,
|
2082 |
+
"learning_rate": 1.838896551724138e-06,
|
2083 |
+
"loss": 0.0004,
|
2084 |
+
"step": 8350
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 492.53,
|
2088 |
+
"learning_rate": 1.832e-06,
|
2089 |
+
"loss": 0.0005,
|
2090 |
+
"step": 8375
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 494.0,
|
2094 |
+
"learning_rate": 1.825103448275862e-06,
|
2095 |
+
"loss": 0.0004,
|
2096 |
+
"step": 8400
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 495.47,
|
2100 |
+
"learning_rate": 1.818206896551724e-06,
|
2101 |
+
"loss": 0.0007,
|
2102 |
+
"step": 8425
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 496.94,
|
2106 |
+
"learning_rate": 1.811862068965517e-06,
|
2107 |
+
"loss": 0.0008,
|
2108 |
+
"step": 8450
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 498.41,
|
2112 |
+
"learning_rate": 1.8049655172413792e-06,
|
2113 |
+
"loss": 0.0005,
|
2114 |
+
"step": 8475
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 499.88,
|
2118 |
+
"learning_rate": 1.7980689655172413e-06,
|
2119 |
+
"loss": 0.0006,
|
2120 |
+
"step": 8500
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 501.35,
|
2124 |
+
"learning_rate": 1.7911724137931035e-06,
|
2125 |
+
"loss": 0.0004,
|
2126 |
+
"step": 8525
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 502.82,
|
2130 |
+
"learning_rate": 1.7842758620689655e-06,
|
2131 |
+
"loss": 0.0004,
|
2132 |
+
"step": 8550
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 504.29,
|
2136 |
+
"learning_rate": 1.7773793103448276e-06,
|
2137 |
+
"loss": 0.0006,
|
2138 |
+
"step": 8575
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 505.76,
|
2142 |
+
"learning_rate": 1.7704827586206896e-06,
|
2143 |
+
"loss": 0.0004,
|
2144 |
+
"step": 8600
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 507.24,
|
2148 |
+
"learning_rate": 1.7635862068965516e-06,
|
2149 |
+
"loss": 0.0004,
|
2150 |
+
"step": 8625
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 508.71,
|
2154 |
+
"learning_rate": 1.7566896551724137e-06,
|
2155 |
+
"loss": 0.0006,
|
2156 |
+
"step": 8650
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 510.18,
|
2160 |
+
"learning_rate": 1.7497931034482757e-06,
|
2161 |
+
"loss": 0.0004,
|
2162 |
+
"step": 8675
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 511.65,
|
2166 |
+
"learning_rate": 1.742896551724138e-06,
|
2167 |
+
"loss": 0.0005,
|
2168 |
+
"step": 8700
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 513.12,
|
2172 |
+
"learning_rate": 1.736e-06,
|
2173 |
+
"loss": 0.0006,
|
2174 |
+
"step": 8725
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 514.59,
|
2178 |
+
"learning_rate": 1.729103448275862e-06,
|
2179 |
+
"loss": 0.0006,
|
2180 |
+
"step": 8750
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 516.06,
|
2184 |
+
"learning_rate": 1.722206896551724e-06,
|
2185 |
+
"loss": 0.0004,
|
2186 |
+
"step": 8775
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 517.53,
|
2190 |
+
"learning_rate": 1.715310344827586e-06,
|
2191 |
+
"loss": 0.0003,
|
2192 |
+
"step": 8800
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 519.0,
|
2196 |
+
"learning_rate": 1.7084137931034481e-06,
|
2197 |
+
"loss": 0.0003,
|
2198 |
+
"step": 8825
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 520.47,
|
2202 |
+
"learning_rate": 1.7015172413793101e-06,
|
2203 |
+
"loss": 0.0004,
|
2204 |
+
"step": 8850
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 521.94,
|
2208 |
+
"learning_rate": 1.6946206896551722e-06,
|
2209 |
+
"loss": 0.0006,
|
2210 |
+
"step": 8875
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 523.41,
|
2214 |
+
"learning_rate": 1.6877241379310342e-06,
|
2215 |
+
"loss": 0.0005,
|
2216 |
+
"step": 8900
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 524.88,
|
2220 |
+
"learning_rate": 1.6808275862068967e-06,
|
2221 |
+
"loss": 0.0029,
|
2222 |
+
"step": 8925
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 526.35,
|
2226 |
+
"learning_rate": 1.6739310344827587e-06,
|
2227 |
+
"loss": 0.0004,
|
2228 |
+
"step": 8950
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 527.82,
|
2232 |
+
"learning_rate": 1.6670344827586207e-06,
|
2233 |
+
"loss": 0.0003,
|
2234 |
+
"step": 8975
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 529.29,
|
2238 |
+
"learning_rate": 1.6601379310344828e-06,
|
2239 |
+
"loss": 0.0004,
|
2240 |
+
"step": 9000
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 529.29,
|
2244 |
+
"eval_loss": 0.5361328125,
|
2245 |
+
"eval_runtime": 156.9399,
|
2246 |
+
"eval_samples_per_second": 1.733,
|
2247 |
+
"eval_steps_per_second": 0.108,
|
2248 |
+
"eval_wer": 9.778974739970282,
|
2249 |
+
"step": 9000
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 530.76,
|
2253 |
+
"learning_rate": 1.6532413793103448e-06,
|
2254 |
+
"loss": 0.0006,
|
2255 |
+
"step": 9025
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 532.24,
|
2259 |
+
"learning_rate": 1.6463448275862068e-06,
|
2260 |
+
"loss": 0.0003,
|
2261 |
+
"step": 9050
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 533.71,
|
2265 |
+
"learning_rate": 1.6394482758620689e-06,
|
2266 |
+
"loss": 0.0003,
|
2267 |
+
"step": 9075
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 535.18,
|
2271 |
+
"learning_rate": 1.632551724137931e-06,
|
2272 |
+
"loss": 0.0005,
|
2273 |
+
"step": 9100
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 536.65,
|
2277 |
+
"learning_rate": 1.625655172413793e-06,
|
2278 |
+
"loss": 0.0006,
|
2279 |
+
"step": 9125
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 538.12,
|
2283 |
+
"learning_rate": 1.6187586206896552e-06,
|
2284 |
+
"loss": 0.0003,
|
2285 |
+
"step": 9150
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 539.59,
|
2289 |
+
"learning_rate": 1.6118620689655172e-06,
|
2290 |
+
"loss": 0.0004,
|
2291 |
+
"step": 9175
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 541.06,
|
2295 |
+
"learning_rate": 1.6049655172413792e-06,
|
2296 |
+
"loss": 0.0003,
|
2297 |
+
"step": 9200
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 542.53,
|
2301 |
+
"learning_rate": 1.5980689655172413e-06,
|
2302 |
+
"loss": 0.0004,
|
2303 |
+
"step": 9225
|
2304 |
+
},
|
2305 |
+
{
|
2306 |
+
"epoch": 544.0,
|
2307 |
+
"learning_rate": 1.5911724137931033e-06,
|
2308 |
+
"loss": 0.0006,
|
2309 |
+
"step": 9250
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 545.47,
|
2313 |
+
"learning_rate": 1.5842758620689653e-06,
|
2314 |
+
"loss": 0.0002,
|
2315 |
+
"step": 9275
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 546.94,
|
2319 |
+
"learning_rate": 1.5773793103448274e-06,
|
2320 |
+
"loss": 0.0003,
|
2321 |
+
"step": 9300
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 548.41,
|
2325 |
+
"learning_rate": 1.5704827586206896e-06,
|
2326 |
+
"loss": 0.0003,
|
2327 |
+
"step": 9325
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 549.88,
|
2331 |
+
"learning_rate": 1.5635862068965516e-06,
|
2332 |
+
"loss": 0.0003,
|
2333 |
+
"step": 9350
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 551.35,
|
2337 |
+
"learning_rate": 1.5566896551724139e-06,
|
2338 |
+
"loss": 0.0004,
|
2339 |
+
"step": 9375
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 552.82,
|
2343 |
+
"learning_rate": 1.549793103448276e-06,
|
2344 |
+
"loss": 0.0004,
|
2345 |
+
"step": 9400
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 554.29,
|
2349 |
+
"learning_rate": 1.542896551724138e-06,
|
2350 |
+
"loss": 0.0005,
|
2351 |
+
"step": 9425
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 555.76,
|
2355 |
+
"learning_rate": 1.5365517241379309e-06,
|
2356 |
+
"loss": 0.0004,
|
2357 |
+
"step": 9450
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 557.24,
|
2361 |
+
"learning_rate": 1.529655172413793e-06,
|
2362 |
+
"loss": 0.0003,
|
2363 |
+
"step": 9475
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 558.71,
|
2367 |
+
"learning_rate": 1.522758620689655e-06,
|
2368 |
+
"loss": 0.0003,
|
2369 |
+
"step": 9500
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 560.18,
|
2373 |
+
"learning_rate": 1.5158620689655172e-06,
|
2374 |
+
"loss": 0.0003,
|
2375 |
+
"step": 9525
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 561.65,
|
2379 |
+
"learning_rate": 1.5089655172413792e-06,
|
2380 |
+
"loss": 0.0005,
|
2381 |
+
"step": 9550
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 563.12,
|
2385 |
+
"learning_rate": 1.5020689655172415e-06,
|
2386 |
+
"loss": 0.0004,
|
2387 |
+
"step": 9575
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 564.59,
|
2391 |
+
"learning_rate": 1.4951724137931035e-06,
|
2392 |
+
"loss": 0.0004,
|
2393 |
+
"step": 9600
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 566.06,
|
2397 |
+
"learning_rate": 1.4882758620689655e-06,
|
2398 |
+
"loss": 0.0003,
|
2399 |
+
"step": 9625
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 567.53,
|
2403 |
+
"learning_rate": 1.4813793103448276e-06,
|
2404 |
+
"loss": 0.0005,
|
2405 |
+
"step": 9650
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 569.0,
|
2409 |
+
"learning_rate": 1.4744827586206896e-06,
|
2410 |
+
"loss": 0.0003,
|
2411 |
+
"step": 9675
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 570.47,
|
2415 |
+
"learning_rate": 1.4675862068965516e-06,
|
2416 |
+
"loss": 0.0003,
|
2417 |
+
"step": 9700
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 571.94,
|
2421 |
+
"learning_rate": 1.4606896551724137e-06,
|
2422 |
+
"loss": 0.0003,
|
2423 |
+
"step": 9725
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 573.41,
|
2427 |
+
"learning_rate": 1.4537931034482757e-06,
|
2428 |
+
"loss": 0.0002,
|
2429 |
+
"step": 9750
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 574.88,
|
2433 |
+
"learning_rate": 1.4468965517241377e-06,
|
2434 |
+
"loss": 0.0002,
|
2435 |
+
"step": 9775
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 576.35,
|
2439 |
+
"learning_rate": 1.44e-06,
|
2440 |
+
"loss": 0.0004,
|
2441 |
+
"step": 9800
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 577.82,
|
2445 |
+
"learning_rate": 1.433103448275862e-06,
|
2446 |
+
"loss": 0.0002,
|
2447 |
+
"step": 9825
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 579.29,
|
2451 |
+
"learning_rate": 1.426206896551724e-06,
|
2452 |
+
"loss": 0.0005,
|
2453 |
+
"step": 9850
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 580.76,
|
2457 |
+
"learning_rate": 1.419310344827586e-06,
|
2458 |
+
"loss": 0.0004,
|
2459 |
+
"step": 9875
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 582.24,
|
2463 |
+
"learning_rate": 1.4124137931034481e-06,
|
2464 |
+
"loss": 0.0003,
|
2465 |
+
"step": 9900
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 583.71,
|
2469 |
+
"learning_rate": 1.4055172413793104e-06,
|
2470 |
+
"loss": 0.0004,
|
2471 |
+
"step": 9925
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 585.18,
|
2475 |
+
"learning_rate": 1.3986206896551724e-06,
|
2476 |
+
"loss": 0.0004,
|
2477 |
+
"step": 9950
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 586.65,
|
2481 |
+
"learning_rate": 1.3917241379310344e-06,
|
2482 |
+
"loss": 0.0004,
|
2483 |
+
"step": 9975
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 588.12,
|
2487 |
+
"learning_rate": 1.3848275862068965e-06,
|
2488 |
+
"loss": 0.0003,
|
2489 |
+
"step": 10000
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 588.12,
|
2493 |
+
"eval_loss": 0.54296875,
|
2494 |
+
"eval_runtime": 156.5622,
|
2495 |
+
"eval_samples_per_second": 1.737,
|
2496 |
+
"eval_steps_per_second": 0.109,
|
2497 |
+
"eval_wer": 9.973997028231798,
|
2498 |
+
"step": 10000
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 589.59,
|
2502 |
+
"learning_rate": 1.3779310344827587e-06,
|
2503 |
+
"loss": 0.0002,
|
2504 |
+
"step": 10025
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 591.06,
|
2508 |
+
"learning_rate": 1.3710344827586207e-06,
|
2509 |
+
"loss": 0.0003,
|
2510 |
+
"step": 10050
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 592.53,
|
2514 |
+
"learning_rate": 1.3641379310344828e-06,
|
2515 |
+
"loss": 0.0002,
|
2516 |
+
"step": 10075
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 594.0,
|
2520 |
+
"learning_rate": 1.3572413793103448e-06,
|
2521 |
+
"loss": 0.0003,
|
2522 |
+
"step": 10100
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 595.47,
|
2526 |
+
"learning_rate": 1.3503448275862068e-06,
|
2527 |
+
"loss": 0.0003,
|
2528 |
+
"step": 10125
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 596.94,
|
2532 |
+
"learning_rate": 1.3434482758620689e-06,
|
2533 |
+
"loss": 0.0002,
|
2534 |
+
"step": 10150
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 598.41,
|
2538 |
+
"learning_rate": 1.3365517241379309e-06,
|
2539 |
+
"loss": 0.0004,
|
2540 |
+
"step": 10175
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 599.88,
|
2544 |
+
"learning_rate": 1.329655172413793e-06,
|
2545 |
+
"loss": 0.0002,
|
2546 |
+
"step": 10200
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 601.35,
|
2550 |
+
"learning_rate": 1.322758620689655e-06,
|
2551 |
+
"loss": 0.0003,
|
2552 |
+
"step": 10225
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 602.82,
|
2556 |
+
"learning_rate": 1.3158620689655172e-06,
|
2557 |
+
"loss": 0.0003,
|
2558 |
+
"step": 10250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 604.29,
|
2562 |
+
"learning_rate": 1.3089655172413792e-06,
|
2563 |
+
"loss": 0.0002,
|
2564 |
+
"step": 10275
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 605.76,
|
2568 |
+
"learning_rate": 1.3020689655172413e-06,
|
2569 |
+
"loss": 0.0002,
|
2570 |
+
"step": 10300
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 607.24,
|
2574 |
+
"learning_rate": 1.2951724137931035e-06,
|
2575 |
+
"loss": 0.0003,
|
2576 |
+
"step": 10325
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 608.71,
|
2580 |
+
"learning_rate": 1.2882758620689655e-06,
|
2581 |
+
"loss": 0.0002,
|
2582 |
+
"step": 10350
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 610.18,
|
2586 |
+
"learning_rate": 1.2813793103448276e-06,
|
2587 |
+
"loss": 0.0003,
|
2588 |
+
"step": 10375
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 611.65,
|
2592 |
+
"learning_rate": 1.2744827586206896e-06,
|
2593 |
+
"loss": 0.0003,
|
2594 |
+
"step": 10400
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 613.12,
|
2598 |
+
"learning_rate": 1.2675862068965516e-06,
|
2599 |
+
"loss": 0.0003,
|
2600 |
+
"step": 10425
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 614.59,
|
2604 |
+
"learning_rate": 1.2612413793103448e-06,
|
2605 |
+
"loss": 0.0005,
|
2606 |
+
"step": 10450
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 616.06,
|
2610 |
+
"learning_rate": 1.2543448275862068e-06,
|
2611 |
+
"loss": 0.0003,
|
2612 |
+
"step": 10475
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 617.53,
|
2616 |
+
"learning_rate": 1.2474482758620688e-06,
|
2617 |
+
"loss": 0.0003,
|
2618 |
+
"step": 10500
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 619.0,
|
2622 |
+
"learning_rate": 1.240551724137931e-06,
|
2623 |
+
"loss": 0.0001,
|
2624 |
+
"step": 10525
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 620.47,
|
2628 |
+
"learning_rate": 1.2336551724137931e-06,
|
2629 |
+
"loss": 0.0002,
|
2630 |
+
"step": 10550
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 621.94,
|
2634 |
+
"learning_rate": 1.2267586206896552e-06,
|
2635 |
+
"loss": 0.0005,
|
2636 |
+
"step": 10575
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 623.41,
|
2640 |
+
"learning_rate": 1.2198620689655172e-06,
|
2641 |
+
"loss": 0.0002,
|
2642 |
+
"step": 10600
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 624.88,
|
2646 |
+
"learning_rate": 1.2129655172413792e-06,
|
2647 |
+
"loss": 0.0003,
|
2648 |
+
"step": 10625
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 626.35,
|
2652 |
+
"learning_rate": 1.2060689655172413e-06,
|
2653 |
+
"loss": 0.0002,
|
2654 |
+
"step": 10650
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 627.82,
|
2658 |
+
"learning_rate": 1.1991724137931035e-06,
|
2659 |
+
"loss": 0.0003,
|
2660 |
+
"step": 10675
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 629.29,
|
2664 |
+
"learning_rate": 1.1922758620689655e-06,
|
2665 |
+
"loss": 0.0003,
|
2666 |
+
"step": 10700
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 630.76,
|
2670 |
+
"learning_rate": 1.1853793103448276e-06,
|
2671 |
+
"loss": 0.0003,
|
2672 |
+
"step": 10725
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 632.24,
|
2676 |
+
"learning_rate": 1.1784827586206896e-06,
|
2677 |
+
"loss": 0.0002,
|
2678 |
+
"step": 10750
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 633.71,
|
2682 |
+
"learning_rate": 1.1715862068965516e-06,
|
2683 |
+
"loss": 0.0002,
|
2684 |
+
"step": 10775
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 635.18,
|
2688 |
+
"learning_rate": 1.1646896551724137e-06,
|
2689 |
+
"loss": 0.0004,
|
2690 |
+
"step": 10800
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 636.65,
|
2694 |
+
"learning_rate": 1.1577931034482757e-06,
|
2695 |
+
"loss": 0.0003,
|
2696 |
+
"step": 10825
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 638.12,
|
2700 |
+
"learning_rate": 1.1508965517241377e-06,
|
2701 |
+
"loss": 0.0002,
|
2702 |
+
"step": 10850
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 639.59,
|
2706 |
+
"learning_rate": 1.1439999999999998e-06,
|
2707 |
+
"loss": 0.0002,
|
2708 |
+
"step": 10875
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 641.06,
|
2712 |
+
"learning_rate": 1.137103448275862e-06,
|
2713 |
+
"loss": 0.0003,
|
2714 |
+
"step": 10900
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 642.53,
|
2718 |
+
"learning_rate": 1.1302068965517243e-06,
|
2719 |
+
"loss": 0.0002,
|
2720 |
+
"step": 10925
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 644.0,
|
2724 |
+
"learning_rate": 1.1233103448275863e-06,
|
2725 |
+
"loss": 0.0004,
|
2726 |
+
"step": 10950
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 645.47,
|
2730 |
+
"learning_rate": 1.1164137931034483e-06,
|
2731 |
+
"loss": 0.0004,
|
2732 |
+
"step": 10975
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 646.94,
|
2736 |
+
"learning_rate": 1.1095172413793103e-06,
|
2737 |
+
"loss": 0.0002,
|
2738 |
+
"step": 11000
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 646.94,
|
2742 |
+
"eval_loss": 0.5458984375,
|
2743 |
+
"eval_runtime": 157.5866,
|
2744 |
+
"eval_samples_per_second": 1.726,
|
2745 |
+
"eval_steps_per_second": 0.108,
|
2746 |
+
"eval_wer": 9.955423476968797,
|
2747 |
+
"step": 11000
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 648.41,
|
2751 |
+
"learning_rate": 1.1026206896551724e-06,
|
2752 |
+
"loss": 0.0003,
|
2753 |
+
"step": 11025
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 649.88,
|
2757 |
+
"learning_rate": 1.0957241379310344e-06,
|
2758 |
+
"loss": 0.0002,
|
2759 |
+
"step": 11050
|
2760 |
+
},
|
2761 |
+
{
|
2762 |
+
"epoch": 651.35,
|
2763 |
+
"learning_rate": 1.0888275862068964e-06,
|
2764 |
+
"loss": 0.0002,
|
2765 |
+
"step": 11075
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"epoch": 652.82,
|
2769 |
+
"learning_rate": 1.0819310344827585e-06,
|
2770 |
+
"loss": 0.0003,
|
2771 |
+
"step": 11100
|
2772 |
+
},
|
2773 |
+
{
|
2774 |
+
"epoch": 654.29,
|
2775 |
+
"learning_rate": 1.0750344827586207e-06,
|
2776 |
+
"loss": 0.0002,
|
2777 |
+
"step": 11125
|
2778 |
+
},
|
2779 |
+
{
|
2780 |
+
"epoch": 655.76,
|
2781 |
+
"learning_rate": 1.0681379310344828e-06,
|
2782 |
+
"loss": 0.0003,
|
2783 |
+
"step": 11150
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 657.24,
|
2787 |
+
"learning_rate": 1.0612413793103448e-06,
|
2788 |
+
"loss": 0.0003,
|
2789 |
+
"step": 11175
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 658.71,
|
2793 |
+
"learning_rate": 1.0543448275862068e-06,
|
2794 |
+
"loss": 0.0005,
|
2795 |
+
"step": 11200
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 660.18,
|
2799 |
+
"learning_rate": 1.0474482758620689e-06,
|
2800 |
+
"loss": 0.0002,
|
2801 |
+
"step": 11225
|
2802 |
+
},
|
2803 |
+
{
|
2804 |
+
"epoch": 661.65,
|
2805 |
+
"learning_rate": 1.0405517241379309e-06,
|
2806 |
+
"loss": 0.0002,
|
2807 |
+
"step": 11250
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 663.12,
|
2811 |
+
"learning_rate": 1.033655172413793e-06,
|
2812 |
+
"loss": 0.0003,
|
2813 |
+
"step": 11275
|
2814 |
+
},
|
2815 |
+
{
|
2816 |
+
"epoch": 664.59,
|
2817 |
+
"learning_rate": 1.026758620689655e-06,
|
2818 |
+
"loss": 0.0002,
|
2819 |
+
"step": 11300
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"epoch": 666.06,
|
2823 |
+
"learning_rate": 1.0198620689655172e-06,
|
2824 |
+
"loss": 0.0002,
|
2825 |
+
"step": 11325
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 667.53,
|
2829 |
+
"learning_rate": 1.0129655172413794e-06,
|
2830 |
+
"loss": 0.0003,
|
2831 |
+
"step": 11350
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 669.0,
|
2835 |
+
"learning_rate": 1.0060689655172415e-06,
|
2836 |
+
"loss": 0.0009,
|
2837 |
+
"step": 11375
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 670.47,
|
2841 |
+
"learning_rate": 9.991724137931033e-07,
|
2842 |
+
"loss": 0.0002,
|
2843 |
+
"step": 11400
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"epoch": 671.94,
|
2847 |
+
"learning_rate": 9.922758620689655e-07,
|
2848 |
+
"loss": 0.0002,
|
2849 |
+
"step": 11425
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 673.41,
|
2853 |
+
"learning_rate": 9.859310344827587e-07,
|
2854 |
+
"loss": 0.0003,
|
2855 |
+
"step": 11450
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 674.88,
|
2859 |
+
"learning_rate": 9.790344827586207e-07,
|
2860 |
+
"loss": 0.0002,
|
2861 |
+
"step": 11475
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 676.35,
|
2865 |
+
"learning_rate": 9.721379310344827e-07,
|
2866 |
+
"loss": 0.0002,
|
2867 |
+
"step": 11500
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 677.82,
|
2871 |
+
"learning_rate": 9.652413793103448e-07,
|
2872 |
+
"loss": 0.0002,
|
2873 |
+
"step": 11525
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 679.29,
|
2877 |
+
"learning_rate": 9.583448275862068e-07,
|
2878 |
+
"loss": 0.0003,
|
2879 |
+
"step": 11550
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 680.76,
|
2883 |
+
"learning_rate": 9.514482758620688e-07,
|
2884 |
+
"loss": 0.0003,
|
2885 |
+
"step": 11575
|
2886 |
+
},
|
2887 |
+
{
|
2888 |
+
"epoch": 682.24,
|
2889 |
+
"learning_rate": 9.44551724137931e-07,
|
2890 |
+
"loss": 0.0003,
|
2891 |
+
"step": 11600
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 683.71,
|
2895 |
+
"learning_rate": 9.376551724137931e-07,
|
2896 |
+
"loss": 0.0002,
|
2897 |
+
"step": 11625
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 685.18,
|
2901 |
+
"learning_rate": 9.307586206896552e-07,
|
2902 |
+
"loss": 0.0002,
|
2903 |
+
"step": 11650
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 686.65,
|
2907 |
+
"learning_rate": 9.238620689655172e-07,
|
2908 |
+
"loss": 0.0003,
|
2909 |
+
"step": 11675
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"epoch": 688.12,
|
2913 |
+
"learning_rate": 9.169655172413792e-07,
|
2914 |
+
"loss": 0.0003,
|
2915 |
+
"step": 11700
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 689.59,
|
2919 |
+
"learning_rate": 9.100689655172414e-07,
|
2920 |
+
"loss": 0.0001,
|
2921 |
+
"step": 11725
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 691.06,
|
2925 |
+
"learning_rate": 9.031724137931034e-07,
|
2926 |
+
"loss": 0.0004,
|
2927 |
+
"step": 11750
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 692.53,
|
2931 |
+
"learning_rate": 8.962758620689654e-07,
|
2932 |
+
"loss": 0.0003,
|
2933 |
+
"step": 11775
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 694.0,
|
2937 |
+
"learning_rate": 8.893793103448275e-07,
|
2938 |
+
"loss": 0.0005,
|
2939 |
+
"step": 11800
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 695.47,
|
2943 |
+
"learning_rate": 8.824827586206897e-07,
|
2944 |
+
"loss": 0.0002,
|
2945 |
+
"step": 11825
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 696.94,
|
2949 |
+
"learning_rate": 8.755862068965517e-07,
|
2950 |
+
"loss": 0.0002,
|
2951 |
+
"step": 11850
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 698.41,
|
2955 |
+
"learning_rate": 8.686896551724138e-07,
|
2956 |
+
"loss": 0.0002,
|
2957 |
+
"step": 11875
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 699.88,
|
2961 |
+
"learning_rate": 8.617931034482758e-07,
|
2962 |
+
"loss": 0.0002,
|
2963 |
+
"step": 11900
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 701.35,
|
2967 |
+
"learning_rate": 8.548965517241378e-07,
|
2968 |
+
"loss": 0.0003,
|
2969 |
+
"step": 11925
|
2970 |
+
},
|
2971 |
+
{
|
2972 |
+
"epoch": 702.82,
|
2973 |
+
"learning_rate": 8.48e-07,
|
2974 |
+
"loss": 0.0002,
|
2975 |
+
"step": 11950
|
2976 |
+
},
|
2977 |
+
{
|
2978 |
+
"epoch": 704.29,
|
2979 |
+
"learning_rate": 8.41103448275862e-07,
|
2980 |
+
"loss": 0.0002,
|
2981 |
+
"step": 11975
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 705.76,
|
2985 |
+
"learning_rate": 8.34206896551724e-07,
|
2986 |
+
"loss": 0.0003,
|
2987 |
+
"step": 12000
|
2988 |
+
},
|
2989 |
+
{
|
2990 |
+
"epoch": 705.76,
|
2991 |
+
"eval_loss": 0.55615234375,
|
2992 |
+
"eval_runtime": 158.1148,
|
2993 |
+
"eval_samples_per_second": 1.72,
|
2994 |
+
"eval_steps_per_second": 0.108,
|
2995 |
+
"eval_wer": 9.9832838038633,
|
2996 |
+
"step": 12000
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 706.47,
|
3000 |
+
"learning_rate": 3.1968e-07,
|
3001 |
+
"loss": 0.0002,
|
3002 |
+
"step": 12025
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 707.94,
|
3006 |
+
"learning_rate": 3.1168e-07,
|
3007 |
+
"loss": 0.0003,
|
3008 |
+
"step": 12050
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 709.41,
|
3012 |
+
"learning_rate": 3.0368e-07,
|
3013 |
+
"loss": 0.0002,
|
3014 |
+
"step": 12075
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 710.88,
|
3018 |
+
"learning_rate": 2.9568e-07,
|
3019 |
+
"loss": 0.0002,
|
3020 |
+
"step": 12100
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 712.35,
|
3024 |
+
"learning_rate": 2.8768e-07,
|
3025 |
+
"loss": 0.0003,
|
3026 |
+
"step": 12125
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 713.82,
|
3030 |
+
"learning_rate": 2.7968e-07,
|
3031 |
+
"loss": 0.0002,
|
3032 |
+
"step": 12150
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 715.29,
|
3036 |
+
"learning_rate": 2.7167999999999996e-07,
|
3037 |
+
"loss": 0.0005,
|
3038 |
+
"step": 12175
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 716.76,
|
3042 |
+
"learning_rate": 2.6368e-07,
|
3043 |
+
"loss": 0.0002,
|
3044 |
+
"step": 12200
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 718.24,
|
3048 |
+
"learning_rate": 2.5568e-07,
|
3049 |
+
"loss": 0.0002,
|
3050 |
+
"step": 12225
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 719.71,
|
3054 |
+
"learning_rate": 2.4768e-07,
|
3055 |
+
"loss": 0.0002,
|
3056 |
+
"step": 12250
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 721.18,
|
3060 |
+
"learning_rate": 2.3968e-07,
|
3061 |
+
"loss": 0.0003,
|
3062 |
+
"step": 12275
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 722.65,
|
3066 |
+
"learning_rate": 2.3168e-07,
|
3067 |
+
"loss": 0.0002,
|
3068 |
+
"step": 12300
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 724.12,
|
3072 |
+
"learning_rate": 2.2367999999999998e-07,
|
3073 |
+
"loss": 0.0002,
|
3074 |
+
"step": 12325
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 725.59,
|
3078 |
+
"learning_rate": 2.1568e-07,
|
3079 |
+
"loss": 0.0002,
|
3080 |
+
"step": 12350
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 727.06,
|
3084 |
+
"learning_rate": 2.0768e-07,
|
3085 |
+
"loss": 0.0001,
|
3086 |
+
"step": 12375
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 728.53,
|
3090 |
+
"learning_rate": 1.9968e-07,
|
3091 |
+
"loss": 0.0002,
|
3092 |
+
"step": 12400
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 730.0,
|
3096 |
+
"learning_rate": 1.9167999999999998e-07,
|
3097 |
+
"loss": 0.0002,
|
3098 |
+
"step": 12425
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 731.47,
|
3102 |
+
"learning_rate": 1.8432e-07,
|
3103 |
+
"loss": 0.0003,
|
3104 |
+
"step": 12450
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 732.94,
|
3108 |
+
"learning_rate": 1.7632e-07,
|
3109 |
+
"loss": 0.0002,
|
3110 |
+
"step": 12475
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 734.41,
|
3114 |
+
"learning_rate": 1.6832e-07,
|
3115 |
+
"loss": 0.0001,
|
3116 |
+
"step": 12500
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 735.88,
|
3120 |
+
"learning_rate": 1.6032e-07,
|
3121 |
+
"loss": 0.0001,
|
3122 |
+
"step": 12525
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 737.35,
|
3126 |
+
"learning_rate": 1.5232e-07,
|
3127 |
+
"loss": 0.0001,
|
3128 |
+
"step": 12550
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 738.82,
|
3132 |
+
"learning_rate": 1.4431999999999998e-07,
|
3133 |
+
"loss": 0.0002,
|
3134 |
+
"step": 12575
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 740.29,
|
3138 |
+
"learning_rate": 1.3632e-07,
|
3139 |
+
"loss": 0.0002,
|
3140 |
+
"step": 12600
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 741.76,
|
3144 |
+
"learning_rate": 1.2831999999999997e-07,
|
3145 |
+
"loss": 0.0001,
|
3146 |
+
"step": 12625
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 743.24,
|
3150 |
+
"learning_rate": 1.2031999999999998e-07,
|
3151 |
+
"loss": 0.0003,
|
3152 |
+
"step": 12650
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 744.71,
|
3156 |
+
"learning_rate": 1.1232e-07,
|
3157 |
+
"loss": 0.0002,
|
3158 |
+
"step": 12675
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 746.18,
|
3162 |
+
"learning_rate": 1.0432e-07,
|
3163 |
+
"loss": 0.0002,
|
3164 |
+
"step": 12700
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 747.65,
|
3168 |
+
"learning_rate": 9.632e-08,
|
3169 |
+
"loss": 0.0002,
|
3170 |
+
"step": 12725
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 749.12,
|
3174 |
+
"learning_rate": 8.831999999999999e-08,
|
3175 |
+
"loss": 0.0002,
|
3176 |
+
"step": 12750
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 750.59,
|
3180 |
+
"learning_rate": 8.032e-08,
|
3181 |
+
"loss": 0.0002,
|
3182 |
+
"step": 12775
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 752.06,
|
3186 |
+
"learning_rate": 7.231999999999999e-08,
|
3187 |
+
"loss": 0.0002,
|
3188 |
+
"step": 12800
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 753.53,
|
3192 |
+
"learning_rate": 6.432e-08,
|
3193 |
+
"loss": 0.0002,
|
3194 |
+
"step": 12825
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 755.0,
|
3198 |
+
"learning_rate": 5.632e-08,
|
3199 |
+
"loss": 0.0002,
|
3200 |
+
"step": 12850
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 756.47,
|
3204 |
+
"learning_rate": 4.832e-08,
|
3205 |
+
"loss": 0.0002,
|
3206 |
+
"step": 12875
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 757.94,
|
3210 |
+
"learning_rate": 4.032e-08,
|
3211 |
+
"loss": 0.0002,
|
3212 |
+
"step": 12900
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 759.41,
|
3216 |
+
"learning_rate": 3.232e-08,
|
3217 |
+
"loss": 0.0001,
|
3218 |
+
"step": 12925
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 760.88,
|
3222 |
+
"learning_rate": 2.432e-08,
|
3223 |
+
"loss": 0.0002,
|
3224 |
+
"step": 12950
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 762.35,
|
3228 |
+
"learning_rate": 1.632e-08,
|
3229 |
+
"loss": 0.0001,
|
3230 |
+
"step": 12975
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 763.82,
|
3234 |
+
"learning_rate": 8.32e-09,
|
3235 |
+
"loss": 0.0001,
|
3236 |
+
"step": 13000
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 763.82,
|
3240 |
+
"eval_loss": 0.5546875,
|
3241 |
+
"eval_runtime": 156.9741,
|
3242 |
+
"eval_samples_per_second": 1.733,
|
3243 |
+
"eval_steps_per_second": 0.108,
|
3244 |
+
"eval_wer": 9.9925705794948,
|
3245 |
+
"step": 13000
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 765.47,
|
3249 |
+
"learning_rate": 2.965925925925926e-07,
|
3250 |
+
"loss": 0.0002,
|
3251 |
+
"step": 13025
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 766.94,
|
3255 |
+
"learning_rate": 2.891851851851852e-07,
|
3256 |
+
"loss": 0.0001,
|
3257 |
+
"step": 13050
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 768.41,
|
3261 |
+
"learning_rate": 2.817777777777778e-07,
|
3262 |
+
"loss": 0.0002,
|
3263 |
+
"step": 13075
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 769.88,
|
3267 |
+
"learning_rate": 2.7437037037037035e-07,
|
3268 |
+
"loss": 0.0001,
|
3269 |
+
"step": 13100
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 771.35,
|
3273 |
+
"learning_rate": 2.6696296296296296e-07,
|
3274 |
+
"loss": 0.0001,
|
3275 |
+
"step": 13125
|
3276 |
+
},
|
3277 |
+
{
|
3278 |
+
"epoch": 772.82,
|
3279 |
+
"learning_rate": 2.595555555555555e-07,
|
3280 |
+
"loss": 0.0002,
|
3281 |
+
"step": 13150
|
3282 |
+
},
|
3283 |
+
{
|
3284 |
+
"epoch": 774.29,
|
3285 |
+
"learning_rate": 2.521481481481481e-07,
|
3286 |
+
"loss": 0.0002,
|
3287 |
+
"step": 13175
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 775.76,
|
3291 |
+
"learning_rate": 2.4474074074074073e-07,
|
3292 |
+
"loss": 0.0001,
|
3293 |
+
"step": 13200
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 777.24,
|
3297 |
+
"learning_rate": 2.3733333333333334e-07,
|
3298 |
+
"loss": 0.0001,
|
3299 |
+
"step": 13225
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 778.71,
|
3303 |
+
"learning_rate": 2.2992592592592592e-07,
|
3304 |
+
"loss": 0.0001,
|
3305 |
+
"step": 13250
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 780.18,
|
3309 |
+
"learning_rate": 2.2251851851851853e-07,
|
3310 |
+
"loss": 0.0003,
|
3311 |
+
"step": 13275
|
3312 |
+
},
|
3313 |
+
{
|
3314 |
+
"epoch": 781.65,
|
3315 |
+
"learning_rate": 2.1511111111111111e-07,
|
3316 |
+
"loss": 0.0001,
|
3317 |
+
"step": 13300
|
3318 |
+
},
|
3319 |
+
{
|
3320 |
+
"epoch": 783.12,
|
3321 |
+
"learning_rate": 2.077037037037037e-07,
|
3322 |
+
"loss": 0.0001,
|
3323 |
+
"step": 13325
|
3324 |
+
},
|
3325 |
+
{
|
3326 |
+
"epoch": 784.59,
|
3327 |
+
"learning_rate": 2.002962962962963e-07,
|
3328 |
+
"loss": 0.0001,
|
3329 |
+
"step": 13350
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 786.06,
|
3333 |
+
"learning_rate": 1.9288888888888889e-07,
|
3334 |
+
"loss": 0.0001,
|
3335 |
+
"step": 13375
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 787.53,
|
3339 |
+
"learning_rate": 1.8548148148148147e-07,
|
3340 |
+
"loss": 0.0002,
|
3341 |
+
"step": 13400
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 789.0,
|
3345 |
+
"learning_rate": 1.7807407407407408e-07,
|
3346 |
+
"loss": 0.0002,
|
3347 |
+
"step": 13425
|
3348 |
+
},
|
3349 |
+
{
|
3350 |
+
"epoch": 790.47,
|
3351 |
+
"learning_rate": 1.7066666666666666e-07,
|
3352 |
+
"loss": 0.0002,
|
3353 |
+
"step": 13450
|
3354 |
+
},
|
3355 |
+
{
|
3356 |
+
"epoch": 791.94,
|
3357 |
+
"learning_rate": 1.6385185185185184e-07,
|
3358 |
+
"loss": 0.0001,
|
3359 |
+
"step": 13475
|
3360 |
+
},
|
3361 |
+
{
|
3362 |
+
"epoch": 793.41,
|
3363 |
+
"learning_rate": 1.5644444444444442e-07,
|
3364 |
+
"loss": 0.0003,
|
3365 |
+
"step": 13500
|
3366 |
+
},
|
3367 |
+
{
|
3368 |
+
"epoch": 794.88,
|
3369 |
+
"learning_rate": 1.49037037037037e-07,
|
3370 |
+
"loss": 0.0001,
|
3371 |
+
"step": 13525
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 796.35,
|
3375 |
+
"learning_rate": 1.4162962962962962e-07,
|
3376 |
+
"loss": 0.0001,
|
3377 |
+
"step": 13550
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 797.82,
|
3381 |
+
"learning_rate": 1.342222222222222e-07,
|
3382 |
+
"loss": 0.0001,
|
3383 |
+
"step": 13575
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 799.29,
|
3387 |
+
"learning_rate": 1.268148148148148e-07,
|
3388 |
+
"loss": 0.0001,
|
3389 |
+
"step": 13600
|
3390 |
+
},
|
3391 |
+
{
|
3392 |
+
"epoch": 800.76,
|
3393 |
+
"learning_rate": 1.194074074074074e-07,
|
3394 |
+
"loss": 0.0002,
|
3395 |
+
"step": 13625
|
3396 |
+
},
|
3397 |
+
{
|
3398 |
+
"epoch": 802.24,
|
3399 |
+
"learning_rate": 1.12e-07,
|
3400 |
+
"loss": 0.0001,
|
3401 |
+
"step": 13650
|
3402 |
+
},
|
3403 |
+
{
|
3404 |
+
"epoch": 803.71,
|
3405 |
+
"learning_rate": 1.0459259259259259e-07,
|
3406 |
+
"loss": 0.0002,
|
3407 |
+
"step": 13675
|
3408 |
+
},
|
3409 |
+
{
|
3410 |
+
"epoch": 805.18,
|
3411 |
+
"learning_rate": 9.718518518518517e-08,
|
3412 |
+
"loss": 0.0002,
|
3413 |
+
"step": 13700
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 806.65,
|
3417 |
+
"learning_rate": 8.977777777777777e-08,
|
3418 |
+
"loss": 0.0002,
|
3419 |
+
"step": 13725
|
3420 |
+
},
|
3421 |
+
{
|
3422 |
+
"epoch": 808.12,
|
3423 |
+
"learning_rate": 8.237037037037037e-08,
|
3424 |
+
"loss": 0.0002,
|
3425 |
+
"step": 13750
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 809.59,
|
3429 |
+
"learning_rate": 7.496296296296296e-08,
|
3430 |
+
"loss": 0.0002,
|
3431 |
+
"step": 13775
|
3432 |
+
},
|
3433 |
+
{
|
3434 |
+
"epoch": 811.06,
|
3435 |
+
"learning_rate": 6.755555555555554e-08,
|
3436 |
+
"loss": 0.0001,
|
3437 |
+
"step": 13800
|
3438 |
+
},
|
3439 |
+
{
|
3440 |
+
"epoch": 812.53,
|
3441 |
+
"learning_rate": 6.014814814814814e-08,
|
3442 |
+
"loss": 0.0001,
|
3443 |
+
"step": 13825
|
3444 |
+
},
|
3445 |
+
{
|
3446 |
+
"epoch": 814.0,
|
3447 |
+
"learning_rate": 5.274074074074074e-08,
|
3448 |
+
"loss": 0.0002,
|
3449 |
+
"step": 13850
|
3450 |
+
},
|
3451 |
+
{
|
3452 |
+
"epoch": 815.47,
|
3453 |
+
"learning_rate": 4.5333333333333336e-08,
|
3454 |
+
"loss": 0.0001,
|
3455 |
+
"step": 13875
|
3456 |
+
},
|
3457 |
+
{
|
3458 |
+
"epoch": 816.94,
|
3459 |
+
"learning_rate": 3.7925925925925924e-08,
|
3460 |
+
"loss": 0.0002,
|
3461 |
+
"step": 13900
|
3462 |
+
},
|
3463 |
+
{
|
3464 |
+
"epoch": 818.41,
|
3465 |
+
"learning_rate": 3.051851851851851e-08,
|
3466 |
+
"loss": 0.0001,
|
3467 |
+
"step": 13925
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 819.88,
|
3471 |
+
"learning_rate": 2.311111111111111e-08,
|
3472 |
+
"loss": 0.0002,
|
3473 |
+
"step": 13950
|
3474 |
+
},
|
3475 |
+
{
|
3476 |
+
"epoch": 821.35,
|
3477 |
+
"learning_rate": 1.57037037037037e-08,
|
3478 |
+
"loss": 0.0001,
|
3479 |
+
"step": 13975
|
3480 |
+
},
|
3481 |
+
{
|
3482 |
+
"epoch": 822.82,
|
3483 |
+
"learning_rate": 8.296296296296296e-09,
|
3484 |
+
"loss": 0.0001,
|
3485 |
+
"step": 14000
|
3486 |
+
},
|
3487 |
+
{
|
3488 |
+
"epoch": 822.82,
|
3489 |
+
"eval_loss": 0.5576171875,
|
3490 |
+
"eval_runtime": 157.6735,
|
3491 |
+
"eval_samples_per_second": 1.725,
|
3492 |
+
"eval_steps_per_second": 0.108,
|
3493 |
+
"eval_wer": 9.899702823179792,
|
3494 |
+
"step": 14000
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 824.47,
|
3498 |
+
"learning_rate": 0.00012324102564102563,
|
3499 |
+
"loss": 7.1148,
|
3500 |
+
"step": 14025
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 825.94,
|
3504 |
+
"learning_rate": 0.00012272820512820512,
|
3505 |
+
"loss": 5.3802,
|
3506 |
+
"step": 14050
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 827.41,
|
3510 |
+
"learning_rate": 0.00012221538461538463,
|
3511 |
+
"loss": 4.0038,
|
3512 |
+
"step": 14075
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 828.88,
|
3516 |
+
"learning_rate": 0.0001217025641025641,
|
3517 |
+
"loss": 3.0771,
|
3518 |
+
"step": 14100
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 830.35,
|
3522 |
+
"learning_rate": 0.00012118974358974359,
|
3523 |
+
"loss": 2.4888,
|
3524 |
+
"step": 14125
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 831.82,
|
3528 |
+
"learning_rate": 0.0001206769230769231,
|
3529 |
+
"loss": 2.0454,
|
3530 |
+
"step": 14150
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 833.29,
|
3534 |
+
"learning_rate": 0.00012016410256410258,
|
3535 |
+
"loss": 1.6123,
|
3536 |
+
"step": 14175
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 834.76,
|
3540 |
+
"learning_rate": 0.00011965128205128207,
|
3541 |
+
"loss": 1.1082,
|
3542 |
+
"step": 14200
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 836.24,
|
3546 |
+
"learning_rate": 0.00011913846153846155,
|
3547 |
+
"loss": 0.6733,
|
3548 |
+
"step": 14225
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 837.71,
|
3552 |
+
"learning_rate": 0.00011862564102564103,
|
3553 |
+
"loss": 0.4108,
|
3554 |
+
"step": 14250
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 839.18,
|
3558 |
+
"learning_rate": 0.00011811282051282051,
|
3559 |
+
"loss": 0.2879,
|
3560 |
+
"step": 14275
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 840.65,
|
3564 |
+
"learning_rate": 0.0001176,
|
3565 |
+
"loss": 0.2274,
|
3566 |
+
"step": 14300
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 842.12,
|
3570 |
+
"learning_rate": 0.00011708717948717949,
|
3571 |
+
"loss": 0.1869,
|
3572 |
+
"step": 14325
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 843.59,
|
3576 |
+
"learning_rate": 0.00011657435897435897,
|
3577 |
+
"loss": 0.1548,
|
3578 |
+
"step": 14350
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 845.06,
|
3582 |
+
"learning_rate": 0.00011606153846153847,
|
3583 |
+
"loss": 2.892,
|
3584 |
+
"step": 14375
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 846.53,
|
3588 |
+
"learning_rate": 0.00011556923076923078,
|
3589 |
+
"loss": 4.4433,
|
3590 |
+
"step": 14400
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 848.0,
|
3594 |
+
"learning_rate": 0.00011505641025641026,
|
3595 |
+
"loss": 0.9719,
|
3596 |
+
"step": 14425
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 849.47,
|
3600 |
+
"learning_rate": 0.00011454358974358974,
|
3601 |
+
"loss": 0.0969,
|
3602 |
+
"step": 14450
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 850.94,
|
3606 |
+
"learning_rate": 0.00011403076923076923,
|
3607 |
+
"loss": 0.0932,
|
3608 |
+
"step": 14475
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 852.41,
|
3612 |
+
"learning_rate": 0.00011351794871794871,
|
3613 |
+
"loss": 0.0829,
|
3614 |
+
"step": 14500
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 853.88,
|
3618 |
+
"learning_rate": 0.0001130051282051282,
|
3619 |
+
"loss": 0.0785,
|
3620 |
+
"step": 14525
|
3621 |
+
},
|
3622 |
+
{
|
3623 |
+
"epoch": 855.35,
|
3624 |
+
"learning_rate": 0.0001124923076923077,
|
3625 |
+
"loss": 0.0679,
|
3626 |
+
"step": 14550
|
3627 |
+
},
|
3628 |
+
{
|
3629 |
+
"epoch": 856.82,
|
3630 |
+
"learning_rate": 0.00011197948717948719,
|
3631 |
+
"loss": 0.0656,
|
3632 |
+
"step": 14575
|
3633 |
+
},
|
3634 |
+
{
|
3635 |
+
"epoch": 858.29,
|
3636 |
+
"learning_rate": 0.00011146666666666667,
|
3637 |
+
"loss": 0.064,
|
3638 |
+
"step": 14600
|
3639 |
+
},
|
3640 |
+
{
|
3641 |
+
"epoch": 859.76,
|
3642 |
+
"learning_rate": 0.00011095384615384616,
|
3643 |
+
"loss": 0.0614,
|
3644 |
+
"step": 14625
|
3645 |
+
},
|
3646 |
+
{
|
3647 |
+
"epoch": 861.24,
|
3648 |
+
"learning_rate": 0.00011044102564102565,
|
3649 |
+
"loss": 0.0612,
|
3650 |
+
"step": 14650
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 862.71,
|
3654 |
+
"learning_rate": 0.00010992820512820515,
|
3655 |
+
"loss": 0.0609,
|
3656 |
+
"step": 14675
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 864.18,
|
3660 |
+
"learning_rate": 0.00010941538461538463,
|
3661 |
+
"loss": 0.0586,
|
3662 |
+
"step": 14700
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 865.65,
|
3666 |
+
"learning_rate": 0.0001089025641025641,
|
3667 |
+
"loss": 0.0581,
|
3668 |
+
"step": 14725
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 867.12,
|
3672 |
+
"learning_rate": 0.00010838974358974358,
|
3673 |
+
"loss": 0.0569,
|
3674 |
+
"step": 14750
|
3675 |
+
},
|
3676 |
+
{
|
3677 |
+
"epoch": 868.59,
|
3678 |
+
"learning_rate": 0.00010787692307692308,
|
3679 |
+
"loss": 0.0573,
|
3680 |
+
"step": 14775
|
3681 |
+
},
|
3682 |
+
{
|
3683 |
+
"epoch": 870.06,
|
3684 |
+
"learning_rate": 0.00010736410256410257,
|
3685 |
+
"loss": 0.0555,
|
3686 |
+
"step": 14800
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 871.53,
|
3690 |
+
"learning_rate": 0.00010685128205128205,
|
3691 |
+
"loss": 0.0546,
|
3692 |
+
"step": 14825
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 873.0,
|
3696 |
+
"learning_rate": 0.00010633846153846154,
|
3697 |
+
"loss": 0.0548,
|
3698 |
+
"step": 14850
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 874.47,
|
3702 |
+
"learning_rate": 0.00010582564102564103,
|
3703 |
+
"loss": 0.0541,
|
3704 |
+
"step": 14875
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 875.94,
|
3708 |
+
"learning_rate": 0.00010531282051282053,
|
3709 |
+
"loss": 0.0526,
|
3710 |
+
"step": 14900
|
3711 |
+
},
|
3712 |
+
{
|
3713 |
+
"epoch": 877.41,
|
3714 |
+
"learning_rate": 0.00010480000000000001,
|
3715 |
+
"loss": 0.0521,
|
3716 |
+
"step": 14925
|
3717 |
+
},
|
3718 |
+
{
|
3719 |
+
"epoch": 878.88,
|
3720 |
+
"learning_rate": 0.0001042871794871795,
|
3721 |
+
"loss": 0.0539,
|
3722 |
+
"step": 14950
|
3723 |
+
},
|
3724 |
+
{
|
3725 |
+
"epoch": 880.35,
|
3726 |
+
"learning_rate": 0.00010377435897435899,
|
3727 |
+
"loss": 0.0535,
|
3728 |
+
"step": 14975
|
3729 |
+
},
|
3730 |
+
{
|
3731 |
+
"epoch": 881.82,
|
3732 |
+
"learning_rate": 0.00010326153846153847,
|
3733 |
+
"loss": 0.0538,
|
3734 |
+
"step": 15000
|
3735 |
+
},
|
3736 |
+
{
|
3737 |
+
"epoch": 881.82,
|
3738 |
+
"eval_loss": 5.33984375,
|
3739 |
+
"eval_runtime": 102.1523,
|
3740 |
+
"eval_samples_per_second": 2.663,
|
3741 |
+
"eval_steps_per_second": 0.166,
|
3742 |
+
"eval_wer": 99.87927191679049,
|
3743 |
+
"step": 15000
|
3744 |
+
},
|
3745 |
+
{
|
3746 |
+
"epoch": 883.29,
|
3747 |
+
"learning_rate": 0.00010274871794871795,
|
3748 |
+
"loss": 0.0535,
|
3749 |
+
"step": 15025
|
3750 |
+
},
|
3751 |
+
{
|
3752 |
+
"epoch": 884.76,
|
3753 |
+
"learning_rate": 0.00010223589743589743,
|
3754 |
+
"loss": 0.0516,
|
3755 |
+
"step": 15050
|
3756 |
+
},
|
3757 |
+
{
|
3758 |
+
"epoch": 886.24,
|
3759 |
+
"learning_rate": 0.00010172307692307692,
|
3760 |
+
"loss": 0.0503,
|
3761 |
+
"step": 15075
|
3762 |
+
},
|
3763 |
+
{
|
3764 |
+
"epoch": 887.71,
|
3765 |
+
"learning_rate": 0.0001012102564102564,
|
3766 |
+
"loss": 0.05,
|
3767 |
+
"step": 15100
|
3768 |
+
},
|
3769 |
+
{
|
3770 |
+
"epoch": 889.18,
|
3771 |
+
"learning_rate": 0.0001006974358974359,
|
3772 |
+
"loss": 0.0512,
|
3773 |
+
"step": 15125
|
3774 |
+
},
|
3775 |
+
{
|
3776 |
+
"epoch": 890.65,
|
3777 |
+
"learning_rate": 0.00010018461538461539,
|
3778 |
+
"loss": 0.0503,
|
3779 |
+
"step": 15150
|
3780 |
+
},
|
3781 |
+
{
|
3782 |
+
"epoch": 892.12,
|
3783 |
+
"learning_rate": 9.967179487179488e-05,
|
3784 |
+
"loss": 0.0516,
|
3785 |
+
"step": 15175
|
3786 |
+
},
|
3787 |
+
{
|
3788 |
+
"epoch": 893.59,
|
3789 |
+
"learning_rate": 9.915897435897436e-05,
|
3790 |
+
"loss": 0.0518,
|
3791 |
+
"step": 15200
|
3792 |
+
},
|
3793 |
+
{
|
3794 |
+
"epoch": 895.06,
|
3795 |
+
"learning_rate": 9.864615384615385e-05,
|
3796 |
+
"loss": 0.0521,
|
3797 |
+
"step": 15225
|
3798 |
+
},
|
3799 |
+
{
|
3800 |
+
"epoch": 896.53,
|
3801 |
+
"learning_rate": 9.813333333333334e-05,
|
3802 |
+
"loss": 0.0508,
|
3803 |
+
"step": 15250
|
3804 |
+
},
|
3805 |
+
{
|
3806 |
+
"epoch": 898.0,
|
3807 |
+
"learning_rate": 9.762051282051282e-05,
|
3808 |
+
"loss": 0.0507,
|
3809 |
+
"step": 15275
|
3810 |
+
},
|
3811 |
+
{
|
3812 |
+
"epoch": 899.47,
|
3813 |
+
"learning_rate": 9.710769230769231e-05,
|
3814 |
+
"loss": 0.0506,
|
3815 |
+
"step": 15300
|
3816 |
+
},
|
3817 |
+
{
|
3818 |
+
"epoch": 900.94,
|
3819 |
+
"learning_rate": 9.65948717948718e-05,
|
3820 |
+
"loss": 0.0496,
|
3821 |
+
"step": 15325
|
3822 |
+
},
|
3823 |
+
{
|
3824 |
+
"epoch": 902.41,
|
3825 |
+
"learning_rate": 9.608205128205128e-05,
|
3826 |
+
"loss": 0.052,
|
3827 |
+
"step": 15350
|
3828 |
+
},
|
3829 |
+
{
|
3830 |
+
"epoch": 903.88,
|
3831 |
+
"learning_rate": 9.556923076923078e-05,
|
3832 |
+
"loss": 0.05,
|
3833 |
+
"step": 15375
|
3834 |
+
},
|
3835 |
+
{
|
3836 |
+
"epoch": 905.35,
|
3837 |
+
"learning_rate": 9.505641025641026e-05,
|
3838 |
+
"loss": 0.0498,
|
3839 |
+
"step": 15400
|
3840 |
+
},
|
3841 |
+
{
|
3842 |
+
"epoch": 906.82,
|
3843 |
+
"learning_rate": 9.454358974358974e-05,
|
3844 |
+
"loss": 0.0501,
|
3845 |
+
"step": 15425
|
3846 |
+
},
|
3847 |
+
{
|
3848 |
+
"epoch": 908.29,
|
3849 |
+
"learning_rate": 9.403076923076923e-05,
|
3850 |
+
"loss": 0.0512,
|
3851 |
+
"step": 15450
|
3852 |
+
},
|
3853 |
+
{
|
3854 |
+
"epoch": 909.76,
|
3855 |
+
"learning_rate": 9.351794871794872e-05,
|
3856 |
+
"loss": 0.0499,
|
3857 |
+
"step": 15475
|
3858 |
+
},
|
3859 |
+
{
|
3860 |
+
"epoch": 911.24,
|
3861 |
+
"learning_rate": 9.300512820512822e-05,
|
3862 |
+
"loss": 0.05,
|
3863 |
+
"step": 15500
|
3864 |
+
},
|
3865 |
+
{
|
3866 |
+
"epoch": 912.71,
|
3867 |
+
"learning_rate": 9.24923076923077e-05,
|
3868 |
+
"loss": 0.0516,
|
3869 |
+
"step": 15525
|
3870 |
+
},
|
3871 |
+
{
|
3872 |
+
"epoch": 914.18,
|
3873 |
+
"learning_rate": 9.197948717948719e-05,
|
3874 |
+
"loss": 0.0517,
|
3875 |
+
"step": 15550
|
3876 |
+
},
|
3877 |
+
{
|
3878 |
+
"epoch": 915.65,
|
3879 |
+
"learning_rate": 9.146666666666666e-05,
|
3880 |
+
"loss": 0.0499,
|
3881 |
+
"step": 15575
|
3882 |
+
},
|
3883 |
+
{
|
3884 |
+
"epoch": 917.12,
|
3885 |
+
"learning_rate": 9.095384615384616e-05,
|
3886 |
+
"loss": 0.0531,
|
3887 |
+
"step": 15600
|
3888 |
+
},
|
3889 |
+
{
|
3890 |
+
"epoch": 918.59,
|
3891 |
+
"learning_rate": 9.044102564102565e-05,
|
3892 |
+
"loss": 0.0502,
|
3893 |
+
"step": 15625
|
3894 |
+
},
|
3895 |
+
{
|
3896 |
+
"epoch": 920.06,
|
3897 |
+
"learning_rate": 8.992820512820514e-05,
|
3898 |
+
"loss": 0.0495,
|
3899 |
+
"step": 15650
|
3900 |
+
},
|
3901 |
+
{
|
3902 |
+
"epoch": 921.53,
|
3903 |
+
"learning_rate": 8.941538461538462e-05,
|
3904 |
+
"loss": 0.0499,
|
3905 |
+
"step": 15675
|
3906 |
+
},
|
3907 |
+
{
|
3908 |
+
"epoch": 923.0,
|
3909 |
+
"learning_rate": 8.890256410256411e-05,
|
3910 |
+
"loss": 0.0515,
|
3911 |
+
"step": 15700
|
3912 |
+
},
|
3913 |
+
{
|
3914 |
+
"epoch": 924.47,
|
3915 |
+
"learning_rate": 8.83897435897436e-05,
|
3916 |
+
"loss": 0.0491,
|
3917 |
+
"step": 15725
|
3918 |
+
},
|
3919 |
+
{
|
3920 |
+
"epoch": 925.94,
|
3921 |
+
"learning_rate": 8.787692307692308e-05,
|
3922 |
+
"loss": 0.0491,
|
3923 |
+
"step": 15750
|
3924 |
+
},
|
3925 |
+
{
|
3926 |
+
"epoch": 927.41,
|
3927 |
+
"learning_rate": 8.736410256410257e-05,
|
3928 |
+
"loss": 0.0482,
|
3929 |
+
"step": 15775
|
3930 |
+
},
|
3931 |
+
{
|
3932 |
+
"epoch": 928.88,
|
3933 |
+
"learning_rate": 8.685128205128206e-05,
|
3934 |
+
"loss": 0.0487,
|
3935 |
+
"step": 15800
|
3936 |
+
},
|
3937 |
+
{
|
3938 |
+
"epoch": 930.35,
|
3939 |
+
"learning_rate": 8.633846153846154e-05,
|
3940 |
+
"loss": 0.0494,
|
3941 |
+
"step": 15825
|
3942 |
+
},
|
3943 |
+
{
|
3944 |
+
"epoch": 931.82,
|
3945 |
+
"learning_rate": 8.582564102564103e-05,
|
3946 |
+
"loss": 0.0491,
|
3947 |
+
"step": 15850
|
3948 |
+
},
|
3949 |
+
{
|
3950 |
+
"epoch": 933.29,
|
3951 |
+
"learning_rate": 8.531282051282051e-05,
|
3952 |
+
"loss": 0.0483,
|
3953 |
+
"step": 15875
|
3954 |
+
},
|
3955 |
+
{
|
3956 |
+
"epoch": 934.76,
|
3957 |
+
"learning_rate": 8.48e-05,
|
3958 |
+
"loss": 0.048,
|
3959 |
+
"step": 15900
|
3960 |
+
},
|
3961 |
+
{
|
3962 |
+
"epoch": 936.24,
|
3963 |
+
"learning_rate": 8.428717948717949e-05,
|
3964 |
+
"loss": 0.0488,
|
3965 |
+
"step": 15925
|
3966 |
+
},
|
3967 |
+
{
|
3968 |
+
"epoch": 937.71,
|
3969 |
+
"learning_rate": 8.377435897435897e-05,
|
3970 |
+
"loss": 0.0494,
|
3971 |
+
"step": 15950
|
3972 |
+
},
|
3973 |
+
{
|
3974 |
+
"epoch": 939.18,
|
3975 |
+
"learning_rate": 8.326153846153847e-05,
|
3976 |
+
"loss": 0.0491,
|
3977 |
+
"step": 15975
|
3978 |
+
},
|
3979 |
+
{
|
3980 |
+
"epoch": 940.65,
|
3981 |
+
"learning_rate": 8.274871794871796e-05,
|
3982 |
+
"loss": 0.0482,
|
3983 |
+
"step": 16000
|
3984 |
+
},
|
3985 |
+
{
|
3986 |
+
"epoch": 940.65,
|
3987 |
+
"eval_loss": 5.62109375,
|
3988 |
+
"eval_runtime": 164.5773,
|
3989 |
+
"eval_samples_per_second": 1.653,
|
3990 |
+
"eval_steps_per_second": 0.103,
|
3991 |
+
"eval_wer": 136.06983655274888,
|
3992 |
+
"step": 16000
|
3993 |
+
},
|
3994 |
+
{
|
3995 |
+
"epoch": 942.12,
|
3996 |
+
"learning_rate": 8.223589743589743e-05,
|
3997 |
+
"loss": 0.0492,
|
3998 |
+
"step": 16025
|
3999 |
+
},
|
4000 |
+
{
|
4001 |
+
"epoch": 943.59,
|
4002 |
+
"learning_rate": 8.172307692307692e-05,
|
4003 |
+
"loss": 0.0485,
|
4004 |
+
"step": 16050
|
4005 |
+
},
|
4006 |
+
{
|
4007 |
+
"epoch": 945.06,
|
4008 |
+
"learning_rate": 8.121025641025641e-05,
|
4009 |
+
"loss": 0.0489,
|
4010 |
+
"step": 16075
|
4011 |
+
},
|
4012 |
+
{
|
4013 |
+
"epoch": 946.53,
|
4014 |
+
"learning_rate": 8.069743589743591e-05,
|
4015 |
+
"loss": 0.0494,
|
4016 |
+
"step": 16100
|
4017 |
+
},
|
4018 |
+
{
|
4019 |
+
"epoch": 948.0,
|
4020 |
+
"learning_rate": 8.01846153846154e-05,
|
4021 |
+
"loss": 0.0487,
|
4022 |
+
"step": 16125
|
4023 |
+
},
|
4024 |
+
{
|
4025 |
+
"epoch": 949.47,
|
4026 |
+
"learning_rate": 7.967179487179488e-05,
|
4027 |
+
"loss": 0.0473,
|
4028 |
+
"step": 16150
|
4029 |
+
},
|
4030 |
+
{
|
4031 |
+
"epoch": 950.94,
|
4032 |
+
"learning_rate": 7.915897435897435e-05,
|
4033 |
+
"loss": 0.0489,
|
4034 |
+
"step": 16175
|
4035 |
+
},
|
4036 |
+
{
|
4037 |
+
"epoch": 952.41,
|
4038 |
+
"learning_rate": 7.864615384615385e-05,
|
4039 |
+
"loss": 0.048,
|
4040 |
+
"step": 16200
|
4041 |
+
},
|
4042 |
+
{
|
4043 |
+
"epoch": 953.88,
|
4044 |
+
"learning_rate": 7.813333333333334e-05,
|
4045 |
+
"loss": 0.0479,
|
4046 |
+
"step": 16225
|
4047 |
+
},
|
4048 |
+
{
|
4049 |
+
"epoch": 955.35,
|
4050 |
+
"learning_rate": 7.762051282051283e-05,
|
4051 |
+
"loss": 0.0549,
|
4052 |
+
"step": 16250
|
4053 |
+
},
|
4054 |
+
{
|
4055 |
+
"epoch": 956.82,
|
4056 |
+
"learning_rate": 7.710769230769231e-05,
|
4057 |
+
"loss": 0.0479,
|
4058 |
+
"step": 16275
|
4059 |
+
},
|
4060 |
+
{
|
4061 |
+
"epoch": 958.29,
|
4062 |
+
"learning_rate": 7.65948717948718e-05,
|
4063 |
+
"loss": 0.0468,
|
4064 |
+
"step": 16300
|
4065 |
+
},
|
4066 |
+
{
|
4067 |
+
"epoch": 959.76,
|
4068 |
+
"learning_rate": 7.608205128205129e-05,
|
4069 |
+
"loss": 0.0477,
|
4070 |
+
"step": 16325
|
4071 |
+
},
|
4072 |
+
{
|
4073 |
+
"epoch": 961.24,
|
4074 |
+
"learning_rate": 7.556923076923077e-05,
|
4075 |
+
"loss": 0.0482,
|
4076 |
+
"step": 16350
|
4077 |
+
},
|
4078 |
+
{
|
4079 |
+
"epoch": 962.71,
|
4080 |
+
"learning_rate": 7.505641025641026e-05,
|
4081 |
+
"loss": 0.0493,
|
4082 |
+
"step": 16375
|
4083 |
+
},
|
4084 |
+
{
|
4085 |
+
"epoch": 964.18,
|
4086 |
+
"learning_rate": 7.454358974358975e-05,
|
4087 |
+
"loss": 0.0499,
|
4088 |
+
"step": 16400
|
4089 |
+
},
|
4090 |
+
{
|
4091 |
+
"epoch": 965.65,
|
4092 |
+
"learning_rate": 7.403076923076923e-05,
|
4093 |
+
"loss": 0.0516,
|
4094 |
+
"step": 16425
|
4095 |
+
},
|
4096 |
+
{
|
4097 |
+
"epoch": 967.12,
|
4098 |
+
"learning_rate": 7.351794871794873e-05,
|
4099 |
+
"loss": 0.052,
|
4100 |
+
"step": 16450
|
4101 |
+
},
|
4102 |
+
{
|
4103 |
+
"epoch": 968.59,
|
4104 |
+
"learning_rate": 7.30051282051282e-05,
|
4105 |
+
"loss": 0.0495,
|
4106 |
+
"step": 16475
|
4107 |
+
},
|
4108 |
+
{
|
4109 |
+
"epoch": 970.06,
|
4110 |
+
"learning_rate": 7.249230769230769e-05,
|
4111 |
+
"loss": 0.0495,
|
4112 |
+
"step": 16500
|
4113 |
+
},
|
4114 |
+
{
|
4115 |
+
"epoch": 971.53,
|
4116 |
+
"learning_rate": 7.197948717948718e-05,
|
4117 |
+
"loss": 0.0482,
|
4118 |
+
"step": 16525
|
4119 |
+
},
|
4120 |
+
{
|
4121 |
+
"epoch": 973.0,
|
4122 |
+
"learning_rate": 7.146666666666666e-05,
|
4123 |
+
"loss": 0.0511,
|
4124 |
+
"step": 16550
|
4125 |
+
},
|
4126 |
+
{
|
4127 |
+
"epoch": 974.47,
|
4128 |
+
"learning_rate": 7.095384615384616e-05,
|
4129 |
+
"loss": 0.0487,
|
4130 |
+
"step": 16575
|
4131 |
+
},
|
4132 |
+
{
|
4133 |
+
"epoch": 975.94,
|
4134 |
+
"learning_rate": 7.044102564102565e-05,
|
4135 |
+
"loss": 0.049,
|
4136 |
+
"step": 16600
|
4137 |
+
},
|
4138 |
+
{
|
4139 |
+
"epoch": 977.41,
|
4140 |
+
"learning_rate": 6.992820512820512e-05,
|
4141 |
+
"loss": 0.048,
|
4142 |
+
"step": 16625
|
4143 |
+
},
|
4144 |
+
{
|
4145 |
+
"epoch": 978.88,
|
4146 |
+
"learning_rate": 6.941538461538461e-05,
|
4147 |
+
"loss": 0.0485,
|
4148 |
+
"step": 16650
|
4149 |
+
},
|
4150 |
+
{
|
4151 |
+
"epoch": 980.35,
|
4152 |
+
"learning_rate": 6.890256410256411e-05,
|
4153 |
+
"loss": 0.0525,
|
4154 |
+
"step": 16675
|
4155 |
+
},
|
4156 |
+
{
|
4157 |
+
"epoch": 981.82,
|
4158 |
+
"learning_rate": 6.83897435897436e-05,
|
4159 |
+
"loss": 0.0478,
|
4160 |
+
"step": 16700
|
4161 |
+
},
|
4162 |
+
{
|
4163 |
+
"epoch": 983.29,
|
4164 |
+
"learning_rate": 6.787692307692308e-05,
|
4165 |
+
"loss": 0.0481,
|
4166 |
+
"step": 16725
|
4167 |
+
},
|
4168 |
+
{
|
4169 |
+
"epoch": 984.76,
|
4170 |
+
"learning_rate": 6.736410256410257e-05,
|
4171 |
+
"loss": 0.0494,
|
4172 |
+
"step": 16750
|
4173 |
+
},
|
4174 |
+
{
|
4175 |
+
"epoch": 986.24,
|
4176 |
+
"learning_rate": 6.685128205128204e-05,
|
4177 |
+
"loss": 0.0468,
|
4178 |
+
"step": 16775
|
4179 |
+
},
|
4180 |
+
{
|
4181 |
+
"epoch": 987.71,
|
4182 |
+
"learning_rate": 6.633846153846154e-05,
|
4183 |
+
"loss": 0.0631,
|
4184 |
+
"step": 16800
|
4185 |
+
},
|
4186 |
+
{
|
4187 |
+
"epoch": 989.18,
|
4188 |
+
"learning_rate": 6.582564102564103e-05,
|
4189 |
+
"loss": 0.0468,
|
4190 |
+
"step": 16825
|
4191 |
+
},
|
4192 |
+
{
|
4193 |
+
"epoch": 990.65,
|
4194 |
+
"learning_rate": 6.531282051282052e-05,
|
4195 |
+
"loss": 0.0464,
|
4196 |
+
"step": 16850
|
4197 |
+
},
|
4198 |
+
{
|
4199 |
+
"epoch": 992.12,
|
4200 |
+
"learning_rate": 6.48e-05,
|
4201 |
+
"loss": 0.0625,
|
4202 |
+
"step": 16875
|
4203 |
+
},
|
4204 |
+
{
|
4205 |
+
"epoch": 993.59,
|
4206 |
+
"learning_rate": 6.428717948717949e-05,
|
4207 |
+
"loss": 0.0497,
|
4208 |
+
"step": 16900
|
4209 |
+
},
|
4210 |
+
{
|
4211 |
+
"epoch": 995.06,
|
4212 |
+
"learning_rate": 6.377435897435898e-05,
|
4213 |
+
"loss": 0.0481,
|
4214 |
+
"step": 16925
|
4215 |
+
},
|
4216 |
+
{
|
4217 |
+
"epoch": 996.53,
|
4218 |
+
"learning_rate": 6.326153846153846e-05,
|
4219 |
+
"loss": 0.0484,
|
4220 |
+
"step": 16950
|
4221 |
+
},
|
4222 |
+
{
|
4223 |
+
"epoch": 998.0,
|
4224 |
+
"learning_rate": 6.274871794871795e-05,
|
4225 |
+
"loss": 0.0506,
|
4226 |
+
"step": 16975
|
4227 |
+
},
|
4228 |
+
{
|
4229 |
+
"epoch": 999.47,
|
4230 |
+
"learning_rate": 6.223589743589744e-05,
|
4231 |
+
"loss": 0.0471,
|
4232 |
+
"step": 17000
|
4233 |
+
},
|
4234 |
+
{
|
4235 |
+
"epoch": 999.47,
|
4236 |
+
"eval_loss": 5.6484375,
|
4237 |
+
"eval_runtime": 155.9288,
|
4238 |
+
"eval_samples_per_second": 1.744,
|
4239 |
+
"eval_steps_per_second": 0.109,
|
4240 |
+
"eval_wer": 121.2481426448737,
|
4241 |
+
"step": 17000
|
4242 |
+
}
|
4243 |
+
],
|
4244 |
+
"max_steps": 20000,
|
4245 |
+
"num_train_epochs": 1177,
|
4246 |
+
"total_flos": 5.251869494196956e+20,
|
4247 |
+
"trial_name": null,
|
4248 |
+
"trial_params": null
|
4249 |
+
}
|
checkpoint-17000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6e3ac4aeab20cf895e188b7a0ae60077219ad0067d587dfa1da35e123e14fa0
|
3 |
+
size 4795
|
checkpoint-17000/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
checkpoint-18000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilios/whisper-medium-el-n2",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-18000/global_step18000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:968e33791e5da9e611607f08b7bccc994a655e736b76069a6904307bf45069a4
|
3 |
+
size 1527967899
|
checkpoint-18000/global_step18000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93e4f29f011651f19d5cb83131fb2ca0707a6560a65e217bb3f45949619ff6c8
|
3 |
+
size 9166378846
|
checkpoint-18000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step18000
|
checkpoint-18000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-18000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0083259db3b58a2a002a48614b01db92f9a0d63a6d02a7aeff5ba6e221b37e9a
|
3 |
+
size 1527847357
|
checkpoint-18000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caec33bf7a1d27f20d4d423d145811b5b034deea36849823358a452fa528a772
|
3 |
+
size 14575
|
checkpoint-18000/trainer_state.json
ADDED
@@ -0,0 +1,4498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 9.778974739970282,
|
3 |
+
"best_model_checkpoint": "./checkpoint-9000",
|
4 |
+
"epoch": 1058.2941176470588,
|
5 |
+
"global_step": 18000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.78,
|
12 |
+
"learning_rate": 5.0453611334320685e-06,
|
13 |
+
"loss": 0.6804,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 5.56,
|
18 |
+
"learning_rate": 6.229195710491767e-06,
|
19 |
+
"loss": 0.1847,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 8.33,
|
24 |
+
"learning_rate": 6.903829450223392e-06,
|
25 |
+
"loss": 0.0821,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 11.11,
|
30 |
+
"learning_rate": 7.377725845391017e-06,
|
31 |
+
"loss": 0.0485,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 13.89,
|
36 |
+
"learning_rate": 7.743343231239583e-06,
|
37 |
+
"loss": 0.0432,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 16.67,
|
42 |
+
"learning_rate": 8.041073861170494e-06,
|
43 |
+
"loss": 0.0328,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 19.44,
|
48 |
+
"learning_rate": 8.292222957399574e-06,
|
49 |
+
"loss": 0.0291,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 22.22,
|
54 |
+
"learning_rate": 8.509413541357755e-06,
|
55 |
+
"loss": 0.0298,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 25.0,
|
60 |
+
"learning_rate": 8.700744577655557e-06,
|
61 |
+
"loss": 0.0269,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 27.78,
|
66 |
+
"learning_rate": 8.871723942761204e-06,
|
67 |
+
"loss": 0.0272,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 30.56,
|
72 |
+
"learning_rate": 9.026267958246849e-06,
|
73 |
+
"loss": 0.027,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 33.33,
|
78 |
+
"learning_rate": 9.16726106663399e-06,
|
79 |
+
"loss": 0.0213,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 36.11,
|
84 |
+
"learning_rate": 9.296889251455016e-06,
|
85 |
+
"loss": 0.0215,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 38.89,
|
90 |
+
"learning_rate": 9.416848797368692e-06,
|
91 |
+
"loss": 0.0195,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 41.67,
|
96 |
+
"learning_rate": 9.528482449516371e-06,
|
97 |
+
"loss": 0.0167,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 44.44,
|
102 |
+
"learning_rate": 9.632871309784314e-06,
|
103 |
+
"loss": 0.0184,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 47.22,
|
108 |
+
"learning_rate": 9.73089868785391e-06,
|
109 |
+
"loss": 0.0159,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 50.0,
|
114 |
+
"learning_rate": 9.823295589572114e-06,
|
115 |
+
"loss": 0.0172,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 52.78,
|
120 |
+
"learning_rate": 9.910673836465484e-06,
|
121 |
+
"loss": 0.0123,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 55.56,
|
126 |
+
"learning_rate": 9.993550644973805e-06,
|
127 |
+
"loss": 0.0144,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 58.33,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.0135,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 61.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.0128,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 63.89,
|
144 |
+
"learning_rate": 9.84e-06,
|
145 |
+
"loss": 0.0115,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 66.67,
|
150 |
+
"learning_rate": 9.784444444444445e-06,
|
151 |
+
"loss": 0.0105,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 69.44,
|
156 |
+
"learning_rate": 9.72888888888889e-06,
|
157 |
+
"loss": 0.0104,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 72.22,
|
162 |
+
"learning_rate": 9.673333333333334e-06,
|
163 |
+
"loss": 0.0087,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 75.0,
|
168 |
+
"learning_rate": 9.617777777777778e-06,
|
169 |
+
"loss": 0.0091,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 77.78,
|
174 |
+
"learning_rate": 9.562222222222223e-06,
|
175 |
+
"loss": 0.0085,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 80.56,
|
180 |
+
"learning_rate": 9.506666666666667e-06,
|
181 |
+
"loss": 0.011,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 83.33,
|
186 |
+
"learning_rate": 9.451111111111112e-06,
|
187 |
+
"loss": 0.0117,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 86.11,
|
192 |
+
"learning_rate": 9.395555555555556e-06,
|
193 |
+
"loss": 0.0088,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 88.89,
|
198 |
+
"learning_rate": 9.340000000000002e-06,
|
199 |
+
"loss": 0.0077,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 91.67,
|
204 |
+
"learning_rate": 9.284444444444444e-06,
|
205 |
+
"loss": 0.0091,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 94.44,
|
210 |
+
"learning_rate": 9.22888888888889e-06,
|
211 |
+
"loss": 0.0067,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 97.22,
|
216 |
+
"learning_rate": 9.173333333333334e-06,
|
217 |
+
"loss": 0.0082,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 100.0,
|
222 |
+
"learning_rate": 9.117777777777778e-06,
|
223 |
+
"loss": 0.0055,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 102.78,
|
228 |
+
"learning_rate": 9.062222222222224e-06,
|
229 |
+
"loss": 0.0077,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 105.56,
|
234 |
+
"learning_rate": 9.006666666666666e-06,
|
235 |
+
"loss": 0.0055,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 108.33,
|
240 |
+
"learning_rate": 8.951111111111112e-06,
|
241 |
+
"loss": 0.005,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 111.11,
|
246 |
+
"learning_rate": 8.895555555555556e-06,
|
247 |
+
"loss": 0.0066,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 111.11,
|
252 |
+
"eval_loss": 0.2357177734375,
|
253 |
+
"eval_runtime": 64.7785,
|
254 |
+
"eval_samples_per_second": 2.022,
|
255 |
+
"eval_steps_per_second": 0.139,
|
256 |
+
"eval_wer": 23.044096728307252,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 113.89,
|
261 |
+
"learning_rate": 8.844444444444445e-06,
|
262 |
+
"loss": 0.0057,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 116.67,
|
267 |
+
"learning_rate": 8.788888888888891e-06,
|
268 |
+
"loss": 0.0096,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 119.44,
|
273 |
+
"learning_rate": 8.733333333333333e-06,
|
274 |
+
"loss": 0.0063,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 122.22,
|
279 |
+
"learning_rate": 8.677777777777779e-06,
|
280 |
+
"loss": 0.0069,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 125.0,
|
285 |
+
"learning_rate": 8.622222222222223e-06,
|
286 |
+
"loss": 0.0069,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 127.78,
|
291 |
+
"learning_rate": 8.566666666666667e-06,
|
292 |
+
"loss": 0.0046,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 130.56,
|
297 |
+
"learning_rate": 8.511111111111113e-06,
|
298 |
+
"loss": 0.0051,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 133.33,
|
303 |
+
"learning_rate": 8.455555555555555e-06,
|
304 |
+
"loss": 0.0055,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 136.11,
|
309 |
+
"learning_rate": 8.400000000000001e-06,
|
310 |
+
"loss": 0.0042,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 138.89,
|
315 |
+
"learning_rate": 8.344444444444445e-06,
|
316 |
+
"loss": 0.0042,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 141.67,
|
321 |
+
"learning_rate": 8.288888888888889e-06,
|
322 |
+
"loss": 0.005,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 144.44,
|
327 |
+
"learning_rate": 8.233333333333335e-06,
|
328 |
+
"loss": 0.0054,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 147.22,
|
333 |
+
"learning_rate": 8.177777777777779e-06,
|
334 |
+
"loss": 0.0052,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 150.0,
|
339 |
+
"learning_rate": 8.122222222222223e-06,
|
340 |
+
"loss": 0.0057,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 152.78,
|
345 |
+
"learning_rate": 8.066666666666667e-06,
|
346 |
+
"loss": 0.0039,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 155.56,
|
351 |
+
"learning_rate": 8.011111111111113e-06,
|
352 |
+
"loss": 0.0032,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 158.33,
|
357 |
+
"learning_rate": 7.955555555555557e-06,
|
358 |
+
"loss": 0.0034,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 161.11,
|
363 |
+
"learning_rate": 7.902222222222223e-06,
|
364 |
+
"loss": 0.0068,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 163.89,
|
369 |
+
"learning_rate": 7.846666666666667e-06,
|
370 |
+
"loss": 0.0034,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 166.67,
|
375 |
+
"learning_rate": 7.791111111111111e-06,
|
376 |
+
"loss": 0.0026,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 169.44,
|
381 |
+
"learning_rate": 7.735555555555557e-06,
|
382 |
+
"loss": 0.0036,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 172.22,
|
387 |
+
"learning_rate": 7.680000000000001e-06,
|
388 |
+
"loss": 0.0033,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 175.0,
|
393 |
+
"learning_rate": 7.624444444444445e-06,
|
394 |
+
"loss": 0.0021,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 177.78,
|
399 |
+
"learning_rate": 7.56888888888889e-06,
|
400 |
+
"loss": 0.0033,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 180.56,
|
405 |
+
"learning_rate": 7.513333333333334e-06,
|
406 |
+
"loss": 0.0037,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 183.33,
|
411 |
+
"learning_rate": 7.457777777777778e-06,
|
412 |
+
"loss": 0.0032,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 186.11,
|
417 |
+
"learning_rate": 7.402222222222223e-06,
|
418 |
+
"loss": 0.0037,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 188.89,
|
423 |
+
"learning_rate": 7.346666666666668e-06,
|
424 |
+
"loss": 0.0022,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 191.67,
|
429 |
+
"learning_rate": 7.291111111111112e-06,
|
430 |
+
"loss": 0.0024,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 194.44,
|
435 |
+
"learning_rate": 7.235555555555556e-06,
|
436 |
+
"loss": 0.0026,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 197.22,
|
441 |
+
"learning_rate": 7.180000000000001e-06,
|
442 |
+
"loss": 0.0022,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 200.0,
|
447 |
+
"learning_rate": 7.124444444444445e-06,
|
448 |
+
"loss": 0.0026,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 202.78,
|
453 |
+
"learning_rate": 7.06888888888889e-06,
|
454 |
+
"loss": 0.0032,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 205.56,
|
459 |
+
"learning_rate": 7.0133333333333345e-06,
|
460 |
+
"loss": 0.0033,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 208.33,
|
465 |
+
"learning_rate": 6.9577777777777785e-06,
|
466 |
+
"loss": 0.0027,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 211.11,
|
471 |
+
"learning_rate": 6.902222222222223e-06,
|
472 |
+
"loss": 0.0043,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 213.89,
|
477 |
+
"learning_rate": 6.846666666666667e-06,
|
478 |
+
"loss": 0.0028,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 216.67,
|
483 |
+
"learning_rate": 6.7911111111111115e-06,
|
484 |
+
"loss": 0.0012,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 219.44,
|
489 |
+
"learning_rate": 6.735555555555556e-06,
|
490 |
+
"loss": 0.0015,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 222.22,
|
495 |
+
"learning_rate": 6.680000000000001e-06,
|
496 |
+
"loss": 0.0024,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 222.22,
|
501 |
+
"eval_loss": 0.2607421875,
|
502 |
+
"eval_runtime": 57.0802,
|
503 |
+
"eval_samples_per_second": 2.295,
|
504 |
+
"eval_steps_per_second": 0.158,
|
505 |
+
"eval_wer": 19.665718349928877,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 225.0,
|
510 |
+
"learning_rate": 6.6244444444444445e-06,
|
511 |
+
"loss": 0.0029,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 227.78,
|
516 |
+
"learning_rate": 6.568888888888889e-06,
|
517 |
+
"loss": 0.0021,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 230.56,
|
522 |
+
"learning_rate": 6.513333333333333e-06,
|
523 |
+
"loss": 0.0022,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 233.33,
|
528 |
+
"learning_rate": 6.457777777777778e-06,
|
529 |
+
"loss": 0.0022,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 236.11,
|
534 |
+
"learning_rate": 6.402222222222223e-06,
|
535 |
+
"loss": 0.0011,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 238.89,
|
540 |
+
"learning_rate": 6.346666666666668e-06,
|
541 |
+
"loss": 0.0026,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 241.67,
|
546 |
+
"learning_rate": 6.291111111111111e-06,
|
547 |
+
"loss": 0.0021,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 244.44,
|
552 |
+
"learning_rate": 6.235555555555556e-06,
|
553 |
+
"loss": 0.0016,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 247.22,
|
558 |
+
"learning_rate": 6.18e-06,
|
559 |
+
"loss": 0.0024,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 250.0,
|
564 |
+
"learning_rate": 6.124444444444445e-06,
|
565 |
+
"loss": 0.0046,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 252.78,
|
570 |
+
"learning_rate": 6.06888888888889e-06,
|
571 |
+
"loss": 0.0018,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 255.56,
|
576 |
+
"learning_rate": 6.013333333333335e-06,
|
577 |
+
"loss": 0.0012,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 258.33,
|
582 |
+
"learning_rate": 5.957777777777778e-06,
|
583 |
+
"loss": 0.0014,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 261.11,
|
588 |
+
"learning_rate": 5.902222222222223e-06,
|
589 |
+
"loss": 0.0007,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 263.89,
|
594 |
+
"learning_rate": 5.846666666666667e-06,
|
595 |
+
"loss": 0.0014,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 266.67,
|
600 |
+
"learning_rate": 5.791111111111112e-06,
|
601 |
+
"loss": 0.0009,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 269.44,
|
606 |
+
"learning_rate": 5.735555555555557e-06,
|
607 |
+
"loss": 0.0008,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 272.22,
|
612 |
+
"learning_rate": 5.68e-06,
|
613 |
+
"loss": 0.0028,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 275.0,
|
618 |
+
"learning_rate": 5.624444444444445e-06,
|
619 |
+
"loss": 0.002,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 277.78,
|
624 |
+
"learning_rate": 5.56888888888889e-06,
|
625 |
+
"loss": 0.0011,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 280.56,
|
630 |
+
"learning_rate": 5.513333333333334e-06,
|
631 |
+
"loss": 0.001,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 283.33,
|
636 |
+
"learning_rate": 5.4577777777777785e-06,
|
637 |
+
"loss": 0.0007,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 286.11,
|
642 |
+
"learning_rate": 5.402222222222223e-06,
|
643 |
+
"loss": 0.0007,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 288.89,
|
648 |
+
"learning_rate": 5.346666666666667e-06,
|
649 |
+
"loss": 0.0008,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 291.67,
|
654 |
+
"learning_rate": 5.2911111111111115e-06,
|
655 |
+
"loss": 0.0012,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 294.44,
|
660 |
+
"learning_rate": 5.235555555555556e-06,
|
661 |
+
"loss": 0.0016,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 297.22,
|
666 |
+
"learning_rate": 5.18e-06,
|
667 |
+
"loss": 0.0012,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 300.0,
|
672 |
+
"learning_rate": 5.124444444444445e-06,
|
673 |
+
"loss": 0.001,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 302.78,
|
678 |
+
"learning_rate": 5.06888888888889e-06,
|
679 |
+
"loss": 0.0012,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 305.56,
|
684 |
+
"learning_rate": 5.013333333333333e-06,
|
685 |
+
"loss": 0.001,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 308.33,
|
690 |
+
"learning_rate": 4.957777777777778e-06,
|
691 |
+
"loss": 0.0013,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 311.11,
|
696 |
+
"learning_rate": 4.902222222222222e-06,
|
697 |
+
"loss": 0.0015,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 313.89,
|
702 |
+
"learning_rate": 4.846666666666667e-06,
|
703 |
+
"loss": 0.0014,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 316.67,
|
708 |
+
"learning_rate": 4.791111111111111e-06,
|
709 |
+
"loss": 0.0007,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 319.44,
|
714 |
+
"learning_rate": 4.735555555555556e-06,
|
715 |
+
"loss": 0.0009,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 322.22,
|
720 |
+
"learning_rate": 4.680000000000001e-06,
|
721 |
+
"loss": 0.0021,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 325.0,
|
726 |
+
"learning_rate": 4.624444444444445e-06,
|
727 |
+
"loss": 0.0015,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 327.78,
|
732 |
+
"learning_rate": 4.568888888888889e-06,
|
733 |
+
"loss": 0.0012,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 330.56,
|
738 |
+
"learning_rate": 4.513333333333333e-06,
|
739 |
+
"loss": 0.0009,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 333.33,
|
744 |
+
"learning_rate": 4.457777777777778e-06,
|
745 |
+
"loss": 0.0011,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 333.33,
|
750 |
+
"eval_loss": 0.277099609375,
|
751 |
+
"eval_runtime": 58.1634,
|
752 |
+
"eval_samples_per_second": 2.252,
|
753 |
+
"eval_steps_per_second": 0.155,
|
754 |
+
"eval_wer": 20.874822190611663,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 177.47,
|
759 |
+
"learning_rate": 1.760888888888889e-06,
|
760 |
+
"loss": 0.5801,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 178.94,
|
765 |
+
"learning_rate": 1.7386666666666666e-06,
|
766 |
+
"loss": 0.1501,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 180.41,
|
771 |
+
"learning_rate": 1.7164444444444444e-06,
|
772 |
+
"loss": 0.0789,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 181.88,
|
777 |
+
"learning_rate": 1.6942222222222222e-06,
|
778 |
+
"loss": 0.0531,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 183.35,
|
783 |
+
"learning_rate": 1.6719999999999998e-06,
|
784 |
+
"loss": 0.0409,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 184.82,
|
789 |
+
"learning_rate": 1.6497777777777777e-06,
|
790 |
+
"loss": 0.032,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 186.29,
|
795 |
+
"learning_rate": 1.6275555555555555e-06,
|
796 |
+
"loss": 0.0251,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 187.76,
|
801 |
+
"learning_rate": 1.6053333333333333e-06,
|
802 |
+
"loss": 0.0203,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 189.24,
|
807 |
+
"learning_rate": 1.5831111111111111e-06,
|
808 |
+
"loss": 0.0167,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 190.71,
|
813 |
+
"learning_rate": 1.560888888888889e-06,
|
814 |
+
"loss": 0.0159,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 192.18,
|
819 |
+
"learning_rate": 1.5386666666666666e-06,
|
820 |
+
"loss": 0.0137,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 193.65,
|
825 |
+
"learning_rate": 1.5164444444444444e-06,
|
826 |
+
"loss": 0.0122,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 195.12,
|
831 |
+
"learning_rate": 1.494222222222222e-06,
|
832 |
+
"loss": 0.0106,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 196.59,
|
837 |
+
"learning_rate": 1.4719999999999998e-06,
|
838 |
+
"loss": 0.0094,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 198.06,
|
843 |
+
"learning_rate": 1.4497777777777777e-06,
|
844 |
+
"loss": 0.009,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 199.53,
|
849 |
+
"learning_rate": 1.4275555555555555e-06,
|
850 |
+
"loss": 0.0104,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 201.0,
|
855 |
+
"learning_rate": 1.4053333333333333e-06,
|
856 |
+
"loss": 0.0069,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 202.47,
|
861 |
+
"learning_rate": 1.3848888888888889e-06,
|
862 |
+
"loss": 0.0073,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 203.94,
|
867 |
+
"learning_rate": 1.3626666666666667e-06,
|
868 |
+
"loss": 0.0073,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 205.41,
|
873 |
+
"learning_rate": 1.3404444444444445e-06,
|
874 |
+
"loss": 0.0063,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 206.88,
|
879 |
+
"learning_rate": 1.3182222222222221e-06,
|
880 |
+
"loss": 0.007,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 208.35,
|
885 |
+
"learning_rate": 1.296e-06,
|
886 |
+
"loss": 0.0061,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 209.82,
|
891 |
+
"learning_rate": 1.2737777777777776e-06,
|
892 |
+
"loss": 0.0053,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 211.29,
|
897 |
+
"learning_rate": 1.2515555555555554e-06,
|
898 |
+
"loss": 0.0056,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 212.76,
|
903 |
+
"learning_rate": 1.2293333333333334e-06,
|
904 |
+
"loss": 0.005,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 214.24,
|
909 |
+
"learning_rate": 1.207111111111111e-06,
|
910 |
+
"loss": 0.0047,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 215.71,
|
915 |
+
"learning_rate": 1.1848888888888889e-06,
|
916 |
+
"loss": 0.0052,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 217.18,
|
921 |
+
"learning_rate": 1.1626666666666667e-06,
|
922 |
+
"loss": 0.0044,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 218.65,
|
927 |
+
"learning_rate": 1.1404444444444443e-06,
|
928 |
+
"loss": 0.0046,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 220.12,
|
933 |
+
"learning_rate": 1.1182222222222221e-06,
|
934 |
+
"loss": 0.0045,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 221.59,
|
939 |
+
"learning_rate": 1.096e-06,
|
940 |
+
"loss": 0.0041,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 223.06,
|
945 |
+
"learning_rate": 1.0737777777777776e-06,
|
946 |
+
"loss": 0.0054,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 224.53,
|
951 |
+
"learning_rate": 1.0515555555555556e-06,
|
952 |
+
"loss": 0.0038,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 226.0,
|
957 |
+
"learning_rate": 1.0293333333333334e-06,
|
958 |
+
"loss": 0.0038,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 227.47,
|
963 |
+
"learning_rate": 1.007111111111111e-06,
|
964 |
+
"loss": 0.004,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 228.94,
|
969 |
+
"learning_rate": 9.848888888888889e-07,
|
970 |
+
"loss": 0.0036,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 230.41,
|
975 |
+
"learning_rate": 9.626666666666667e-07,
|
976 |
+
"loss": 0.0041,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 231.88,
|
981 |
+
"learning_rate": 9.404444444444443e-07,
|
982 |
+
"loss": 0.0032,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 233.35,
|
987 |
+
"learning_rate": 9.182222222222223e-07,
|
988 |
+
"loss": 0.0038,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 234.82,
|
993 |
+
"learning_rate": 8.96e-07,
|
994 |
+
"loss": 0.0043,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 234.82,
|
999 |
+
"eval_loss": 0.45361328125,
|
1000 |
+
"eval_runtime": 157.593,
|
1001 |
+
"eval_samples_per_second": 1.726,
|
1002 |
+
"eval_steps_per_second": 0.108,
|
1003 |
+
"eval_wer": 10.707652303120357,
|
1004 |
+
"step": 4000
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 236.29,
|
1008 |
+
"learning_rate": 8.737777777777777e-07,
|
1009 |
+
"loss": 0.004,
|
1010 |
+
"step": 4025
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 237.76,
|
1014 |
+
"learning_rate": 8.515555555555555e-07,
|
1015 |
+
"loss": 0.0029,
|
1016 |
+
"step": 4050
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 239.24,
|
1020 |
+
"learning_rate": 8.293333333333333e-07,
|
1021 |
+
"loss": 0.0034,
|
1022 |
+
"step": 4075
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 240.71,
|
1026 |
+
"learning_rate": 8.071111111111111e-07,
|
1027 |
+
"loss": 0.0032,
|
1028 |
+
"step": 4100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 242.18,
|
1032 |
+
"learning_rate": 7.848888888888888e-07,
|
1033 |
+
"loss": 0.003,
|
1034 |
+
"step": 4125
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 243.65,
|
1038 |
+
"learning_rate": 7.626666666666667e-07,
|
1039 |
+
"loss": 0.0034,
|
1040 |
+
"step": 4150
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 245.12,
|
1044 |
+
"learning_rate": 7.404444444444444e-07,
|
1045 |
+
"loss": 0.0032,
|
1046 |
+
"step": 4175
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 246.59,
|
1050 |
+
"learning_rate": 7.182222222222222e-07,
|
1051 |
+
"loss": 0.0032,
|
1052 |
+
"step": 4200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 248.06,
|
1056 |
+
"learning_rate": 6.959999999999999e-07,
|
1057 |
+
"loss": 0.0028,
|
1058 |
+
"step": 4225
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 249.53,
|
1062 |
+
"learning_rate": 6.737777777777778e-07,
|
1063 |
+
"loss": 0.0028,
|
1064 |
+
"step": 4250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 251.0,
|
1068 |
+
"learning_rate": 6.515555555555555e-07,
|
1069 |
+
"loss": 0.0025,
|
1070 |
+
"step": 4275
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 252.47,
|
1074 |
+
"learning_rate": 6.293333333333333e-07,
|
1075 |
+
"loss": 0.0026,
|
1076 |
+
"step": 4300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 253.94,
|
1080 |
+
"learning_rate": 6.071111111111111e-07,
|
1081 |
+
"loss": 0.003,
|
1082 |
+
"step": 4325
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 255.41,
|
1086 |
+
"learning_rate": 5.848888888888889e-07,
|
1087 |
+
"loss": 0.0026,
|
1088 |
+
"step": 4350
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 256.88,
|
1092 |
+
"learning_rate": 5.626666666666666e-07,
|
1093 |
+
"loss": 0.0027,
|
1094 |
+
"step": 4375
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 258.35,
|
1098 |
+
"learning_rate": 5.404444444444443e-07,
|
1099 |
+
"loss": 0.003,
|
1100 |
+
"step": 4400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 259.82,
|
1104 |
+
"learning_rate": 5.182222222222223e-07,
|
1105 |
+
"loss": 0.0027,
|
1106 |
+
"step": 4425
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 261.29,
|
1110 |
+
"learning_rate": 4.977777777777777e-07,
|
1111 |
+
"loss": 0.0026,
|
1112 |
+
"step": 4450
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 262.76,
|
1116 |
+
"learning_rate": 4.7555555555555554e-07,
|
1117 |
+
"loss": 0.0023,
|
1118 |
+
"step": 4475
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 264.24,
|
1122 |
+
"learning_rate": 4.5333333333333326e-07,
|
1123 |
+
"loss": 0.0021,
|
1124 |
+
"step": 4500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 265.71,
|
1128 |
+
"learning_rate": 4.311111111111111e-07,
|
1129 |
+
"loss": 0.0022,
|
1130 |
+
"step": 4525
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 267.18,
|
1134 |
+
"learning_rate": 4.088888888888889e-07,
|
1135 |
+
"loss": 0.0034,
|
1136 |
+
"step": 4550
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 268.65,
|
1140 |
+
"learning_rate": 3.8666666666666664e-07,
|
1141 |
+
"loss": 0.0023,
|
1142 |
+
"step": 4575
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 270.12,
|
1146 |
+
"learning_rate": 3.6444444444444446e-07,
|
1147 |
+
"loss": 0.0022,
|
1148 |
+
"step": 4600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 271.59,
|
1152 |
+
"learning_rate": 3.422222222222222e-07,
|
1153 |
+
"loss": 0.0022,
|
1154 |
+
"step": 4625
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 273.06,
|
1158 |
+
"learning_rate": 3.2e-07,
|
1159 |
+
"loss": 0.0024,
|
1160 |
+
"step": 4650
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 274.53,
|
1164 |
+
"learning_rate": 2.9777777777777773e-07,
|
1165 |
+
"loss": 0.0031,
|
1166 |
+
"step": 4675
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 276.0,
|
1170 |
+
"learning_rate": 2.7555555555555555e-07,
|
1171 |
+
"loss": 0.0022,
|
1172 |
+
"step": 4700
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 277.47,
|
1176 |
+
"learning_rate": 2.533333333333333e-07,
|
1177 |
+
"loss": 0.0022,
|
1178 |
+
"step": 4725
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 278.94,
|
1182 |
+
"learning_rate": 2.311111111111111e-07,
|
1183 |
+
"loss": 0.0021,
|
1184 |
+
"step": 4750
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 280.41,
|
1188 |
+
"learning_rate": 2.088888888888889e-07,
|
1189 |
+
"loss": 0.0023,
|
1190 |
+
"step": 4775
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 281.88,
|
1194 |
+
"learning_rate": 1.8666666666666667e-07,
|
1195 |
+
"loss": 0.0025,
|
1196 |
+
"step": 4800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 283.35,
|
1200 |
+
"learning_rate": 1.6444444444444444e-07,
|
1201 |
+
"loss": 0.0022,
|
1202 |
+
"step": 4825
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 284.82,
|
1206 |
+
"learning_rate": 1.4222222222222222e-07,
|
1207 |
+
"loss": 0.0022,
|
1208 |
+
"step": 4850
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 286.29,
|
1212 |
+
"learning_rate": 1.2e-07,
|
1213 |
+
"loss": 0.0021,
|
1214 |
+
"step": 4875
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 287.76,
|
1218 |
+
"learning_rate": 9.777777777777778e-08,
|
1219 |
+
"loss": 0.0023,
|
1220 |
+
"step": 4900
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 289.24,
|
1224 |
+
"learning_rate": 7.555555555555555e-08,
|
1225 |
+
"loss": 0.002,
|
1226 |
+
"step": 4925
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 290.71,
|
1230 |
+
"learning_rate": 5.3333333333333334e-08,
|
1231 |
+
"loss": 0.0025,
|
1232 |
+
"step": 4950
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 292.18,
|
1236 |
+
"learning_rate": 3.111111111111111e-08,
|
1237 |
+
"loss": 0.002,
|
1238 |
+
"step": 4975
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 293.65,
|
1242 |
+
"learning_rate": 8.888888888888889e-09,
|
1243 |
+
"loss": 0.0024,
|
1244 |
+
"step": 5000
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 293.65,
|
1248 |
+
"eval_loss": 0.465576171875,
|
1249 |
+
"eval_runtime": 158.123,
|
1250 |
+
"eval_samples_per_second": 1.72,
|
1251 |
+
"eval_steps_per_second": 0.108,
|
1252 |
+
"eval_wer": 10.642644873699851,
|
1253 |
+
"step": 5000
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 295.47,
|
1257 |
+
"learning_rate": 2.7544827586206896e-06,
|
1258 |
+
"loss": 0.0021,
|
1259 |
+
"step": 5025
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 296.94,
|
1263 |
+
"learning_rate": 2.7475862068965512e-06,
|
1264 |
+
"loss": 0.0024,
|
1265 |
+
"step": 5050
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 298.41,
|
1269 |
+
"learning_rate": 2.7406896551724137e-06,
|
1270 |
+
"loss": 0.0025,
|
1271 |
+
"step": 5075
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 299.88,
|
1275 |
+
"learning_rate": 2.7337931034482757e-06,
|
1276 |
+
"loss": 0.0022,
|
1277 |
+
"step": 5100
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 301.35,
|
1281 |
+
"learning_rate": 2.7268965517241378e-06,
|
1282 |
+
"loss": 0.0027,
|
1283 |
+
"step": 5125
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 302.82,
|
1287 |
+
"learning_rate": 2.7200000000000002e-06,
|
1288 |
+
"loss": 0.0024,
|
1289 |
+
"step": 5150
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 304.29,
|
1293 |
+
"learning_rate": 2.713103448275862e-06,
|
1294 |
+
"loss": 0.0024,
|
1295 |
+
"step": 5175
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 305.76,
|
1299 |
+
"learning_rate": 2.7062068965517243e-06,
|
1300 |
+
"loss": 0.0023,
|
1301 |
+
"step": 5200
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 307.24,
|
1305 |
+
"learning_rate": 2.699310344827586e-06,
|
1306 |
+
"loss": 0.0027,
|
1307 |
+
"step": 5225
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 308.71,
|
1311 |
+
"learning_rate": 2.6924137931034483e-06,
|
1312 |
+
"loss": 0.0023,
|
1313 |
+
"step": 5250
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 310.18,
|
1317 |
+
"learning_rate": 2.68551724137931e-06,
|
1318 |
+
"loss": 0.0021,
|
1319 |
+
"step": 5275
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 311.65,
|
1323 |
+
"learning_rate": 2.6786206896551724e-06,
|
1324 |
+
"loss": 0.0025,
|
1325 |
+
"step": 5300
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 313.12,
|
1329 |
+
"learning_rate": 2.6717241379310344e-06,
|
1330 |
+
"loss": 0.0021,
|
1331 |
+
"step": 5325
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 314.59,
|
1335 |
+
"learning_rate": 2.6648275862068965e-06,
|
1336 |
+
"loss": 0.0019,
|
1337 |
+
"step": 5350
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 316.06,
|
1341 |
+
"learning_rate": 2.6579310344827585e-06,
|
1342 |
+
"loss": 0.0019,
|
1343 |
+
"step": 5375
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 317.53,
|
1347 |
+
"learning_rate": 2.6510344827586205e-06,
|
1348 |
+
"loss": 0.0018,
|
1349 |
+
"step": 5400
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 319.0,
|
1353 |
+
"learning_rate": 2.6441379310344826e-06,
|
1354 |
+
"loss": 0.0022,
|
1355 |
+
"step": 5425
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 320.47,
|
1359 |
+
"learning_rate": 2.6377931034482757e-06,
|
1360 |
+
"loss": 0.0019,
|
1361 |
+
"step": 5450
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 321.94,
|
1365 |
+
"learning_rate": 2.6308965517241377e-06,
|
1366 |
+
"loss": 0.0016,
|
1367 |
+
"step": 5475
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 323.41,
|
1371 |
+
"learning_rate": 2.624e-06,
|
1372 |
+
"loss": 0.0013,
|
1373 |
+
"step": 5500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 324.88,
|
1377 |
+
"learning_rate": 2.617103448275862e-06,
|
1378 |
+
"loss": 0.0019,
|
1379 |
+
"step": 5525
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 326.35,
|
1383 |
+
"learning_rate": 2.6102068965517243e-06,
|
1384 |
+
"loss": 0.0017,
|
1385 |
+
"step": 5550
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 327.82,
|
1389 |
+
"learning_rate": 2.603310344827586e-06,
|
1390 |
+
"loss": 0.0018,
|
1391 |
+
"step": 5575
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 329.29,
|
1395 |
+
"learning_rate": 2.5964137931034483e-06,
|
1396 |
+
"loss": 0.0013,
|
1397 |
+
"step": 5600
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 330.76,
|
1401 |
+
"learning_rate": 2.58951724137931e-06,
|
1402 |
+
"loss": 0.0016,
|
1403 |
+
"step": 5625
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 332.24,
|
1407 |
+
"learning_rate": 2.5826206896551724e-06,
|
1408 |
+
"loss": 0.0013,
|
1409 |
+
"step": 5650
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 333.71,
|
1413 |
+
"learning_rate": 2.575724137931034e-06,
|
1414 |
+
"loss": 0.0018,
|
1415 |
+
"step": 5675
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 335.18,
|
1419 |
+
"learning_rate": 2.5688275862068965e-06,
|
1420 |
+
"loss": 0.0014,
|
1421 |
+
"step": 5700
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 336.65,
|
1425 |
+
"learning_rate": 2.561931034482759e-06,
|
1426 |
+
"loss": 0.0013,
|
1427 |
+
"step": 5725
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 338.12,
|
1431 |
+
"learning_rate": 2.5550344827586205e-06,
|
1432 |
+
"loss": 0.0011,
|
1433 |
+
"step": 5750
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 339.59,
|
1437 |
+
"learning_rate": 2.548137931034483e-06,
|
1438 |
+
"loss": 0.0018,
|
1439 |
+
"step": 5775
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 341.06,
|
1443 |
+
"learning_rate": 2.5412413793103446e-06,
|
1444 |
+
"loss": 0.0013,
|
1445 |
+
"step": 5800
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 342.53,
|
1449 |
+
"learning_rate": 2.534344827586207e-06,
|
1450 |
+
"loss": 0.0012,
|
1451 |
+
"step": 5825
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 344.0,
|
1455 |
+
"learning_rate": 2.5274482758620687e-06,
|
1456 |
+
"loss": 0.0014,
|
1457 |
+
"step": 5850
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 345.47,
|
1461 |
+
"learning_rate": 2.520551724137931e-06,
|
1462 |
+
"loss": 0.001,
|
1463 |
+
"step": 5875
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 346.94,
|
1467 |
+
"learning_rate": 2.5136551724137927e-06,
|
1468 |
+
"loss": 0.0012,
|
1469 |
+
"step": 5900
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 348.41,
|
1473 |
+
"learning_rate": 2.506758620689655e-06,
|
1474 |
+
"loss": 0.0012,
|
1475 |
+
"step": 5925
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 349.88,
|
1479 |
+
"learning_rate": 2.499862068965517e-06,
|
1480 |
+
"loss": 0.0012,
|
1481 |
+
"step": 5950
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 351.35,
|
1485 |
+
"learning_rate": 2.4929655172413792e-06,
|
1486 |
+
"loss": 0.0013,
|
1487 |
+
"step": 5975
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 352.82,
|
1491 |
+
"learning_rate": 2.4860689655172413e-06,
|
1492 |
+
"loss": 0.0015,
|
1493 |
+
"step": 6000
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 352.82,
|
1497 |
+
"eval_loss": 0.497802734375,
|
1498 |
+
"eval_runtime": 156.7207,
|
1499 |
+
"eval_samples_per_second": 1.736,
|
1500 |
+
"eval_steps_per_second": 0.108,
|
1501 |
+
"eval_wer": 10.503343239227341,
|
1502 |
+
"step": 6000
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 354.29,
|
1506 |
+
"learning_rate": 2.4791724137931033e-06,
|
1507 |
+
"loss": 0.0013,
|
1508 |
+
"step": 6025
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 355.76,
|
1512 |
+
"learning_rate": 2.4722758620689653e-06,
|
1513 |
+
"loss": 0.0012,
|
1514 |
+
"step": 6050
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 357.24,
|
1518 |
+
"learning_rate": 2.4653793103448274e-06,
|
1519 |
+
"loss": 0.0011,
|
1520 |
+
"step": 6075
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 358.71,
|
1524 |
+
"learning_rate": 2.4584827586206894e-06,
|
1525 |
+
"loss": 0.0008,
|
1526 |
+
"step": 6100
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 360.18,
|
1530 |
+
"learning_rate": 2.4515862068965514e-06,
|
1531 |
+
"loss": 0.0008,
|
1532 |
+
"step": 6125
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 361.65,
|
1536 |
+
"learning_rate": 2.444689655172414e-06,
|
1537 |
+
"loss": 0.0011,
|
1538 |
+
"step": 6150
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 363.12,
|
1542 |
+
"learning_rate": 2.4377931034482755e-06,
|
1543 |
+
"loss": 0.0012,
|
1544 |
+
"step": 6175
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 364.59,
|
1548 |
+
"learning_rate": 2.430896551724138e-06,
|
1549 |
+
"loss": 0.0013,
|
1550 |
+
"step": 6200
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 366.06,
|
1554 |
+
"learning_rate": 2.424e-06,
|
1555 |
+
"loss": 0.0011,
|
1556 |
+
"step": 6225
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 367.53,
|
1560 |
+
"learning_rate": 2.417103448275862e-06,
|
1561 |
+
"loss": 0.0012,
|
1562 |
+
"step": 6250
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 369.0,
|
1566 |
+
"learning_rate": 2.410206896551724e-06,
|
1567 |
+
"loss": 0.0011,
|
1568 |
+
"step": 6275
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 370.47,
|
1572 |
+
"learning_rate": 2.403310344827586e-06,
|
1573 |
+
"loss": 0.0009,
|
1574 |
+
"step": 6300
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 371.94,
|
1578 |
+
"learning_rate": 2.396413793103448e-06,
|
1579 |
+
"loss": 0.0014,
|
1580 |
+
"step": 6325
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 373.41,
|
1584 |
+
"learning_rate": 2.38951724137931e-06,
|
1585 |
+
"loss": 0.0018,
|
1586 |
+
"step": 6350
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 374.88,
|
1590 |
+
"learning_rate": 2.382620689655172e-06,
|
1591 |
+
"loss": 0.0009,
|
1592 |
+
"step": 6375
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 376.35,
|
1596 |
+
"learning_rate": 2.3757241379310342e-06,
|
1597 |
+
"loss": 0.001,
|
1598 |
+
"step": 6400
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 377.82,
|
1602 |
+
"learning_rate": 2.3688275862068963e-06,
|
1603 |
+
"loss": 0.0009,
|
1604 |
+
"step": 6425
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 379.29,
|
1608 |
+
"learning_rate": 2.36248275862069e-06,
|
1609 |
+
"loss": 0.0008,
|
1610 |
+
"step": 6450
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 380.76,
|
1614 |
+
"learning_rate": 2.3555862068965514e-06,
|
1615 |
+
"loss": 0.0009,
|
1616 |
+
"step": 6475
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 382.24,
|
1620 |
+
"learning_rate": 2.348689655172414e-06,
|
1621 |
+
"loss": 0.0009,
|
1622 |
+
"step": 6500
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 383.71,
|
1626 |
+
"learning_rate": 2.3417931034482755e-06,
|
1627 |
+
"loss": 0.0011,
|
1628 |
+
"step": 6525
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 385.18,
|
1632 |
+
"learning_rate": 2.334896551724138e-06,
|
1633 |
+
"loss": 0.0008,
|
1634 |
+
"step": 6550
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 386.65,
|
1638 |
+
"learning_rate": 2.3279999999999996e-06,
|
1639 |
+
"loss": 0.0006,
|
1640 |
+
"step": 6575
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 388.12,
|
1644 |
+
"learning_rate": 2.321103448275862e-06,
|
1645 |
+
"loss": 0.001,
|
1646 |
+
"step": 6600
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 389.59,
|
1650 |
+
"learning_rate": 2.314206896551724e-06,
|
1651 |
+
"loss": 0.0009,
|
1652 |
+
"step": 6625
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 391.06,
|
1656 |
+
"learning_rate": 2.307310344827586e-06,
|
1657 |
+
"loss": 0.0008,
|
1658 |
+
"step": 6650
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 392.53,
|
1662 |
+
"learning_rate": 2.300413793103448e-06,
|
1663 |
+
"loss": 0.001,
|
1664 |
+
"step": 6675
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 394.0,
|
1668 |
+
"learning_rate": 2.29351724137931e-06,
|
1669 |
+
"loss": 0.0009,
|
1670 |
+
"step": 6700
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 395.47,
|
1674 |
+
"learning_rate": 2.2866206896551726e-06,
|
1675 |
+
"loss": 0.0011,
|
1676 |
+
"step": 6725
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 396.94,
|
1680 |
+
"learning_rate": 2.2797241379310342e-06,
|
1681 |
+
"loss": 0.0008,
|
1682 |
+
"step": 6750
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 398.41,
|
1686 |
+
"learning_rate": 2.2728275862068967e-06,
|
1687 |
+
"loss": 0.0007,
|
1688 |
+
"step": 6775
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 399.88,
|
1692 |
+
"learning_rate": 2.2659310344827583e-06,
|
1693 |
+
"loss": 0.0006,
|
1694 |
+
"step": 6800
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 401.35,
|
1698 |
+
"learning_rate": 2.2590344827586207e-06,
|
1699 |
+
"loss": 0.0007,
|
1700 |
+
"step": 6825
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 402.82,
|
1704 |
+
"learning_rate": 2.2521379310344828e-06,
|
1705 |
+
"loss": 0.0011,
|
1706 |
+
"step": 6850
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 404.29,
|
1710 |
+
"learning_rate": 2.245241379310345e-06,
|
1711 |
+
"loss": 0.001,
|
1712 |
+
"step": 6875
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 405.76,
|
1716 |
+
"learning_rate": 2.238344827586207e-06,
|
1717 |
+
"loss": 0.0007,
|
1718 |
+
"step": 6900
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 407.24,
|
1722 |
+
"learning_rate": 2.231448275862069e-06,
|
1723 |
+
"loss": 0.0008,
|
1724 |
+
"step": 6925
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 408.71,
|
1728 |
+
"learning_rate": 2.224551724137931e-06,
|
1729 |
+
"loss": 0.0007,
|
1730 |
+
"step": 6950
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 410.18,
|
1734 |
+
"learning_rate": 2.217655172413793e-06,
|
1735 |
+
"loss": 0.0008,
|
1736 |
+
"step": 6975
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 411.65,
|
1740 |
+
"learning_rate": 2.210758620689655e-06,
|
1741 |
+
"loss": 0.0007,
|
1742 |
+
"step": 7000
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 411.65,
|
1746 |
+
"eval_loss": 0.5146484375,
|
1747 |
+
"eval_runtime": 159.9051,
|
1748 |
+
"eval_samples_per_second": 1.701,
|
1749 |
+
"eval_steps_per_second": 0.106,
|
1750 |
+
"eval_wer": 10.057578008915305,
|
1751 |
+
"step": 7000
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 413.12,
|
1755 |
+
"learning_rate": 2.203862068965517e-06,
|
1756 |
+
"loss": 0.0007,
|
1757 |
+
"step": 7025
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 414.59,
|
1761 |
+
"learning_rate": 2.196965517241379e-06,
|
1762 |
+
"loss": 0.0006,
|
1763 |
+
"step": 7050
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 416.06,
|
1767 |
+
"learning_rate": 2.1900689655172415e-06,
|
1768 |
+
"loss": 0.0009,
|
1769 |
+
"step": 7075
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 417.53,
|
1773 |
+
"learning_rate": 2.183172413793103e-06,
|
1774 |
+
"loss": 0.0008,
|
1775 |
+
"step": 7100
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 419.0,
|
1779 |
+
"learning_rate": 2.1762758620689656e-06,
|
1780 |
+
"loss": 0.0007,
|
1781 |
+
"step": 7125
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 420.47,
|
1785 |
+
"learning_rate": 2.1693793103448276e-06,
|
1786 |
+
"loss": 0.0008,
|
1787 |
+
"step": 7150
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 421.94,
|
1791 |
+
"learning_rate": 2.1624827586206896e-06,
|
1792 |
+
"loss": 0.0007,
|
1793 |
+
"step": 7175
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 423.41,
|
1797 |
+
"learning_rate": 2.1555862068965517e-06,
|
1798 |
+
"loss": 0.0005,
|
1799 |
+
"step": 7200
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 424.88,
|
1803 |
+
"learning_rate": 2.1486896551724137e-06,
|
1804 |
+
"loss": 0.0008,
|
1805 |
+
"step": 7225
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 426.35,
|
1809 |
+
"learning_rate": 2.1417931034482757e-06,
|
1810 |
+
"loss": 0.0009,
|
1811 |
+
"step": 7250
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 427.82,
|
1815 |
+
"learning_rate": 2.1348965517241378e-06,
|
1816 |
+
"loss": 0.0009,
|
1817 |
+
"step": 7275
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 429.29,
|
1821 |
+
"learning_rate": 2.128e-06,
|
1822 |
+
"loss": 0.0006,
|
1823 |
+
"step": 7300
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 430.76,
|
1827 |
+
"learning_rate": 2.121103448275862e-06,
|
1828 |
+
"loss": 0.0006,
|
1829 |
+
"step": 7325
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 432.24,
|
1833 |
+
"learning_rate": 2.1142068965517243e-06,
|
1834 |
+
"loss": 0.0006,
|
1835 |
+
"step": 7350
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 433.71,
|
1839 |
+
"learning_rate": 2.107310344827586e-06,
|
1840 |
+
"loss": 0.0006,
|
1841 |
+
"step": 7375
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 435.18,
|
1845 |
+
"learning_rate": 2.1004137931034483e-06,
|
1846 |
+
"loss": 0.0007,
|
1847 |
+
"step": 7400
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 436.65,
|
1851 |
+
"learning_rate": 2.09351724137931e-06,
|
1852 |
+
"loss": 0.0006,
|
1853 |
+
"step": 7425
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 438.12,
|
1857 |
+
"learning_rate": 2.0871724137931035e-06,
|
1858 |
+
"loss": 0.0007,
|
1859 |
+
"step": 7450
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 439.59,
|
1863 |
+
"learning_rate": 2.080275862068965e-06,
|
1864 |
+
"loss": 0.0006,
|
1865 |
+
"step": 7475
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 441.06,
|
1869 |
+
"learning_rate": 2.0733793103448276e-06,
|
1870 |
+
"loss": 0.0009,
|
1871 |
+
"step": 7500
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 442.53,
|
1875 |
+
"learning_rate": 2.0664827586206896e-06,
|
1876 |
+
"loss": 0.0008,
|
1877 |
+
"step": 7525
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 444.0,
|
1881 |
+
"learning_rate": 2.0595862068965516e-06,
|
1882 |
+
"loss": 0.0005,
|
1883 |
+
"step": 7550
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 445.47,
|
1887 |
+
"learning_rate": 2.0526896551724137e-06,
|
1888 |
+
"loss": 0.0004,
|
1889 |
+
"step": 7575
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 446.94,
|
1893 |
+
"learning_rate": 2.0457931034482757e-06,
|
1894 |
+
"loss": 0.0006,
|
1895 |
+
"step": 7600
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 448.41,
|
1899 |
+
"learning_rate": 2.0388965517241377e-06,
|
1900 |
+
"loss": 0.0007,
|
1901 |
+
"step": 7625
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 449.88,
|
1905 |
+
"learning_rate": 2.0319999999999998e-06,
|
1906 |
+
"loss": 0.0005,
|
1907 |
+
"step": 7650
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 451.35,
|
1911 |
+
"learning_rate": 2.025103448275862e-06,
|
1912 |
+
"loss": 0.0005,
|
1913 |
+
"step": 7675
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 452.82,
|
1917 |
+
"learning_rate": 2.018206896551724e-06,
|
1918 |
+
"loss": 0.0009,
|
1919 |
+
"step": 7700
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 454.29,
|
1923 |
+
"learning_rate": 2.0113103448275863e-06,
|
1924 |
+
"loss": 0.0005,
|
1925 |
+
"step": 7725
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 455.76,
|
1929 |
+
"learning_rate": 2.0044137931034483e-06,
|
1930 |
+
"loss": 0.0005,
|
1931 |
+
"step": 7750
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 457.24,
|
1935 |
+
"learning_rate": 1.9975172413793104e-06,
|
1936 |
+
"loss": 0.0006,
|
1937 |
+
"step": 7775
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 458.71,
|
1941 |
+
"learning_rate": 1.9906206896551724e-06,
|
1942 |
+
"loss": 0.0005,
|
1943 |
+
"step": 7800
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 460.18,
|
1947 |
+
"learning_rate": 1.9837241379310344e-06,
|
1948 |
+
"loss": 0.0005,
|
1949 |
+
"step": 7825
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 461.65,
|
1953 |
+
"learning_rate": 1.9768275862068965e-06,
|
1954 |
+
"loss": 0.0006,
|
1955 |
+
"step": 7850
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 463.12,
|
1959 |
+
"learning_rate": 1.9699310344827585e-06,
|
1960 |
+
"loss": 0.0004,
|
1961 |
+
"step": 7875
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 464.59,
|
1965 |
+
"learning_rate": 1.9630344827586205e-06,
|
1966 |
+
"loss": 0.0007,
|
1967 |
+
"step": 7900
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 466.06,
|
1971 |
+
"learning_rate": 1.956137931034483e-06,
|
1972 |
+
"loss": 0.0005,
|
1973 |
+
"step": 7925
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 467.53,
|
1977 |
+
"learning_rate": 1.949241379310345e-06,
|
1978 |
+
"loss": 0.0006,
|
1979 |
+
"step": 7950
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 469.0,
|
1983 |
+
"learning_rate": 1.942344827586207e-06,
|
1984 |
+
"loss": 0.0006,
|
1985 |
+
"step": 7975
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 470.47,
|
1989 |
+
"learning_rate": 1.935448275862069e-06,
|
1990 |
+
"loss": 0.0007,
|
1991 |
+
"step": 8000
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 470.47,
|
1995 |
+
"eval_loss": 0.53857421875,
|
1996 |
+
"eval_runtime": 158.4391,
|
1997 |
+
"eval_samples_per_second": 1.717,
|
1998 |
+
"eval_steps_per_second": 0.107,
|
1999 |
+
"eval_wer": 10.131872213967311,
|
2000 |
+
"step": 8000
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 471.94,
|
2004 |
+
"learning_rate": 1.928551724137931e-06,
|
2005 |
+
"loss": 0.0005,
|
2006 |
+
"step": 8025
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 473.41,
|
2010 |
+
"learning_rate": 1.921655172413793e-06,
|
2011 |
+
"loss": 0.0008,
|
2012 |
+
"step": 8050
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 474.88,
|
2016 |
+
"learning_rate": 1.914758620689655e-06,
|
2017 |
+
"loss": 0.0005,
|
2018 |
+
"step": 8075
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 476.35,
|
2022 |
+
"learning_rate": 1.907862068965517e-06,
|
2023 |
+
"loss": 0.0004,
|
2024 |
+
"step": 8100
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 477.82,
|
2028 |
+
"learning_rate": 1.9009655172413792e-06,
|
2029 |
+
"loss": 0.0005,
|
2030 |
+
"step": 8125
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 479.29,
|
2034 |
+
"learning_rate": 1.8940689655172413e-06,
|
2035 |
+
"loss": 0.0004,
|
2036 |
+
"step": 8150
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 480.76,
|
2040 |
+
"learning_rate": 1.8871724137931033e-06,
|
2041 |
+
"loss": 0.0007,
|
2042 |
+
"step": 8175
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 482.24,
|
2046 |
+
"learning_rate": 1.8802758620689653e-06,
|
2047 |
+
"loss": 0.0005,
|
2048 |
+
"step": 8200
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 483.71,
|
2052 |
+
"learning_rate": 1.8733793103448274e-06,
|
2053 |
+
"loss": 0.0007,
|
2054 |
+
"step": 8225
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 485.18,
|
2058 |
+
"learning_rate": 1.8664827586206894e-06,
|
2059 |
+
"loss": 0.0005,
|
2060 |
+
"step": 8250
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 486.65,
|
2064 |
+
"learning_rate": 1.8595862068965517e-06,
|
2065 |
+
"loss": 0.0004,
|
2066 |
+
"step": 8275
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 488.12,
|
2070 |
+
"learning_rate": 1.8526896551724137e-06,
|
2071 |
+
"loss": 0.0005,
|
2072 |
+
"step": 8300
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 489.59,
|
2076 |
+
"learning_rate": 1.845793103448276e-06,
|
2077 |
+
"loss": 0.0004,
|
2078 |
+
"step": 8325
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 491.06,
|
2082 |
+
"learning_rate": 1.838896551724138e-06,
|
2083 |
+
"loss": 0.0004,
|
2084 |
+
"step": 8350
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 492.53,
|
2088 |
+
"learning_rate": 1.832e-06,
|
2089 |
+
"loss": 0.0005,
|
2090 |
+
"step": 8375
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 494.0,
|
2094 |
+
"learning_rate": 1.825103448275862e-06,
|
2095 |
+
"loss": 0.0004,
|
2096 |
+
"step": 8400
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 495.47,
|
2100 |
+
"learning_rate": 1.818206896551724e-06,
|
2101 |
+
"loss": 0.0007,
|
2102 |
+
"step": 8425
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 496.94,
|
2106 |
+
"learning_rate": 1.811862068965517e-06,
|
2107 |
+
"loss": 0.0008,
|
2108 |
+
"step": 8450
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 498.41,
|
2112 |
+
"learning_rate": 1.8049655172413792e-06,
|
2113 |
+
"loss": 0.0005,
|
2114 |
+
"step": 8475
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 499.88,
|
2118 |
+
"learning_rate": 1.7980689655172413e-06,
|
2119 |
+
"loss": 0.0006,
|
2120 |
+
"step": 8500
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 501.35,
|
2124 |
+
"learning_rate": 1.7911724137931035e-06,
|
2125 |
+
"loss": 0.0004,
|
2126 |
+
"step": 8525
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 502.82,
|
2130 |
+
"learning_rate": 1.7842758620689655e-06,
|
2131 |
+
"loss": 0.0004,
|
2132 |
+
"step": 8550
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 504.29,
|
2136 |
+
"learning_rate": 1.7773793103448276e-06,
|
2137 |
+
"loss": 0.0006,
|
2138 |
+
"step": 8575
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 505.76,
|
2142 |
+
"learning_rate": 1.7704827586206896e-06,
|
2143 |
+
"loss": 0.0004,
|
2144 |
+
"step": 8600
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 507.24,
|
2148 |
+
"learning_rate": 1.7635862068965516e-06,
|
2149 |
+
"loss": 0.0004,
|
2150 |
+
"step": 8625
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 508.71,
|
2154 |
+
"learning_rate": 1.7566896551724137e-06,
|
2155 |
+
"loss": 0.0006,
|
2156 |
+
"step": 8650
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 510.18,
|
2160 |
+
"learning_rate": 1.7497931034482757e-06,
|
2161 |
+
"loss": 0.0004,
|
2162 |
+
"step": 8675
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 511.65,
|
2166 |
+
"learning_rate": 1.742896551724138e-06,
|
2167 |
+
"loss": 0.0005,
|
2168 |
+
"step": 8700
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 513.12,
|
2172 |
+
"learning_rate": 1.736e-06,
|
2173 |
+
"loss": 0.0006,
|
2174 |
+
"step": 8725
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 514.59,
|
2178 |
+
"learning_rate": 1.729103448275862e-06,
|
2179 |
+
"loss": 0.0006,
|
2180 |
+
"step": 8750
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 516.06,
|
2184 |
+
"learning_rate": 1.722206896551724e-06,
|
2185 |
+
"loss": 0.0004,
|
2186 |
+
"step": 8775
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 517.53,
|
2190 |
+
"learning_rate": 1.715310344827586e-06,
|
2191 |
+
"loss": 0.0003,
|
2192 |
+
"step": 8800
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 519.0,
|
2196 |
+
"learning_rate": 1.7084137931034481e-06,
|
2197 |
+
"loss": 0.0003,
|
2198 |
+
"step": 8825
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 520.47,
|
2202 |
+
"learning_rate": 1.7015172413793101e-06,
|
2203 |
+
"loss": 0.0004,
|
2204 |
+
"step": 8850
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 521.94,
|
2208 |
+
"learning_rate": 1.6946206896551722e-06,
|
2209 |
+
"loss": 0.0006,
|
2210 |
+
"step": 8875
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 523.41,
|
2214 |
+
"learning_rate": 1.6877241379310342e-06,
|
2215 |
+
"loss": 0.0005,
|
2216 |
+
"step": 8900
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 524.88,
|
2220 |
+
"learning_rate": 1.6808275862068967e-06,
|
2221 |
+
"loss": 0.0029,
|
2222 |
+
"step": 8925
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 526.35,
|
2226 |
+
"learning_rate": 1.6739310344827587e-06,
|
2227 |
+
"loss": 0.0004,
|
2228 |
+
"step": 8950
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 527.82,
|
2232 |
+
"learning_rate": 1.6670344827586207e-06,
|
2233 |
+
"loss": 0.0003,
|
2234 |
+
"step": 8975
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 529.29,
|
2238 |
+
"learning_rate": 1.6601379310344828e-06,
|
2239 |
+
"loss": 0.0004,
|
2240 |
+
"step": 9000
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 529.29,
|
2244 |
+
"eval_loss": 0.5361328125,
|
2245 |
+
"eval_runtime": 156.9399,
|
2246 |
+
"eval_samples_per_second": 1.733,
|
2247 |
+
"eval_steps_per_second": 0.108,
|
2248 |
+
"eval_wer": 9.778974739970282,
|
2249 |
+
"step": 9000
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 530.76,
|
2253 |
+
"learning_rate": 1.6532413793103448e-06,
|
2254 |
+
"loss": 0.0006,
|
2255 |
+
"step": 9025
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 532.24,
|
2259 |
+
"learning_rate": 1.6463448275862068e-06,
|
2260 |
+
"loss": 0.0003,
|
2261 |
+
"step": 9050
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 533.71,
|
2265 |
+
"learning_rate": 1.6394482758620689e-06,
|
2266 |
+
"loss": 0.0003,
|
2267 |
+
"step": 9075
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 535.18,
|
2271 |
+
"learning_rate": 1.632551724137931e-06,
|
2272 |
+
"loss": 0.0005,
|
2273 |
+
"step": 9100
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 536.65,
|
2277 |
+
"learning_rate": 1.625655172413793e-06,
|
2278 |
+
"loss": 0.0006,
|
2279 |
+
"step": 9125
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 538.12,
|
2283 |
+
"learning_rate": 1.6187586206896552e-06,
|
2284 |
+
"loss": 0.0003,
|
2285 |
+
"step": 9150
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 539.59,
|
2289 |
+
"learning_rate": 1.6118620689655172e-06,
|
2290 |
+
"loss": 0.0004,
|
2291 |
+
"step": 9175
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 541.06,
|
2295 |
+
"learning_rate": 1.6049655172413792e-06,
|
2296 |
+
"loss": 0.0003,
|
2297 |
+
"step": 9200
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 542.53,
|
2301 |
+
"learning_rate": 1.5980689655172413e-06,
|
2302 |
+
"loss": 0.0004,
|
2303 |
+
"step": 9225
|
2304 |
+
},
|
2305 |
+
{
|
2306 |
+
"epoch": 544.0,
|
2307 |
+
"learning_rate": 1.5911724137931033e-06,
|
2308 |
+
"loss": 0.0006,
|
2309 |
+
"step": 9250
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 545.47,
|
2313 |
+
"learning_rate": 1.5842758620689653e-06,
|
2314 |
+
"loss": 0.0002,
|
2315 |
+
"step": 9275
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 546.94,
|
2319 |
+
"learning_rate": 1.5773793103448274e-06,
|
2320 |
+
"loss": 0.0003,
|
2321 |
+
"step": 9300
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 548.41,
|
2325 |
+
"learning_rate": 1.5704827586206896e-06,
|
2326 |
+
"loss": 0.0003,
|
2327 |
+
"step": 9325
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 549.88,
|
2331 |
+
"learning_rate": 1.5635862068965516e-06,
|
2332 |
+
"loss": 0.0003,
|
2333 |
+
"step": 9350
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 551.35,
|
2337 |
+
"learning_rate": 1.5566896551724139e-06,
|
2338 |
+
"loss": 0.0004,
|
2339 |
+
"step": 9375
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 552.82,
|
2343 |
+
"learning_rate": 1.549793103448276e-06,
|
2344 |
+
"loss": 0.0004,
|
2345 |
+
"step": 9400
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 554.29,
|
2349 |
+
"learning_rate": 1.542896551724138e-06,
|
2350 |
+
"loss": 0.0005,
|
2351 |
+
"step": 9425
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 555.76,
|
2355 |
+
"learning_rate": 1.5365517241379309e-06,
|
2356 |
+
"loss": 0.0004,
|
2357 |
+
"step": 9450
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 557.24,
|
2361 |
+
"learning_rate": 1.529655172413793e-06,
|
2362 |
+
"loss": 0.0003,
|
2363 |
+
"step": 9475
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 558.71,
|
2367 |
+
"learning_rate": 1.522758620689655e-06,
|
2368 |
+
"loss": 0.0003,
|
2369 |
+
"step": 9500
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 560.18,
|
2373 |
+
"learning_rate": 1.5158620689655172e-06,
|
2374 |
+
"loss": 0.0003,
|
2375 |
+
"step": 9525
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 561.65,
|
2379 |
+
"learning_rate": 1.5089655172413792e-06,
|
2380 |
+
"loss": 0.0005,
|
2381 |
+
"step": 9550
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 563.12,
|
2385 |
+
"learning_rate": 1.5020689655172415e-06,
|
2386 |
+
"loss": 0.0004,
|
2387 |
+
"step": 9575
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 564.59,
|
2391 |
+
"learning_rate": 1.4951724137931035e-06,
|
2392 |
+
"loss": 0.0004,
|
2393 |
+
"step": 9600
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 566.06,
|
2397 |
+
"learning_rate": 1.4882758620689655e-06,
|
2398 |
+
"loss": 0.0003,
|
2399 |
+
"step": 9625
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 567.53,
|
2403 |
+
"learning_rate": 1.4813793103448276e-06,
|
2404 |
+
"loss": 0.0005,
|
2405 |
+
"step": 9650
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 569.0,
|
2409 |
+
"learning_rate": 1.4744827586206896e-06,
|
2410 |
+
"loss": 0.0003,
|
2411 |
+
"step": 9675
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 570.47,
|
2415 |
+
"learning_rate": 1.4675862068965516e-06,
|
2416 |
+
"loss": 0.0003,
|
2417 |
+
"step": 9700
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 571.94,
|
2421 |
+
"learning_rate": 1.4606896551724137e-06,
|
2422 |
+
"loss": 0.0003,
|
2423 |
+
"step": 9725
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 573.41,
|
2427 |
+
"learning_rate": 1.4537931034482757e-06,
|
2428 |
+
"loss": 0.0002,
|
2429 |
+
"step": 9750
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 574.88,
|
2433 |
+
"learning_rate": 1.4468965517241377e-06,
|
2434 |
+
"loss": 0.0002,
|
2435 |
+
"step": 9775
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 576.35,
|
2439 |
+
"learning_rate": 1.44e-06,
|
2440 |
+
"loss": 0.0004,
|
2441 |
+
"step": 9800
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 577.82,
|
2445 |
+
"learning_rate": 1.433103448275862e-06,
|
2446 |
+
"loss": 0.0002,
|
2447 |
+
"step": 9825
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 579.29,
|
2451 |
+
"learning_rate": 1.426206896551724e-06,
|
2452 |
+
"loss": 0.0005,
|
2453 |
+
"step": 9850
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 580.76,
|
2457 |
+
"learning_rate": 1.419310344827586e-06,
|
2458 |
+
"loss": 0.0004,
|
2459 |
+
"step": 9875
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 582.24,
|
2463 |
+
"learning_rate": 1.4124137931034481e-06,
|
2464 |
+
"loss": 0.0003,
|
2465 |
+
"step": 9900
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 583.71,
|
2469 |
+
"learning_rate": 1.4055172413793104e-06,
|
2470 |
+
"loss": 0.0004,
|
2471 |
+
"step": 9925
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 585.18,
|
2475 |
+
"learning_rate": 1.3986206896551724e-06,
|
2476 |
+
"loss": 0.0004,
|
2477 |
+
"step": 9950
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 586.65,
|
2481 |
+
"learning_rate": 1.3917241379310344e-06,
|
2482 |
+
"loss": 0.0004,
|
2483 |
+
"step": 9975
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 588.12,
|
2487 |
+
"learning_rate": 1.3848275862068965e-06,
|
2488 |
+
"loss": 0.0003,
|
2489 |
+
"step": 10000
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 588.12,
|
2493 |
+
"eval_loss": 0.54296875,
|
2494 |
+
"eval_runtime": 156.5622,
|
2495 |
+
"eval_samples_per_second": 1.737,
|
2496 |
+
"eval_steps_per_second": 0.109,
|
2497 |
+
"eval_wer": 9.973997028231798,
|
2498 |
+
"step": 10000
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 589.59,
|
2502 |
+
"learning_rate": 1.3779310344827587e-06,
|
2503 |
+
"loss": 0.0002,
|
2504 |
+
"step": 10025
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 591.06,
|
2508 |
+
"learning_rate": 1.3710344827586207e-06,
|
2509 |
+
"loss": 0.0003,
|
2510 |
+
"step": 10050
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 592.53,
|
2514 |
+
"learning_rate": 1.3641379310344828e-06,
|
2515 |
+
"loss": 0.0002,
|
2516 |
+
"step": 10075
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 594.0,
|
2520 |
+
"learning_rate": 1.3572413793103448e-06,
|
2521 |
+
"loss": 0.0003,
|
2522 |
+
"step": 10100
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 595.47,
|
2526 |
+
"learning_rate": 1.3503448275862068e-06,
|
2527 |
+
"loss": 0.0003,
|
2528 |
+
"step": 10125
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 596.94,
|
2532 |
+
"learning_rate": 1.3434482758620689e-06,
|
2533 |
+
"loss": 0.0002,
|
2534 |
+
"step": 10150
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 598.41,
|
2538 |
+
"learning_rate": 1.3365517241379309e-06,
|
2539 |
+
"loss": 0.0004,
|
2540 |
+
"step": 10175
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 599.88,
|
2544 |
+
"learning_rate": 1.329655172413793e-06,
|
2545 |
+
"loss": 0.0002,
|
2546 |
+
"step": 10200
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 601.35,
|
2550 |
+
"learning_rate": 1.322758620689655e-06,
|
2551 |
+
"loss": 0.0003,
|
2552 |
+
"step": 10225
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 602.82,
|
2556 |
+
"learning_rate": 1.3158620689655172e-06,
|
2557 |
+
"loss": 0.0003,
|
2558 |
+
"step": 10250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 604.29,
|
2562 |
+
"learning_rate": 1.3089655172413792e-06,
|
2563 |
+
"loss": 0.0002,
|
2564 |
+
"step": 10275
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 605.76,
|
2568 |
+
"learning_rate": 1.3020689655172413e-06,
|
2569 |
+
"loss": 0.0002,
|
2570 |
+
"step": 10300
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 607.24,
|
2574 |
+
"learning_rate": 1.2951724137931035e-06,
|
2575 |
+
"loss": 0.0003,
|
2576 |
+
"step": 10325
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 608.71,
|
2580 |
+
"learning_rate": 1.2882758620689655e-06,
|
2581 |
+
"loss": 0.0002,
|
2582 |
+
"step": 10350
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 610.18,
|
2586 |
+
"learning_rate": 1.2813793103448276e-06,
|
2587 |
+
"loss": 0.0003,
|
2588 |
+
"step": 10375
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 611.65,
|
2592 |
+
"learning_rate": 1.2744827586206896e-06,
|
2593 |
+
"loss": 0.0003,
|
2594 |
+
"step": 10400
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 613.12,
|
2598 |
+
"learning_rate": 1.2675862068965516e-06,
|
2599 |
+
"loss": 0.0003,
|
2600 |
+
"step": 10425
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 614.59,
|
2604 |
+
"learning_rate": 1.2612413793103448e-06,
|
2605 |
+
"loss": 0.0005,
|
2606 |
+
"step": 10450
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 616.06,
|
2610 |
+
"learning_rate": 1.2543448275862068e-06,
|
2611 |
+
"loss": 0.0003,
|
2612 |
+
"step": 10475
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 617.53,
|
2616 |
+
"learning_rate": 1.2474482758620688e-06,
|
2617 |
+
"loss": 0.0003,
|
2618 |
+
"step": 10500
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 619.0,
|
2622 |
+
"learning_rate": 1.240551724137931e-06,
|
2623 |
+
"loss": 0.0001,
|
2624 |
+
"step": 10525
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 620.47,
|
2628 |
+
"learning_rate": 1.2336551724137931e-06,
|
2629 |
+
"loss": 0.0002,
|
2630 |
+
"step": 10550
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 621.94,
|
2634 |
+
"learning_rate": 1.2267586206896552e-06,
|
2635 |
+
"loss": 0.0005,
|
2636 |
+
"step": 10575
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 623.41,
|
2640 |
+
"learning_rate": 1.2198620689655172e-06,
|
2641 |
+
"loss": 0.0002,
|
2642 |
+
"step": 10600
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 624.88,
|
2646 |
+
"learning_rate": 1.2129655172413792e-06,
|
2647 |
+
"loss": 0.0003,
|
2648 |
+
"step": 10625
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 626.35,
|
2652 |
+
"learning_rate": 1.2060689655172413e-06,
|
2653 |
+
"loss": 0.0002,
|
2654 |
+
"step": 10650
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 627.82,
|
2658 |
+
"learning_rate": 1.1991724137931035e-06,
|
2659 |
+
"loss": 0.0003,
|
2660 |
+
"step": 10675
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 629.29,
|
2664 |
+
"learning_rate": 1.1922758620689655e-06,
|
2665 |
+
"loss": 0.0003,
|
2666 |
+
"step": 10700
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 630.76,
|
2670 |
+
"learning_rate": 1.1853793103448276e-06,
|
2671 |
+
"loss": 0.0003,
|
2672 |
+
"step": 10725
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 632.24,
|
2676 |
+
"learning_rate": 1.1784827586206896e-06,
|
2677 |
+
"loss": 0.0002,
|
2678 |
+
"step": 10750
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 633.71,
|
2682 |
+
"learning_rate": 1.1715862068965516e-06,
|
2683 |
+
"loss": 0.0002,
|
2684 |
+
"step": 10775
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 635.18,
|
2688 |
+
"learning_rate": 1.1646896551724137e-06,
|
2689 |
+
"loss": 0.0004,
|
2690 |
+
"step": 10800
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 636.65,
|
2694 |
+
"learning_rate": 1.1577931034482757e-06,
|
2695 |
+
"loss": 0.0003,
|
2696 |
+
"step": 10825
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 638.12,
|
2700 |
+
"learning_rate": 1.1508965517241377e-06,
|
2701 |
+
"loss": 0.0002,
|
2702 |
+
"step": 10850
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 639.59,
|
2706 |
+
"learning_rate": 1.1439999999999998e-06,
|
2707 |
+
"loss": 0.0002,
|
2708 |
+
"step": 10875
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 641.06,
|
2712 |
+
"learning_rate": 1.137103448275862e-06,
|
2713 |
+
"loss": 0.0003,
|
2714 |
+
"step": 10900
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 642.53,
|
2718 |
+
"learning_rate": 1.1302068965517243e-06,
|
2719 |
+
"loss": 0.0002,
|
2720 |
+
"step": 10925
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 644.0,
|
2724 |
+
"learning_rate": 1.1233103448275863e-06,
|
2725 |
+
"loss": 0.0004,
|
2726 |
+
"step": 10950
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 645.47,
|
2730 |
+
"learning_rate": 1.1164137931034483e-06,
|
2731 |
+
"loss": 0.0004,
|
2732 |
+
"step": 10975
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 646.94,
|
2736 |
+
"learning_rate": 1.1095172413793103e-06,
|
2737 |
+
"loss": 0.0002,
|
2738 |
+
"step": 11000
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 646.94,
|
2742 |
+
"eval_loss": 0.5458984375,
|
2743 |
+
"eval_runtime": 157.5866,
|
2744 |
+
"eval_samples_per_second": 1.726,
|
2745 |
+
"eval_steps_per_second": 0.108,
|
2746 |
+
"eval_wer": 9.955423476968797,
|
2747 |
+
"step": 11000
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 648.41,
|
2751 |
+
"learning_rate": 1.1026206896551724e-06,
|
2752 |
+
"loss": 0.0003,
|
2753 |
+
"step": 11025
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 649.88,
|
2757 |
+
"learning_rate": 1.0957241379310344e-06,
|
2758 |
+
"loss": 0.0002,
|
2759 |
+
"step": 11050
|
2760 |
+
},
|
2761 |
+
{
|
2762 |
+
"epoch": 651.35,
|
2763 |
+
"learning_rate": 1.0888275862068964e-06,
|
2764 |
+
"loss": 0.0002,
|
2765 |
+
"step": 11075
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"epoch": 652.82,
|
2769 |
+
"learning_rate": 1.0819310344827585e-06,
|
2770 |
+
"loss": 0.0003,
|
2771 |
+
"step": 11100
|
2772 |
+
},
|
2773 |
+
{
|
2774 |
+
"epoch": 654.29,
|
2775 |
+
"learning_rate": 1.0750344827586207e-06,
|
2776 |
+
"loss": 0.0002,
|
2777 |
+
"step": 11125
|
2778 |
+
},
|
2779 |
+
{
|
2780 |
+
"epoch": 655.76,
|
2781 |
+
"learning_rate": 1.0681379310344828e-06,
|
2782 |
+
"loss": 0.0003,
|
2783 |
+
"step": 11150
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 657.24,
|
2787 |
+
"learning_rate": 1.0612413793103448e-06,
|
2788 |
+
"loss": 0.0003,
|
2789 |
+
"step": 11175
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 658.71,
|
2793 |
+
"learning_rate": 1.0543448275862068e-06,
|
2794 |
+
"loss": 0.0005,
|
2795 |
+
"step": 11200
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 660.18,
|
2799 |
+
"learning_rate": 1.0474482758620689e-06,
|
2800 |
+
"loss": 0.0002,
|
2801 |
+
"step": 11225
|
2802 |
+
},
|
2803 |
+
{
|
2804 |
+
"epoch": 661.65,
|
2805 |
+
"learning_rate": 1.0405517241379309e-06,
|
2806 |
+
"loss": 0.0002,
|
2807 |
+
"step": 11250
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 663.12,
|
2811 |
+
"learning_rate": 1.033655172413793e-06,
|
2812 |
+
"loss": 0.0003,
|
2813 |
+
"step": 11275
|
2814 |
+
},
|
2815 |
+
{
|
2816 |
+
"epoch": 664.59,
|
2817 |
+
"learning_rate": 1.026758620689655e-06,
|
2818 |
+
"loss": 0.0002,
|
2819 |
+
"step": 11300
|
2820 |
+
},
|
2821 |
+
{
|
2822 |
+
"epoch": 666.06,
|
2823 |
+
"learning_rate": 1.0198620689655172e-06,
|
2824 |
+
"loss": 0.0002,
|
2825 |
+
"step": 11325
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 667.53,
|
2829 |
+
"learning_rate": 1.0129655172413794e-06,
|
2830 |
+
"loss": 0.0003,
|
2831 |
+
"step": 11350
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 669.0,
|
2835 |
+
"learning_rate": 1.0060689655172415e-06,
|
2836 |
+
"loss": 0.0009,
|
2837 |
+
"step": 11375
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 670.47,
|
2841 |
+
"learning_rate": 9.991724137931033e-07,
|
2842 |
+
"loss": 0.0002,
|
2843 |
+
"step": 11400
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"epoch": 671.94,
|
2847 |
+
"learning_rate": 9.922758620689655e-07,
|
2848 |
+
"loss": 0.0002,
|
2849 |
+
"step": 11425
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 673.41,
|
2853 |
+
"learning_rate": 9.859310344827587e-07,
|
2854 |
+
"loss": 0.0003,
|
2855 |
+
"step": 11450
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 674.88,
|
2859 |
+
"learning_rate": 9.790344827586207e-07,
|
2860 |
+
"loss": 0.0002,
|
2861 |
+
"step": 11475
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 676.35,
|
2865 |
+
"learning_rate": 9.721379310344827e-07,
|
2866 |
+
"loss": 0.0002,
|
2867 |
+
"step": 11500
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 677.82,
|
2871 |
+
"learning_rate": 9.652413793103448e-07,
|
2872 |
+
"loss": 0.0002,
|
2873 |
+
"step": 11525
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 679.29,
|
2877 |
+
"learning_rate": 9.583448275862068e-07,
|
2878 |
+
"loss": 0.0003,
|
2879 |
+
"step": 11550
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 680.76,
|
2883 |
+
"learning_rate": 9.514482758620688e-07,
|
2884 |
+
"loss": 0.0003,
|
2885 |
+
"step": 11575
|
2886 |
+
},
|
2887 |
+
{
|
2888 |
+
"epoch": 682.24,
|
2889 |
+
"learning_rate": 9.44551724137931e-07,
|
2890 |
+
"loss": 0.0003,
|
2891 |
+
"step": 11600
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 683.71,
|
2895 |
+
"learning_rate": 9.376551724137931e-07,
|
2896 |
+
"loss": 0.0002,
|
2897 |
+
"step": 11625
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 685.18,
|
2901 |
+
"learning_rate": 9.307586206896552e-07,
|
2902 |
+
"loss": 0.0002,
|
2903 |
+
"step": 11650
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 686.65,
|
2907 |
+
"learning_rate": 9.238620689655172e-07,
|
2908 |
+
"loss": 0.0003,
|
2909 |
+
"step": 11675
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"epoch": 688.12,
|
2913 |
+
"learning_rate": 9.169655172413792e-07,
|
2914 |
+
"loss": 0.0003,
|
2915 |
+
"step": 11700
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 689.59,
|
2919 |
+
"learning_rate": 9.100689655172414e-07,
|
2920 |
+
"loss": 0.0001,
|
2921 |
+
"step": 11725
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 691.06,
|
2925 |
+
"learning_rate": 9.031724137931034e-07,
|
2926 |
+
"loss": 0.0004,
|
2927 |
+
"step": 11750
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 692.53,
|
2931 |
+
"learning_rate": 8.962758620689654e-07,
|
2932 |
+
"loss": 0.0003,
|
2933 |
+
"step": 11775
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 694.0,
|
2937 |
+
"learning_rate": 8.893793103448275e-07,
|
2938 |
+
"loss": 0.0005,
|
2939 |
+
"step": 11800
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 695.47,
|
2943 |
+
"learning_rate": 8.824827586206897e-07,
|
2944 |
+
"loss": 0.0002,
|
2945 |
+
"step": 11825
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 696.94,
|
2949 |
+
"learning_rate": 8.755862068965517e-07,
|
2950 |
+
"loss": 0.0002,
|
2951 |
+
"step": 11850
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 698.41,
|
2955 |
+
"learning_rate": 8.686896551724138e-07,
|
2956 |
+
"loss": 0.0002,
|
2957 |
+
"step": 11875
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 699.88,
|
2961 |
+
"learning_rate": 8.617931034482758e-07,
|
2962 |
+
"loss": 0.0002,
|
2963 |
+
"step": 11900
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 701.35,
|
2967 |
+
"learning_rate": 8.548965517241378e-07,
|
2968 |
+
"loss": 0.0003,
|
2969 |
+
"step": 11925
|
2970 |
+
},
|
2971 |
+
{
|
2972 |
+
"epoch": 702.82,
|
2973 |
+
"learning_rate": 8.48e-07,
|
2974 |
+
"loss": 0.0002,
|
2975 |
+
"step": 11950
|
2976 |
+
},
|
2977 |
+
{
|
2978 |
+
"epoch": 704.29,
|
2979 |
+
"learning_rate": 8.41103448275862e-07,
|
2980 |
+
"loss": 0.0002,
|
2981 |
+
"step": 11975
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 705.76,
|
2985 |
+
"learning_rate": 8.34206896551724e-07,
|
2986 |
+
"loss": 0.0003,
|
2987 |
+
"step": 12000
|
2988 |
+
},
|
2989 |
+
{
|
2990 |
+
"epoch": 705.76,
|
2991 |
+
"eval_loss": 0.55615234375,
|
2992 |
+
"eval_runtime": 158.1148,
|
2993 |
+
"eval_samples_per_second": 1.72,
|
2994 |
+
"eval_steps_per_second": 0.108,
|
2995 |
+
"eval_wer": 9.9832838038633,
|
2996 |
+
"step": 12000
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 706.47,
|
3000 |
+
"learning_rate": 3.1968e-07,
|
3001 |
+
"loss": 0.0002,
|
3002 |
+
"step": 12025
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 707.94,
|
3006 |
+
"learning_rate": 3.1168e-07,
|
3007 |
+
"loss": 0.0003,
|
3008 |
+
"step": 12050
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 709.41,
|
3012 |
+
"learning_rate": 3.0368e-07,
|
3013 |
+
"loss": 0.0002,
|
3014 |
+
"step": 12075
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 710.88,
|
3018 |
+
"learning_rate": 2.9568e-07,
|
3019 |
+
"loss": 0.0002,
|
3020 |
+
"step": 12100
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 712.35,
|
3024 |
+
"learning_rate": 2.8768e-07,
|
3025 |
+
"loss": 0.0003,
|
3026 |
+
"step": 12125
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 713.82,
|
3030 |
+
"learning_rate": 2.7968e-07,
|
3031 |
+
"loss": 0.0002,
|
3032 |
+
"step": 12150
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 715.29,
|
3036 |
+
"learning_rate": 2.7167999999999996e-07,
|
3037 |
+
"loss": 0.0005,
|
3038 |
+
"step": 12175
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 716.76,
|
3042 |
+
"learning_rate": 2.6368e-07,
|
3043 |
+
"loss": 0.0002,
|
3044 |
+
"step": 12200
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 718.24,
|
3048 |
+
"learning_rate": 2.5568e-07,
|
3049 |
+
"loss": 0.0002,
|
3050 |
+
"step": 12225
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 719.71,
|
3054 |
+
"learning_rate": 2.4768e-07,
|
3055 |
+
"loss": 0.0002,
|
3056 |
+
"step": 12250
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 721.18,
|
3060 |
+
"learning_rate": 2.3968e-07,
|
3061 |
+
"loss": 0.0003,
|
3062 |
+
"step": 12275
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 722.65,
|
3066 |
+
"learning_rate": 2.3168e-07,
|
3067 |
+
"loss": 0.0002,
|
3068 |
+
"step": 12300
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 724.12,
|
3072 |
+
"learning_rate": 2.2367999999999998e-07,
|
3073 |
+
"loss": 0.0002,
|
3074 |
+
"step": 12325
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 725.59,
|
3078 |
+
"learning_rate": 2.1568e-07,
|
3079 |
+
"loss": 0.0002,
|
3080 |
+
"step": 12350
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 727.06,
|
3084 |
+
"learning_rate": 2.0768e-07,
|
3085 |
+
"loss": 0.0001,
|
3086 |
+
"step": 12375
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 728.53,
|
3090 |
+
"learning_rate": 1.9968e-07,
|
3091 |
+
"loss": 0.0002,
|
3092 |
+
"step": 12400
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 730.0,
|
3096 |
+
"learning_rate": 1.9167999999999998e-07,
|
3097 |
+
"loss": 0.0002,
|
3098 |
+
"step": 12425
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 731.47,
|
3102 |
+
"learning_rate": 1.8432e-07,
|
3103 |
+
"loss": 0.0003,
|
3104 |
+
"step": 12450
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 732.94,
|
3108 |
+
"learning_rate": 1.7632e-07,
|
3109 |
+
"loss": 0.0002,
|
3110 |
+
"step": 12475
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 734.41,
|
3114 |
+
"learning_rate": 1.6832e-07,
|
3115 |
+
"loss": 0.0001,
|
3116 |
+
"step": 12500
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 735.88,
|
3120 |
+
"learning_rate": 1.6032e-07,
|
3121 |
+
"loss": 0.0001,
|
3122 |
+
"step": 12525
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 737.35,
|
3126 |
+
"learning_rate": 1.5232e-07,
|
3127 |
+
"loss": 0.0001,
|
3128 |
+
"step": 12550
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 738.82,
|
3132 |
+
"learning_rate": 1.4431999999999998e-07,
|
3133 |
+
"loss": 0.0002,
|
3134 |
+
"step": 12575
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 740.29,
|
3138 |
+
"learning_rate": 1.3632e-07,
|
3139 |
+
"loss": 0.0002,
|
3140 |
+
"step": 12600
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 741.76,
|
3144 |
+
"learning_rate": 1.2831999999999997e-07,
|
3145 |
+
"loss": 0.0001,
|
3146 |
+
"step": 12625
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 743.24,
|
3150 |
+
"learning_rate": 1.2031999999999998e-07,
|
3151 |
+
"loss": 0.0003,
|
3152 |
+
"step": 12650
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 744.71,
|
3156 |
+
"learning_rate": 1.1232e-07,
|
3157 |
+
"loss": 0.0002,
|
3158 |
+
"step": 12675
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 746.18,
|
3162 |
+
"learning_rate": 1.0432e-07,
|
3163 |
+
"loss": 0.0002,
|
3164 |
+
"step": 12700
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 747.65,
|
3168 |
+
"learning_rate": 9.632e-08,
|
3169 |
+
"loss": 0.0002,
|
3170 |
+
"step": 12725
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 749.12,
|
3174 |
+
"learning_rate": 8.831999999999999e-08,
|
3175 |
+
"loss": 0.0002,
|
3176 |
+
"step": 12750
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 750.59,
|
3180 |
+
"learning_rate": 8.032e-08,
|
3181 |
+
"loss": 0.0002,
|
3182 |
+
"step": 12775
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 752.06,
|
3186 |
+
"learning_rate": 7.231999999999999e-08,
|
3187 |
+
"loss": 0.0002,
|
3188 |
+
"step": 12800
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 753.53,
|
3192 |
+
"learning_rate": 6.432e-08,
|
3193 |
+
"loss": 0.0002,
|
3194 |
+
"step": 12825
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 755.0,
|
3198 |
+
"learning_rate": 5.632e-08,
|
3199 |
+
"loss": 0.0002,
|
3200 |
+
"step": 12850
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 756.47,
|
3204 |
+
"learning_rate": 4.832e-08,
|
3205 |
+
"loss": 0.0002,
|
3206 |
+
"step": 12875
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 757.94,
|
3210 |
+
"learning_rate": 4.032e-08,
|
3211 |
+
"loss": 0.0002,
|
3212 |
+
"step": 12900
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 759.41,
|
3216 |
+
"learning_rate": 3.232e-08,
|
3217 |
+
"loss": 0.0001,
|
3218 |
+
"step": 12925
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 760.88,
|
3222 |
+
"learning_rate": 2.432e-08,
|
3223 |
+
"loss": 0.0002,
|
3224 |
+
"step": 12950
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 762.35,
|
3228 |
+
"learning_rate": 1.632e-08,
|
3229 |
+
"loss": 0.0001,
|
3230 |
+
"step": 12975
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 763.82,
|
3234 |
+
"learning_rate": 8.32e-09,
|
3235 |
+
"loss": 0.0001,
|
3236 |
+
"step": 13000
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 763.82,
|
3240 |
+
"eval_loss": 0.5546875,
|
3241 |
+
"eval_runtime": 156.9741,
|
3242 |
+
"eval_samples_per_second": 1.733,
|
3243 |
+
"eval_steps_per_second": 0.108,
|
3244 |
+
"eval_wer": 9.9925705794948,
|
3245 |
+
"step": 13000
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 765.47,
|
3249 |
+
"learning_rate": 2.965925925925926e-07,
|
3250 |
+
"loss": 0.0002,
|
3251 |
+
"step": 13025
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 766.94,
|
3255 |
+
"learning_rate": 2.891851851851852e-07,
|
3256 |
+
"loss": 0.0001,
|
3257 |
+
"step": 13050
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 768.41,
|
3261 |
+
"learning_rate": 2.817777777777778e-07,
|
3262 |
+
"loss": 0.0002,
|
3263 |
+
"step": 13075
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 769.88,
|
3267 |
+
"learning_rate": 2.7437037037037035e-07,
|
3268 |
+
"loss": 0.0001,
|
3269 |
+
"step": 13100
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 771.35,
|
3273 |
+
"learning_rate": 2.6696296296296296e-07,
|
3274 |
+
"loss": 0.0001,
|
3275 |
+
"step": 13125
|
3276 |
+
},
|
3277 |
+
{
|
3278 |
+
"epoch": 772.82,
|
3279 |
+
"learning_rate": 2.595555555555555e-07,
|
3280 |
+
"loss": 0.0002,
|
3281 |
+
"step": 13150
|
3282 |
+
},
|
3283 |
+
{
|
3284 |
+
"epoch": 774.29,
|
3285 |
+
"learning_rate": 2.521481481481481e-07,
|
3286 |
+
"loss": 0.0002,
|
3287 |
+
"step": 13175
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 775.76,
|
3291 |
+
"learning_rate": 2.4474074074074073e-07,
|
3292 |
+
"loss": 0.0001,
|
3293 |
+
"step": 13200
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 777.24,
|
3297 |
+
"learning_rate": 2.3733333333333334e-07,
|
3298 |
+
"loss": 0.0001,
|
3299 |
+
"step": 13225
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 778.71,
|
3303 |
+
"learning_rate": 2.2992592592592592e-07,
|
3304 |
+
"loss": 0.0001,
|
3305 |
+
"step": 13250
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 780.18,
|
3309 |
+
"learning_rate": 2.2251851851851853e-07,
|
3310 |
+
"loss": 0.0003,
|
3311 |
+
"step": 13275
|
3312 |
+
},
|
3313 |
+
{
|
3314 |
+
"epoch": 781.65,
|
3315 |
+
"learning_rate": 2.1511111111111111e-07,
|
3316 |
+
"loss": 0.0001,
|
3317 |
+
"step": 13300
|
3318 |
+
},
|
3319 |
+
{
|
3320 |
+
"epoch": 783.12,
|
3321 |
+
"learning_rate": 2.077037037037037e-07,
|
3322 |
+
"loss": 0.0001,
|
3323 |
+
"step": 13325
|
3324 |
+
},
|
3325 |
+
{
|
3326 |
+
"epoch": 784.59,
|
3327 |
+
"learning_rate": 2.002962962962963e-07,
|
3328 |
+
"loss": 0.0001,
|
3329 |
+
"step": 13350
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 786.06,
|
3333 |
+
"learning_rate": 1.9288888888888889e-07,
|
3334 |
+
"loss": 0.0001,
|
3335 |
+
"step": 13375
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 787.53,
|
3339 |
+
"learning_rate": 1.8548148148148147e-07,
|
3340 |
+
"loss": 0.0002,
|
3341 |
+
"step": 13400
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 789.0,
|
3345 |
+
"learning_rate": 1.7807407407407408e-07,
|
3346 |
+
"loss": 0.0002,
|
3347 |
+
"step": 13425
|
3348 |
+
},
|
3349 |
+
{
|
3350 |
+
"epoch": 790.47,
|
3351 |
+
"learning_rate": 1.7066666666666666e-07,
|
3352 |
+
"loss": 0.0002,
|
3353 |
+
"step": 13450
|
3354 |
+
},
|
3355 |
+
{
|
3356 |
+
"epoch": 791.94,
|
3357 |
+
"learning_rate": 1.6385185185185184e-07,
|
3358 |
+
"loss": 0.0001,
|
3359 |
+
"step": 13475
|
3360 |
+
},
|
3361 |
+
{
|
3362 |
+
"epoch": 793.41,
|
3363 |
+
"learning_rate": 1.5644444444444442e-07,
|
3364 |
+
"loss": 0.0003,
|
3365 |
+
"step": 13500
|
3366 |
+
},
|
3367 |
+
{
|
3368 |
+
"epoch": 794.88,
|
3369 |
+
"learning_rate": 1.49037037037037e-07,
|
3370 |
+
"loss": 0.0001,
|
3371 |
+
"step": 13525
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 796.35,
|
3375 |
+
"learning_rate": 1.4162962962962962e-07,
|
3376 |
+
"loss": 0.0001,
|
3377 |
+
"step": 13550
|
3378 |
+
},
|
3379 |
+
{
|
3380 |
+
"epoch": 797.82,
|
3381 |
+
"learning_rate": 1.342222222222222e-07,
|
3382 |
+
"loss": 0.0001,
|
3383 |
+
"step": 13575
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 799.29,
|
3387 |
+
"learning_rate": 1.268148148148148e-07,
|
3388 |
+
"loss": 0.0001,
|
3389 |
+
"step": 13600
|
3390 |
+
},
|
3391 |
+
{
|
3392 |
+
"epoch": 800.76,
|
3393 |
+
"learning_rate": 1.194074074074074e-07,
|
3394 |
+
"loss": 0.0002,
|
3395 |
+
"step": 13625
|
3396 |
+
},
|
3397 |
+
{
|
3398 |
+
"epoch": 802.24,
|
3399 |
+
"learning_rate": 1.12e-07,
|
3400 |
+
"loss": 0.0001,
|
3401 |
+
"step": 13650
|
3402 |
+
},
|
3403 |
+
{
|
3404 |
+
"epoch": 803.71,
|
3405 |
+
"learning_rate": 1.0459259259259259e-07,
|
3406 |
+
"loss": 0.0002,
|
3407 |
+
"step": 13675
|
3408 |
+
},
|
3409 |
+
{
|
3410 |
+
"epoch": 805.18,
|
3411 |
+
"learning_rate": 9.718518518518517e-08,
|
3412 |
+
"loss": 0.0002,
|
3413 |
+
"step": 13700
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 806.65,
|
3417 |
+
"learning_rate": 8.977777777777777e-08,
|
3418 |
+
"loss": 0.0002,
|
3419 |
+
"step": 13725
|
3420 |
+
},
|
3421 |
+
{
|
3422 |
+
"epoch": 808.12,
|
3423 |
+
"learning_rate": 8.237037037037037e-08,
|
3424 |
+
"loss": 0.0002,
|
3425 |
+
"step": 13750
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 809.59,
|
3429 |
+
"learning_rate": 7.496296296296296e-08,
|
3430 |
+
"loss": 0.0002,
|
3431 |
+
"step": 13775
|
3432 |
+
},
|
3433 |
+
{
|
3434 |
+
"epoch": 811.06,
|
3435 |
+
"learning_rate": 6.755555555555554e-08,
|
3436 |
+
"loss": 0.0001,
|
3437 |
+
"step": 13800
|
3438 |
+
},
|
3439 |
+
{
|
3440 |
+
"epoch": 812.53,
|
3441 |
+
"learning_rate": 6.014814814814814e-08,
|
3442 |
+
"loss": 0.0001,
|
3443 |
+
"step": 13825
|
3444 |
+
},
|
3445 |
+
{
|
3446 |
+
"epoch": 814.0,
|
3447 |
+
"learning_rate": 5.274074074074074e-08,
|
3448 |
+
"loss": 0.0002,
|
3449 |
+
"step": 13850
|
3450 |
+
},
|
3451 |
+
{
|
3452 |
+
"epoch": 815.47,
|
3453 |
+
"learning_rate": 4.5333333333333336e-08,
|
3454 |
+
"loss": 0.0001,
|
3455 |
+
"step": 13875
|
3456 |
+
},
|
3457 |
+
{
|
3458 |
+
"epoch": 816.94,
|
3459 |
+
"learning_rate": 3.7925925925925924e-08,
|
3460 |
+
"loss": 0.0002,
|
3461 |
+
"step": 13900
|
3462 |
+
},
|
3463 |
+
{
|
3464 |
+
"epoch": 818.41,
|
3465 |
+
"learning_rate": 3.051851851851851e-08,
|
3466 |
+
"loss": 0.0001,
|
3467 |
+
"step": 13925
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 819.88,
|
3471 |
+
"learning_rate": 2.311111111111111e-08,
|
3472 |
+
"loss": 0.0002,
|
3473 |
+
"step": 13950
|
3474 |
+
},
|
3475 |
+
{
|
3476 |
+
"epoch": 821.35,
|
3477 |
+
"learning_rate": 1.57037037037037e-08,
|
3478 |
+
"loss": 0.0001,
|
3479 |
+
"step": 13975
|
3480 |
+
},
|
3481 |
+
{
|
3482 |
+
"epoch": 822.82,
|
3483 |
+
"learning_rate": 8.296296296296296e-09,
|
3484 |
+
"loss": 0.0001,
|
3485 |
+
"step": 14000
|
3486 |
+
},
|
3487 |
+
{
|
3488 |
+
"epoch": 822.82,
|
3489 |
+
"eval_loss": 0.5576171875,
|
3490 |
+
"eval_runtime": 157.6735,
|
3491 |
+
"eval_samples_per_second": 1.725,
|
3492 |
+
"eval_steps_per_second": 0.108,
|
3493 |
+
"eval_wer": 9.899702823179792,
|
3494 |
+
"step": 14000
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 824.47,
|
3498 |
+
"learning_rate": 0.00012324102564102563,
|
3499 |
+
"loss": 7.1148,
|
3500 |
+
"step": 14025
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 825.94,
|
3504 |
+
"learning_rate": 0.00012272820512820512,
|
3505 |
+
"loss": 5.3802,
|
3506 |
+
"step": 14050
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 827.41,
|
3510 |
+
"learning_rate": 0.00012221538461538463,
|
3511 |
+
"loss": 4.0038,
|
3512 |
+
"step": 14075
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 828.88,
|
3516 |
+
"learning_rate": 0.0001217025641025641,
|
3517 |
+
"loss": 3.0771,
|
3518 |
+
"step": 14100
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 830.35,
|
3522 |
+
"learning_rate": 0.00012118974358974359,
|
3523 |
+
"loss": 2.4888,
|
3524 |
+
"step": 14125
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 831.82,
|
3528 |
+
"learning_rate": 0.0001206769230769231,
|
3529 |
+
"loss": 2.0454,
|
3530 |
+
"step": 14150
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 833.29,
|
3534 |
+
"learning_rate": 0.00012016410256410258,
|
3535 |
+
"loss": 1.6123,
|
3536 |
+
"step": 14175
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 834.76,
|
3540 |
+
"learning_rate": 0.00011965128205128207,
|
3541 |
+
"loss": 1.1082,
|
3542 |
+
"step": 14200
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 836.24,
|
3546 |
+
"learning_rate": 0.00011913846153846155,
|
3547 |
+
"loss": 0.6733,
|
3548 |
+
"step": 14225
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 837.71,
|
3552 |
+
"learning_rate": 0.00011862564102564103,
|
3553 |
+
"loss": 0.4108,
|
3554 |
+
"step": 14250
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 839.18,
|
3558 |
+
"learning_rate": 0.00011811282051282051,
|
3559 |
+
"loss": 0.2879,
|
3560 |
+
"step": 14275
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 840.65,
|
3564 |
+
"learning_rate": 0.0001176,
|
3565 |
+
"loss": 0.2274,
|
3566 |
+
"step": 14300
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 842.12,
|
3570 |
+
"learning_rate": 0.00011708717948717949,
|
3571 |
+
"loss": 0.1869,
|
3572 |
+
"step": 14325
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 843.59,
|
3576 |
+
"learning_rate": 0.00011657435897435897,
|
3577 |
+
"loss": 0.1548,
|
3578 |
+
"step": 14350
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 845.06,
|
3582 |
+
"learning_rate": 0.00011606153846153847,
|
3583 |
+
"loss": 2.892,
|
3584 |
+
"step": 14375
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 846.53,
|
3588 |
+
"learning_rate": 0.00011556923076923078,
|
3589 |
+
"loss": 4.4433,
|
3590 |
+
"step": 14400
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 848.0,
|
3594 |
+
"learning_rate": 0.00011505641025641026,
|
3595 |
+
"loss": 0.9719,
|
3596 |
+
"step": 14425
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 849.47,
|
3600 |
+
"learning_rate": 0.00011454358974358974,
|
3601 |
+
"loss": 0.0969,
|
3602 |
+
"step": 14450
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 850.94,
|
3606 |
+
"learning_rate": 0.00011403076923076923,
|
3607 |
+
"loss": 0.0932,
|
3608 |
+
"step": 14475
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 852.41,
|
3612 |
+
"learning_rate": 0.00011351794871794871,
|
3613 |
+
"loss": 0.0829,
|
3614 |
+
"step": 14500
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 853.88,
|
3618 |
+
"learning_rate": 0.0001130051282051282,
|
3619 |
+
"loss": 0.0785,
|
3620 |
+
"step": 14525
|
3621 |
+
},
|
3622 |
+
{
|
3623 |
+
"epoch": 855.35,
|
3624 |
+
"learning_rate": 0.0001124923076923077,
|
3625 |
+
"loss": 0.0679,
|
3626 |
+
"step": 14550
|
3627 |
+
},
|
3628 |
+
{
|
3629 |
+
"epoch": 856.82,
|
3630 |
+
"learning_rate": 0.00011197948717948719,
|
3631 |
+
"loss": 0.0656,
|
3632 |
+
"step": 14575
|
3633 |
+
},
|
3634 |
+
{
|
3635 |
+
"epoch": 858.29,
|
3636 |
+
"learning_rate": 0.00011146666666666667,
|
3637 |
+
"loss": 0.064,
|
3638 |
+
"step": 14600
|
3639 |
+
},
|
3640 |
+
{
|
3641 |
+
"epoch": 859.76,
|
3642 |
+
"learning_rate": 0.00011095384615384616,
|
3643 |
+
"loss": 0.0614,
|
3644 |
+
"step": 14625
|
3645 |
+
},
|
3646 |
+
{
|
3647 |
+
"epoch": 861.24,
|
3648 |
+
"learning_rate": 0.00011044102564102565,
|
3649 |
+
"loss": 0.0612,
|
3650 |
+
"step": 14650
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 862.71,
|
3654 |
+
"learning_rate": 0.00010992820512820515,
|
3655 |
+
"loss": 0.0609,
|
3656 |
+
"step": 14675
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 864.18,
|
3660 |
+
"learning_rate": 0.00010941538461538463,
|
3661 |
+
"loss": 0.0586,
|
3662 |
+
"step": 14700
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 865.65,
|
3666 |
+
"learning_rate": 0.0001089025641025641,
|
3667 |
+
"loss": 0.0581,
|
3668 |
+
"step": 14725
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 867.12,
|
3672 |
+
"learning_rate": 0.00010838974358974358,
|
3673 |
+
"loss": 0.0569,
|
3674 |
+
"step": 14750
|
3675 |
+
},
|
3676 |
+
{
|
3677 |
+
"epoch": 868.59,
|
3678 |
+
"learning_rate": 0.00010787692307692308,
|
3679 |
+
"loss": 0.0573,
|
3680 |
+
"step": 14775
|
3681 |
+
},
|
3682 |
+
{
|
3683 |
+
"epoch": 870.06,
|
3684 |
+
"learning_rate": 0.00010736410256410257,
|
3685 |
+
"loss": 0.0555,
|
3686 |
+
"step": 14800
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 871.53,
|
3690 |
+
"learning_rate": 0.00010685128205128205,
|
3691 |
+
"loss": 0.0546,
|
3692 |
+
"step": 14825
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 873.0,
|
3696 |
+
"learning_rate": 0.00010633846153846154,
|
3697 |
+
"loss": 0.0548,
|
3698 |
+
"step": 14850
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 874.47,
|
3702 |
+
"learning_rate": 0.00010582564102564103,
|
3703 |
+
"loss": 0.0541,
|
3704 |
+
"step": 14875
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 875.94,
|
3708 |
+
"learning_rate": 0.00010531282051282053,
|
3709 |
+
"loss": 0.0526,
|
3710 |
+
"step": 14900
|
3711 |
+
},
|
3712 |
+
{
|
3713 |
+
"epoch": 877.41,
|
3714 |
+
"learning_rate": 0.00010480000000000001,
|
3715 |
+
"loss": 0.0521,
|
3716 |
+
"step": 14925
|
3717 |
+
},
|
3718 |
+
{
|
3719 |
+
"epoch": 878.88,
|
3720 |
+
"learning_rate": 0.0001042871794871795,
|
3721 |
+
"loss": 0.0539,
|
3722 |
+
"step": 14950
|
3723 |
+
},
|
3724 |
+
{
|
3725 |
+
"epoch": 880.35,
|
3726 |
+
"learning_rate": 0.00010377435897435899,
|
3727 |
+
"loss": 0.0535,
|
3728 |
+
"step": 14975
|
3729 |
+
},
|
3730 |
+
{
|
3731 |
+
"epoch": 881.82,
|
3732 |
+
"learning_rate": 0.00010326153846153847,
|
3733 |
+
"loss": 0.0538,
|
3734 |
+
"step": 15000
|
3735 |
+
},
|
3736 |
+
{
|
3737 |
+
"epoch": 881.82,
|
3738 |
+
"eval_loss": 5.33984375,
|
3739 |
+
"eval_runtime": 102.1523,
|
3740 |
+
"eval_samples_per_second": 2.663,
|
3741 |
+
"eval_steps_per_second": 0.166,
|
3742 |
+
"eval_wer": 99.87927191679049,
|
3743 |
+
"step": 15000
|
3744 |
+
},
|
3745 |
+
{
|
3746 |
+
"epoch": 883.29,
|
3747 |
+
"learning_rate": 0.00010274871794871795,
|
3748 |
+
"loss": 0.0535,
|
3749 |
+
"step": 15025
|
3750 |
+
},
|
3751 |
+
{
|
3752 |
+
"epoch": 884.76,
|
3753 |
+
"learning_rate": 0.00010223589743589743,
|
3754 |
+
"loss": 0.0516,
|
3755 |
+
"step": 15050
|
3756 |
+
},
|
3757 |
+
{
|
3758 |
+
"epoch": 886.24,
|
3759 |
+
"learning_rate": 0.00010172307692307692,
|
3760 |
+
"loss": 0.0503,
|
3761 |
+
"step": 15075
|
3762 |
+
},
|
3763 |
+
{
|
3764 |
+
"epoch": 887.71,
|
3765 |
+
"learning_rate": 0.0001012102564102564,
|
3766 |
+
"loss": 0.05,
|
3767 |
+
"step": 15100
|
3768 |
+
},
|
3769 |
+
{
|
3770 |
+
"epoch": 889.18,
|
3771 |
+
"learning_rate": 0.0001006974358974359,
|
3772 |
+
"loss": 0.0512,
|
3773 |
+
"step": 15125
|
3774 |
+
},
|
3775 |
+
{
|
3776 |
+
"epoch": 890.65,
|
3777 |
+
"learning_rate": 0.00010018461538461539,
|
3778 |
+
"loss": 0.0503,
|
3779 |
+
"step": 15150
|
3780 |
+
},
|
3781 |
+
{
|
3782 |
+
"epoch": 892.12,
|
3783 |
+
"learning_rate": 9.967179487179488e-05,
|
3784 |
+
"loss": 0.0516,
|
3785 |
+
"step": 15175
|
3786 |
+
},
|
3787 |
+
{
|
3788 |
+
"epoch": 893.59,
|
3789 |
+
"learning_rate": 9.915897435897436e-05,
|
3790 |
+
"loss": 0.0518,
|
3791 |
+
"step": 15200
|
3792 |
+
},
|
3793 |
+
{
|
3794 |
+
"epoch": 895.06,
|
3795 |
+
"learning_rate": 9.864615384615385e-05,
|
3796 |
+
"loss": 0.0521,
|
3797 |
+
"step": 15225
|
3798 |
+
},
|
3799 |
+
{
|
3800 |
+
"epoch": 896.53,
|
3801 |
+
"learning_rate": 9.813333333333334e-05,
|
3802 |
+
"loss": 0.0508,
|
3803 |
+
"step": 15250
|
3804 |
+
},
|
3805 |
+
{
|
3806 |
+
"epoch": 898.0,
|
3807 |
+
"learning_rate": 9.762051282051282e-05,
|
3808 |
+
"loss": 0.0507,
|
3809 |
+
"step": 15275
|
3810 |
+
},
|
3811 |
+
{
|
3812 |
+
"epoch": 899.47,
|
3813 |
+
"learning_rate": 9.710769230769231e-05,
|
3814 |
+
"loss": 0.0506,
|
3815 |
+
"step": 15300
|
3816 |
+
},
|
3817 |
+
{
|
3818 |
+
"epoch": 900.94,
|
3819 |
+
"learning_rate": 9.65948717948718e-05,
|
3820 |
+
"loss": 0.0496,
|
3821 |
+
"step": 15325
|
3822 |
+
},
|
3823 |
+
{
|
3824 |
+
"epoch": 902.41,
|
3825 |
+
"learning_rate": 9.608205128205128e-05,
|
3826 |
+
"loss": 0.052,
|
3827 |
+
"step": 15350
|
3828 |
+
},
|
3829 |
+
{
|
3830 |
+
"epoch": 903.88,
|
3831 |
+
"learning_rate": 9.556923076923078e-05,
|
3832 |
+
"loss": 0.05,
|
3833 |
+
"step": 15375
|
3834 |
+
},
|
3835 |
+
{
|
3836 |
+
"epoch": 905.35,
|
3837 |
+
"learning_rate": 9.505641025641026e-05,
|
3838 |
+
"loss": 0.0498,
|
3839 |
+
"step": 15400
|
3840 |
+
},
|
3841 |
+
{
|
3842 |
+
"epoch": 906.82,
|
3843 |
+
"learning_rate": 9.454358974358974e-05,
|
3844 |
+
"loss": 0.0501,
|
3845 |
+
"step": 15425
|
3846 |
+
},
|
3847 |
+
{
|
3848 |
+
"epoch": 908.29,
|
3849 |
+
"learning_rate": 9.403076923076923e-05,
|
3850 |
+
"loss": 0.0512,
|
3851 |
+
"step": 15450
|
3852 |
+
},
|
3853 |
+
{
|
3854 |
+
"epoch": 909.76,
|
3855 |
+
"learning_rate": 9.351794871794872e-05,
|
3856 |
+
"loss": 0.0499,
|
3857 |
+
"step": 15475
|
3858 |
+
},
|
3859 |
+
{
|
3860 |
+
"epoch": 911.24,
|
3861 |
+
"learning_rate": 9.300512820512822e-05,
|
3862 |
+
"loss": 0.05,
|
3863 |
+
"step": 15500
|
3864 |
+
},
|
3865 |
+
{
|
3866 |
+
"epoch": 912.71,
|
3867 |
+
"learning_rate": 9.24923076923077e-05,
|
3868 |
+
"loss": 0.0516,
|
3869 |
+
"step": 15525
|
3870 |
+
},
|
3871 |
+
{
|
3872 |
+
"epoch": 914.18,
|
3873 |
+
"learning_rate": 9.197948717948719e-05,
|
3874 |
+
"loss": 0.0517,
|
3875 |
+
"step": 15550
|
3876 |
+
},
|
3877 |
+
{
|
3878 |
+
"epoch": 915.65,
|
3879 |
+
"learning_rate": 9.146666666666666e-05,
|
3880 |
+
"loss": 0.0499,
|
3881 |
+
"step": 15575
|
3882 |
+
},
|
3883 |
+
{
|
3884 |
+
"epoch": 917.12,
|
3885 |
+
"learning_rate": 9.095384615384616e-05,
|
3886 |
+
"loss": 0.0531,
|
3887 |
+
"step": 15600
|
3888 |
+
},
|
3889 |
+
{
|
3890 |
+
"epoch": 918.59,
|
3891 |
+
"learning_rate": 9.044102564102565e-05,
|
3892 |
+
"loss": 0.0502,
|
3893 |
+
"step": 15625
|
3894 |
+
},
|
3895 |
+
{
|
3896 |
+
"epoch": 920.06,
|
3897 |
+
"learning_rate": 8.992820512820514e-05,
|
3898 |
+
"loss": 0.0495,
|
3899 |
+
"step": 15650
|
3900 |
+
},
|
3901 |
+
{
|
3902 |
+
"epoch": 921.53,
|
3903 |
+
"learning_rate": 8.941538461538462e-05,
|
3904 |
+
"loss": 0.0499,
|
3905 |
+
"step": 15675
|
3906 |
+
},
|
3907 |
+
{
|
3908 |
+
"epoch": 923.0,
|
3909 |
+
"learning_rate": 8.890256410256411e-05,
|
3910 |
+
"loss": 0.0515,
|
3911 |
+
"step": 15700
|
3912 |
+
},
|
3913 |
+
{
|
3914 |
+
"epoch": 924.47,
|
3915 |
+
"learning_rate": 8.83897435897436e-05,
|
3916 |
+
"loss": 0.0491,
|
3917 |
+
"step": 15725
|
3918 |
+
},
|
3919 |
+
{
|
3920 |
+
"epoch": 925.94,
|
3921 |
+
"learning_rate": 8.787692307692308e-05,
|
3922 |
+
"loss": 0.0491,
|
3923 |
+
"step": 15750
|
3924 |
+
},
|
3925 |
+
{
|
3926 |
+
"epoch": 927.41,
|
3927 |
+
"learning_rate": 8.736410256410257e-05,
|
3928 |
+
"loss": 0.0482,
|
3929 |
+
"step": 15775
|
3930 |
+
},
|
3931 |
+
{
|
3932 |
+
"epoch": 928.88,
|
3933 |
+
"learning_rate": 8.685128205128206e-05,
|
3934 |
+
"loss": 0.0487,
|
3935 |
+
"step": 15800
|
3936 |
+
},
|
3937 |
+
{
|
3938 |
+
"epoch": 930.35,
|
3939 |
+
"learning_rate": 8.633846153846154e-05,
|
3940 |
+
"loss": 0.0494,
|
3941 |
+
"step": 15825
|
3942 |
+
},
|
3943 |
+
{
|
3944 |
+
"epoch": 931.82,
|
3945 |
+
"learning_rate": 8.582564102564103e-05,
|
3946 |
+
"loss": 0.0491,
|
3947 |
+
"step": 15850
|
3948 |
+
},
|
3949 |
+
{
|
3950 |
+
"epoch": 933.29,
|
3951 |
+
"learning_rate": 8.531282051282051e-05,
|
3952 |
+
"loss": 0.0483,
|
3953 |
+
"step": 15875
|
3954 |
+
},
|
3955 |
+
{
|
3956 |
+
"epoch": 934.76,
|
3957 |
+
"learning_rate": 8.48e-05,
|
3958 |
+
"loss": 0.048,
|
3959 |
+
"step": 15900
|
3960 |
+
},
|
3961 |
+
{
|
3962 |
+
"epoch": 936.24,
|
3963 |
+
"learning_rate": 8.428717948717949e-05,
|
3964 |
+
"loss": 0.0488,
|
3965 |
+
"step": 15925
|
3966 |
+
},
|
3967 |
+
{
|
3968 |
+
"epoch": 937.71,
|
3969 |
+
"learning_rate": 8.377435897435897e-05,
|
3970 |
+
"loss": 0.0494,
|
3971 |
+
"step": 15950
|
3972 |
+
},
|
3973 |
+
{
|
3974 |
+
"epoch": 939.18,
|
3975 |
+
"learning_rate": 8.326153846153847e-05,
|
3976 |
+
"loss": 0.0491,
|
3977 |
+
"step": 15975
|
3978 |
+
},
|
3979 |
+
{
|
3980 |
+
"epoch": 940.65,
|
3981 |
+
"learning_rate": 8.274871794871796e-05,
|
3982 |
+
"loss": 0.0482,
|
3983 |
+
"step": 16000
|
3984 |
+
},
|
3985 |
+
{
|
3986 |
+
"epoch": 940.65,
|
3987 |
+
"eval_loss": 5.62109375,
|
3988 |
+
"eval_runtime": 164.5773,
|
3989 |
+
"eval_samples_per_second": 1.653,
|
3990 |
+
"eval_steps_per_second": 0.103,
|
3991 |
+
"eval_wer": 136.06983655274888,
|
3992 |
+
"step": 16000
|
3993 |
+
},
|
3994 |
+
{
|
3995 |
+
"epoch": 942.12,
|
3996 |
+
"learning_rate": 8.223589743589743e-05,
|
3997 |
+
"loss": 0.0492,
|
3998 |
+
"step": 16025
|
3999 |
+
},
|
4000 |
+
{
|
4001 |
+
"epoch": 943.59,
|
4002 |
+
"learning_rate": 8.172307692307692e-05,
|
4003 |
+
"loss": 0.0485,
|
4004 |
+
"step": 16050
|
4005 |
+
},
|
4006 |
+
{
|
4007 |
+
"epoch": 945.06,
|
4008 |
+
"learning_rate": 8.121025641025641e-05,
|
4009 |
+
"loss": 0.0489,
|
4010 |
+
"step": 16075
|
4011 |
+
},
|
4012 |
+
{
|
4013 |
+
"epoch": 946.53,
|
4014 |
+
"learning_rate": 8.069743589743591e-05,
|
4015 |
+
"loss": 0.0494,
|
4016 |
+
"step": 16100
|
4017 |
+
},
|
4018 |
+
{
|
4019 |
+
"epoch": 948.0,
|
4020 |
+
"learning_rate": 8.01846153846154e-05,
|
4021 |
+
"loss": 0.0487,
|
4022 |
+
"step": 16125
|
4023 |
+
},
|
4024 |
+
{
|
4025 |
+
"epoch": 949.47,
|
4026 |
+
"learning_rate": 7.967179487179488e-05,
|
4027 |
+
"loss": 0.0473,
|
4028 |
+
"step": 16150
|
4029 |
+
},
|
4030 |
+
{
|
4031 |
+
"epoch": 950.94,
|
4032 |
+
"learning_rate": 7.915897435897435e-05,
|
4033 |
+
"loss": 0.0489,
|
4034 |
+
"step": 16175
|
4035 |
+
},
|
4036 |
+
{
|
4037 |
+
"epoch": 952.41,
|
4038 |
+
"learning_rate": 7.864615384615385e-05,
|
4039 |
+
"loss": 0.048,
|
4040 |
+
"step": 16200
|
4041 |
+
},
|
4042 |
+
{
|
4043 |
+
"epoch": 953.88,
|
4044 |
+
"learning_rate": 7.813333333333334e-05,
|
4045 |
+
"loss": 0.0479,
|
4046 |
+
"step": 16225
|
4047 |
+
},
|
4048 |
+
{
|
4049 |
+
"epoch": 955.35,
|
4050 |
+
"learning_rate": 7.762051282051283e-05,
|
4051 |
+
"loss": 0.0549,
|
4052 |
+
"step": 16250
|
4053 |
+
},
|
4054 |
+
{
|
4055 |
+
"epoch": 956.82,
|
4056 |
+
"learning_rate": 7.710769230769231e-05,
|
4057 |
+
"loss": 0.0479,
|
4058 |
+
"step": 16275
|
4059 |
+
},
|
4060 |
+
{
|
4061 |
+
"epoch": 958.29,
|
4062 |
+
"learning_rate": 7.65948717948718e-05,
|
4063 |
+
"loss": 0.0468,
|
4064 |
+
"step": 16300
|
4065 |
+
},
|
4066 |
+
{
|
4067 |
+
"epoch": 959.76,
|
4068 |
+
"learning_rate": 7.608205128205129e-05,
|
4069 |
+
"loss": 0.0477,
|
4070 |
+
"step": 16325
|
4071 |
+
},
|
4072 |
+
{
|
4073 |
+
"epoch": 961.24,
|
4074 |
+
"learning_rate": 7.556923076923077e-05,
|
4075 |
+
"loss": 0.0482,
|
4076 |
+
"step": 16350
|
4077 |
+
},
|
4078 |
+
{
|
4079 |
+
"epoch": 962.71,
|
4080 |
+
"learning_rate": 7.505641025641026e-05,
|
4081 |
+
"loss": 0.0493,
|
4082 |
+
"step": 16375
|
4083 |
+
},
|
4084 |
+
{
|
4085 |
+
"epoch": 964.18,
|
4086 |
+
"learning_rate": 7.454358974358975e-05,
|
4087 |
+
"loss": 0.0499,
|
4088 |
+
"step": 16400
|
4089 |
+
},
|
4090 |
+
{
|
4091 |
+
"epoch": 965.65,
|
4092 |
+
"learning_rate": 7.403076923076923e-05,
|
4093 |
+
"loss": 0.0516,
|
4094 |
+
"step": 16425
|
4095 |
+
},
|
4096 |
+
{
|
4097 |
+
"epoch": 967.12,
|
4098 |
+
"learning_rate": 7.351794871794873e-05,
|
4099 |
+
"loss": 0.052,
|
4100 |
+
"step": 16450
|
4101 |
+
},
|
4102 |
+
{
|
4103 |
+
"epoch": 968.59,
|
4104 |
+
"learning_rate": 7.30051282051282e-05,
|
4105 |
+
"loss": 0.0495,
|
4106 |
+
"step": 16475
|
4107 |
+
},
|
4108 |
+
{
|
4109 |
+
"epoch": 970.06,
|
4110 |
+
"learning_rate": 7.249230769230769e-05,
|
4111 |
+
"loss": 0.0495,
|
4112 |
+
"step": 16500
|
4113 |
+
},
|
4114 |
+
{
|
4115 |
+
"epoch": 971.53,
|
4116 |
+
"learning_rate": 7.197948717948718e-05,
|
4117 |
+
"loss": 0.0482,
|
4118 |
+
"step": 16525
|
4119 |
+
},
|
4120 |
+
{
|
4121 |
+
"epoch": 973.0,
|
4122 |
+
"learning_rate": 7.146666666666666e-05,
|
4123 |
+
"loss": 0.0511,
|
4124 |
+
"step": 16550
|
4125 |
+
},
|
4126 |
+
{
|
4127 |
+
"epoch": 974.47,
|
4128 |
+
"learning_rate": 7.095384615384616e-05,
|
4129 |
+
"loss": 0.0487,
|
4130 |
+
"step": 16575
|
4131 |
+
},
|
4132 |
+
{
|
4133 |
+
"epoch": 975.94,
|
4134 |
+
"learning_rate": 7.044102564102565e-05,
|
4135 |
+
"loss": 0.049,
|
4136 |
+
"step": 16600
|
4137 |
+
},
|
4138 |
+
{
|
4139 |
+
"epoch": 977.41,
|
4140 |
+
"learning_rate": 6.992820512820512e-05,
|
4141 |
+
"loss": 0.048,
|
4142 |
+
"step": 16625
|
4143 |
+
},
|
4144 |
+
{
|
4145 |
+
"epoch": 978.88,
|
4146 |
+
"learning_rate": 6.941538461538461e-05,
|
4147 |
+
"loss": 0.0485,
|
4148 |
+
"step": 16650
|
4149 |
+
},
|
4150 |
+
{
|
4151 |
+
"epoch": 980.35,
|
4152 |
+
"learning_rate": 6.890256410256411e-05,
|
4153 |
+
"loss": 0.0525,
|
4154 |
+
"step": 16675
|
4155 |
+
},
|
4156 |
+
{
|
4157 |
+
"epoch": 981.82,
|
4158 |
+
"learning_rate": 6.83897435897436e-05,
|
4159 |
+
"loss": 0.0478,
|
4160 |
+
"step": 16700
|
4161 |
+
},
|
4162 |
+
{
|
4163 |
+
"epoch": 983.29,
|
4164 |
+
"learning_rate": 6.787692307692308e-05,
|
4165 |
+
"loss": 0.0481,
|
4166 |
+
"step": 16725
|
4167 |
+
},
|
4168 |
+
{
|
4169 |
+
"epoch": 984.76,
|
4170 |
+
"learning_rate": 6.736410256410257e-05,
|
4171 |
+
"loss": 0.0494,
|
4172 |
+
"step": 16750
|
4173 |
+
},
|
4174 |
+
{
|
4175 |
+
"epoch": 986.24,
|
4176 |
+
"learning_rate": 6.685128205128204e-05,
|
4177 |
+
"loss": 0.0468,
|
4178 |
+
"step": 16775
|
4179 |
+
},
|
4180 |
+
{
|
4181 |
+
"epoch": 987.71,
|
4182 |
+
"learning_rate": 6.633846153846154e-05,
|
4183 |
+
"loss": 0.0631,
|
4184 |
+
"step": 16800
|
4185 |
+
},
|
4186 |
+
{
|
4187 |
+
"epoch": 989.18,
|
4188 |
+
"learning_rate": 6.582564102564103e-05,
|
4189 |
+
"loss": 0.0468,
|
4190 |
+
"step": 16825
|
4191 |
+
},
|
4192 |
+
{
|
4193 |
+
"epoch": 990.65,
|
4194 |
+
"learning_rate": 6.531282051282052e-05,
|
4195 |
+
"loss": 0.0464,
|
4196 |
+
"step": 16850
|
4197 |
+
},
|
4198 |
+
{
|
4199 |
+
"epoch": 992.12,
|
4200 |
+
"learning_rate": 6.48e-05,
|
4201 |
+
"loss": 0.0625,
|
4202 |
+
"step": 16875
|
4203 |
+
},
|
4204 |
+
{
|
4205 |
+
"epoch": 993.59,
|
4206 |
+
"learning_rate": 6.428717948717949e-05,
|
4207 |
+
"loss": 0.0497,
|
4208 |
+
"step": 16900
|
4209 |
+
},
|
4210 |
+
{
|
4211 |
+
"epoch": 995.06,
|
4212 |
+
"learning_rate": 6.377435897435898e-05,
|
4213 |
+
"loss": 0.0481,
|
4214 |
+
"step": 16925
|
4215 |
+
},
|
4216 |
+
{
|
4217 |
+
"epoch": 996.53,
|
4218 |
+
"learning_rate": 6.326153846153846e-05,
|
4219 |
+
"loss": 0.0484,
|
4220 |
+
"step": 16950
|
4221 |
+
},
|
4222 |
+
{
|
4223 |
+
"epoch": 998.0,
|
4224 |
+
"learning_rate": 6.274871794871795e-05,
|
4225 |
+
"loss": 0.0506,
|
4226 |
+
"step": 16975
|
4227 |
+
},
|
4228 |
+
{
|
4229 |
+
"epoch": 999.47,
|
4230 |
+
"learning_rate": 6.223589743589744e-05,
|
4231 |
+
"loss": 0.0471,
|
4232 |
+
"step": 17000
|
4233 |
+
},
|
4234 |
+
{
|
4235 |
+
"epoch": 999.47,
|
4236 |
+
"eval_loss": 5.6484375,
|
4237 |
+
"eval_runtime": 155.9288,
|
4238 |
+
"eval_samples_per_second": 1.744,
|
4239 |
+
"eval_steps_per_second": 0.109,
|
4240 |
+
"eval_wer": 121.2481426448737,
|
4241 |
+
"step": 17000
|
4242 |
+
},
|
4243 |
+
{
|
4244 |
+
"epoch": 1000.94,
|
4245 |
+
"learning_rate": 6.172307692307692e-05,
|
4246 |
+
"loss": 0.0499,
|
4247 |
+
"step": 17025
|
4248 |
+
},
|
4249 |
+
{
|
4250 |
+
"epoch": 1002.41,
|
4251 |
+
"learning_rate": 6.121025641025642e-05,
|
4252 |
+
"loss": 0.0476,
|
4253 |
+
"step": 17050
|
4254 |
+
},
|
4255 |
+
{
|
4256 |
+
"epoch": 1003.88,
|
4257 |
+
"learning_rate": 6.069743589743591e-05,
|
4258 |
+
"loss": 0.0482,
|
4259 |
+
"step": 17075
|
4260 |
+
},
|
4261 |
+
{
|
4262 |
+
"epoch": 1005.35,
|
4263 |
+
"learning_rate": 6.018461538461538e-05,
|
4264 |
+
"loss": 0.0471,
|
4265 |
+
"step": 17100
|
4266 |
+
},
|
4267 |
+
{
|
4268 |
+
"epoch": 1006.82,
|
4269 |
+
"learning_rate": 5.9671794871794875e-05,
|
4270 |
+
"loss": 0.0461,
|
4271 |
+
"step": 17125
|
4272 |
+
},
|
4273 |
+
{
|
4274 |
+
"epoch": 1008.29,
|
4275 |
+
"learning_rate": 5.915897435897436e-05,
|
4276 |
+
"loss": 0.046,
|
4277 |
+
"step": 17150
|
4278 |
+
},
|
4279 |
+
{
|
4280 |
+
"epoch": 1009.76,
|
4281 |
+
"learning_rate": 5.864615384615385e-05,
|
4282 |
+
"loss": 0.0466,
|
4283 |
+
"step": 17175
|
4284 |
+
},
|
4285 |
+
{
|
4286 |
+
"epoch": 1011.24,
|
4287 |
+
"learning_rate": 5.813333333333334e-05,
|
4288 |
+
"loss": 0.0462,
|
4289 |
+
"step": 17200
|
4290 |
+
},
|
4291 |
+
{
|
4292 |
+
"epoch": 1012.71,
|
4293 |
+
"learning_rate": 5.762051282051283e-05,
|
4294 |
+
"loss": 0.0468,
|
4295 |
+
"step": 17225
|
4296 |
+
},
|
4297 |
+
{
|
4298 |
+
"epoch": 1014.18,
|
4299 |
+
"learning_rate": 5.710769230769231e-05,
|
4300 |
+
"loss": 0.0463,
|
4301 |
+
"step": 17250
|
4302 |
+
},
|
4303 |
+
{
|
4304 |
+
"epoch": 1015.65,
|
4305 |
+
"learning_rate": 5.6594871794871794e-05,
|
4306 |
+
"loss": 0.0463,
|
4307 |
+
"step": 17275
|
4308 |
+
},
|
4309 |
+
{
|
4310 |
+
"epoch": 1017.12,
|
4311 |
+
"learning_rate": 5.608205128205129e-05,
|
4312 |
+
"loss": 0.0451,
|
4313 |
+
"step": 17300
|
4314 |
+
},
|
4315 |
+
{
|
4316 |
+
"epoch": 1018.59,
|
4317 |
+
"learning_rate": 5.5569230769230774e-05,
|
4318 |
+
"loss": 0.0465,
|
4319 |
+
"step": 17325
|
4320 |
+
},
|
4321 |
+
{
|
4322 |
+
"epoch": 1020.06,
|
4323 |
+
"learning_rate": 5.505641025641026e-05,
|
4324 |
+
"loss": 0.0473,
|
4325 |
+
"step": 17350
|
4326 |
+
},
|
4327 |
+
{
|
4328 |
+
"epoch": 1021.53,
|
4329 |
+
"learning_rate": 5.4543589743589754e-05,
|
4330 |
+
"loss": 0.0456,
|
4331 |
+
"step": 17375
|
4332 |
+
},
|
4333 |
+
{
|
4334 |
+
"epoch": 1023.0,
|
4335 |
+
"learning_rate": 5.403076923076923e-05,
|
4336 |
+
"loss": 0.0466,
|
4337 |
+
"step": 17400
|
4338 |
+
},
|
4339 |
+
{
|
4340 |
+
"epoch": 1024.47,
|
4341 |
+
"learning_rate": 5.351794871794872e-05,
|
4342 |
+
"loss": 0.046,
|
4343 |
+
"step": 17425
|
4344 |
+
},
|
4345 |
+
{
|
4346 |
+
"epoch": 1025.94,
|
4347 |
+
"learning_rate": 5.300512820512821e-05,
|
4348 |
+
"loss": 0.0475,
|
4349 |
+
"step": 17450
|
4350 |
+
},
|
4351 |
+
{
|
4352 |
+
"epoch": 1027.41,
|
4353 |
+
"learning_rate": 5.249230769230769e-05,
|
4354 |
+
"loss": 0.0461,
|
4355 |
+
"step": 17475
|
4356 |
+
},
|
4357 |
+
{
|
4358 |
+
"epoch": 1028.88,
|
4359 |
+
"learning_rate": 5.1979487179487187e-05,
|
4360 |
+
"loss": 0.0467,
|
4361 |
+
"step": 17500
|
4362 |
+
},
|
4363 |
+
{
|
4364 |
+
"epoch": 1030.35,
|
4365 |
+
"learning_rate": 5.146666666666667e-05,
|
4366 |
+
"loss": 0.0457,
|
4367 |
+
"step": 17525
|
4368 |
+
},
|
4369 |
+
{
|
4370 |
+
"epoch": 1031.82,
|
4371 |
+
"learning_rate": 5.095384615384615e-05,
|
4372 |
+
"loss": 0.0454,
|
4373 |
+
"step": 17550
|
4374 |
+
},
|
4375 |
+
{
|
4376 |
+
"epoch": 1033.29,
|
4377 |
+
"learning_rate": 5.044102564102564e-05,
|
4378 |
+
"loss": 0.0458,
|
4379 |
+
"step": 17575
|
4380 |
+
},
|
4381 |
+
{
|
4382 |
+
"epoch": 1034.76,
|
4383 |
+
"learning_rate": 4.992820512820513e-05,
|
4384 |
+
"loss": 0.0445,
|
4385 |
+
"step": 17600
|
4386 |
+
},
|
4387 |
+
{
|
4388 |
+
"epoch": 1036.24,
|
4389 |
+
"learning_rate": 4.941538461538462e-05,
|
4390 |
+
"loss": 0.0456,
|
4391 |
+
"step": 17625
|
4392 |
+
},
|
4393 |
+
{
|
4394 |
+
"epoch": 1037.71,
|
4395 |
+
"learning_rate": 4.8902564102564106e-05,
|
4396 |
+
"loss": 0.0442,
|
4397 |
+
"step": 17650
|
4398 |
+
},
|
4399 |
+
{
|
4400 |
+
"epoch": 1039.18,
|
4401 |
+
"learning_rate": 4.838974358974359e-05,
|
4402 |
+
"loss": 0.0438,
|
4403 |
+
"step": 17675
|
4404 |
+
},
|
4405 |
+
{
|
4406 |
+
"epoch": 1040.65,
|
4407 |
+
"learning_rate": 4.787692307692308e-05,
|
4408 |
+
"loss": 0.0443,
|
4409 |
+
"step": 17700
|
4410 |
+
},
|
4411 |
+
{
|
4412 |
+
"epoch": 1042.12,
|
4413 |
+
"learning_rate": 4.7364102564102565e-05,
|
4414 |
+
"loss": 0.0439,
|
4415 |
+
"step": 17725
|
4416 |
+
},
|
4417 |
+
{
|
4418 |
+
"epoch": 1043.59,
|
4419 |
+
"learning_rate": 4.685128205128205e-05,
|
4420 |
+
"loss": 0.0428,
|
4421 |
+
"step": 17750
|
4422 |
+
},
|
4423 |
+
{
|
4424 |
+
"epoch": 1045.06,
|
4425 |
+
"learning_rate": 4.633846153846154e-05,
|
4426 |
+
"loss": 0.0427,
|
4427 |
+
"step": 17775
|
4428 |
+
},
|
4429 |
+
{
|
4430 |
+
"epoch": 1046.53,
|
4431 |
+
"learning_rate": 4.5825641025641025e-05,
|
4432 |
+
"loss": 0.0418,
|
4433 |
+
"step": 17800
|
4434 |
+
},
|
4435 |
+
{
|
4436 |
+
"epoch": 1048.0,
|
4437 |
+
"learning_rate": 4.531282051282051e-05,
|
4438 |
+
"loss": 0.0416,
|
4439 |
+
"step": 17825
|
4440 |
+
},
|
4441 |
+
{
|
4442 |
+
"epoch": 1049.47,
|
4443 |
+
"learning_rate": 4.4800000000000005e-05,
|
4444 |
+
"loss": 0.0417,
|
4445 |
+
"step": 17850
|
4446 |
+
},
|
4447 |
+
{
|
4448 |
+
"epoch": 1050.94,
|
4449 |
+
"learning_rate": 4.428717948717949e-05,
|
4450 |
+
"loss": 0.0418,
|
4451 |
+
"step": 17875
|
4452 |
+
},
|
4453 |
+
{
|
4454 |
+
"epoch": 1052.41,
|
4455 |
+
"learning_rate": 4.377435897435898e-05,
|
4456 |
+
"loss": 0.0408,
|
4457 |
+
"step": 17900
|
4458 |
+
},
|
4459 |
+
{
|
4460 |
+
"epoch": 1053.88,
|
4461 |
+
"learning_rate": 4.3261538461538464e-05,
|
4462 |
+
"loss": 0.0412,
|
4463 |
+
"step": 17925
|
4464 |
+
},
|
4465 |
+
{
|
4466 |
+
"epoch": 1055.35,
|
4467 |
+
"learning_rate": 4.274871794871795e-05,
|
4468 |
+
"loss": 0.0407,
|
4469 |
+
"step": 17950
|
4470 |
+
},
|
4471 |
+
{
|
4472 |
+
"epoch": 1056.82,
|
4473 |
+
"learning_rate": 4.223589743589744e-05,
|
4474 |
+
"loss": 0.0408,
|
4475 |
+
"step": 17975
|
4476 |
+
},
|
4477 |
+
{
|
4478 |
+
"epoch": 1058.29,
|
4479 |
+
"learning_rate": 4.1723076923076924e-05,
|
4480 |
+
"loss": 0.0405,
|
4481 |
+
"step": 18000
|
4482 |
+
},
|
4483 |
+
{
|
4484 |
+
"epoch": 1058.29,
|
4485 |
+
"eval_loss": 5.7265625,
|
4486 |
+
"eval_runtime": 164.1653,
|
4487 |
+
"eval_samples_per_second": 1.657,
|
4488 |
+
"eval_steps_per_second": 0.104,
|
4489 |
+
"eval_wer": 119.38150074294205,
|
4490 |
+
"step": 18000
|
4491 |
+
}
|
4492 |
+
],
|
4493 |
+
"max_steps": 20000,
|
4494 |
+
"num_train_epochs": 1177,
|
4495 |
+
"total_flos": 5.559796194543938e+20,
|
4496 |
+
"trial_name": null,
|
4497 |
+
"trial_params": null
|
4498 |
+
}
|
checkpoint-18000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6e3ac4aeab20cf895e188b7a0ae60077219ad0067d587dfa1da35e123e14fa0
|
3 |
+
size 4795
|
checkpoint-18000/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
checkpoint-19000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilios/whisper-medium-el-n2",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-19000/global_step19000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1f2be49b925a3d3428deee50bbd236f1d87683eaae35ea61d83d0224b3efd8b
|
3 |
+
size 1527967899
|
checkpoint-19000/global_step19000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fef809917e6d1d45bf95028fa0c8ceaa29a86ad364079f9addbf82b613073dce
|
3 |
+
size 9166378846
|
checkpoint-19000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step19000
|
checkpoint-19000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-19000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3587abd7721170295163f03d9eef91f3c21b17801e7b32024f49b33cbda1966a
|
3 |
+
size 1527847357
|
checkpoint-19000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0bd9c357a54e16eb97a9c6322c553eeab7612d1e7683e1e97d776bf49546c54
|
3 |
+
size 14575
|
checkpoint-19000/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-19000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4970c744c02fa43cf558652daa2e94e99eacce59b5a2466f72e429e0ad7414e6
|
3 |
+
size 4795
|