emilios commited on
Commit
0c6810f
1 Parent(s): 2976e64

Training in progress, step 8000

Browse files
checkpoint-8000/config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "emilios/whisper-medium-el-n2",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "architectures": [
6
+ "WhisperForConditionalGeneration"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "begin_suppress_tokens": [
10
+ 220,
11
+ 50257
12
+ ],
13
+ "bos_token_id": 50257,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 24,
19
+ "decoder_start_token_id": 50258,
20
+ "dropout": 0.1,
21
+ "encoder_attention_heads": 16,
22
+ "encoder_ffn_dim": 4096,
23
+ "encoder_layerdrop": 0.0,
24
+ "encoder_layers": 24,
25
+ "eos_token_id": 50257,
26
+ "forced_decoder_ids": null,
27
+ "init_std": 0.02,
28
+ "is_encoder_decoder": true,
29
+ "max_length": 448,
30
+ "max_source_positions": 1500,
31
+ "max_target_positions": 448,
32
+ "model_type": "whisper",
33
+ "num_hidden_layers": 24,
34
+ "num_mel_bins": 80,
35
+ "pad_token_id": 50257,
36
+ "scale_embedding": false,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.26.0.dev0",
39
+ "use_cache": false,
40
+ "vocab_size": 51865
41
+ }
checkpoint-8000/global_step8000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ee1bb88de1fcdb956b0991f37770c6cb0d0815e17f282fb3c027d24f6e83c9
3
+ size 1527967899
checkpoint-8000/global_step8000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24e3de5842b9966a86879441bf950784e7f57eab3b6e77b493b3ec6f5a5da7ee
3
+ size 9166378846
checkpoint-8000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step8000
checkpoint-8000/preprocessor_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-8000/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292ed5692b25c5ef882949ab1088ccf2a62e2935100cd3609d1745d6a0afdc10
3
+ size 1527847357
checkpoint-8000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe3e21d07855346d756206e2eaf0dad10616d6ffdbc37c3cc6df32741adb354
3
+ size 14575
checkpoint-8000/trainer_state.json ADDED
@@ -0,0 +1,2008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 9.899702823179792,
3
+ "best_model_checkpoint": "./checkpoint-8000",
4
+ "epoch": 469.94117647058823,
5
+ "global_step": 8000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.47,
12
+ "learning_rate": 1.5136083400296205e-06,
13
+ "loss": 0.0024,
14
+ "step": 25
15
+ },
16
+ {
17
+ "epoch": 2.94,
18
+ "learning_rate": 1.8687587131475301e-06,
19
+ "loss": 0.0024,
20
+ "step": 50
21
+ },
22
+ {
23
+ "epoch": 4.41,
24
+ "learning_rate": 2.0711488350670174e-06,
25
+ "loss": 0.0023,
26
+ "step": 75
27
+ },
28
+ {
29
+ "epoch": 5.88,
30
+ "learning_rate": 2.213317753617305e-06,
31
+ "loss": 0.0023,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 7.35,
36
+ "learning_rate": 2.3230029693718747e-06,
37
+ "loss": 0.002,
38
+ "step": 125
39
+ },
40
+ {
41
+ "epoch": 8.82,
42
+ "learning_rate": 2.412322158351148e-06,
43
+ "loss": 0.002,
44
+ "step": 150
45
+ },
46
+ {
47
+ "epoch": 10.29,
48
+ "learning_rate": 2.4876668872198717e-06,
49
+ "loss": 0.0022,
50
+ "step": 175
51
+ },
52
+ {
53
+ "epoch": 11.76,
54
+ "learning_rate": 2.552824062407326e-06,
55
+ "loss": 0.0021,
56
+ "step": 200
57
+ },
58
+ {
59
+ "epoch": 13.24,
60
+ "learning_rate": 2.610223373296667e-06,
61
+ "loss": 0.0034,
62
+ "step": 225
63
+ },
64
+ {
65
+ "epoch": 14.71,
66
+ "learning_rate": 2.661517182828361e-06,
67
+ "loss": 0.0019,
68
+ "step": 250
69
+ },
70
+ {
71
+ "epoch": 16.18,
72
+ "learning_rate": 2.7078803874740543e-06,
73
+ "loss": 0.0018,
74
+ "step": 275
75
+ },
76
+ {
77
+ "epoch": 17.65,
78
+ "learning_rate": 2.750178319990197e-06,
79
+ "loss": 0.0023,
80
+ "step": 300
81
+ },
82
+ {
83
+ "epoch": 19.12,
84
+ "learning_rate": 2.7890667754365044e-06,
85
+ "loss": 0.0019,
86
+ "step": 325
87
+ },
88
+ {
89
+ "epoch": 20.59,
90
+ "learning_rate": 2.8250546392106077e-06,
91
+ "loss": 0.0021,
92
+ "step": 350
93
+ },
94
+ {
95
+ "epoch": 22.06,
96
+ "learning_rate": 2.8585447348549113e-06,
97
+ "loss": 0.0023,
98
+ "step": 375
99
+ },
100
+ {
101
+ "epoch": 23.53,
102
+ "learning_rate": 2.889861392935294e-06,
103
+ "loss": 0.0021,
104
+ "step": 400
105
+ },
106
+ {
107
+ "epoch": 25.0,
108
+ "learning_rate": 2.9192696063561725e-06,
109
+ "loss": 0.0016,
110
+ "step": 425
111
+ },
112
+ {
113
+ "epoch": 26.47,
114
+ "learning_rate": 2.946988676871634e-06,
115
+ "loss": 0.0018,
116
+ "step": 450
117
+ },
118
+ {
119
+ "epoch": 27.94,
120
+ "learning_rate": 2.973202150939645e-06,
121
+ "loss": 0.0022,
122
+ "step": 475
123
+ },
124
+ {
125
+ "epoch": 29.41,
126
+ "learning_rate": 2.998065193492142e-06,
127
+ "loss": 0.0018,
128
+ "step": 500
129
+ },
130
+ {
131
+ "epoch": 30.88,
132
+ "learning_rate": 2.9811428571428573e-06,
133
+ "loss": 0.0018,
134
+ "step": 525
135
+ },
136
+ {
137
+ "epoch": 32.35,
138
+ "learning_rate": 2.959714285714286e-06,
139
+ "loss": 0.0021,
140
+ "step": 550
141
+ },
142
+ {
143
+ "epoch": 33.82,
144
+ "learning_rate": 2.9382857142857143e-06,
145
+ "loss": 0.0017,
146
+ "step": 575
147
+ },
148
+ {
149
+ "epoch": 35.29,
150
+ "learning_rate": 2.916857142857143e-06,
151
+ "loss": 0.0018,
152
+ "step": 600
153
+ },
154
+ {
155
+ "epoch": 36.76,
156
+ "learning_rate": 2.895428571428572e-06,
157
+ "loss": 0.0016,
158
+ "step": 625
159
+ },
160
+ {
161
+ "epoch": 38.24,
162
+ "learning_rate": 2.874e-06,
163
+ "loss": 0.0017,
164
+ "step": 650
165
+ },
166
+ {
167
+ "epoch": 39.71,
168
+ "learning_rate": 2.8525714285714285e-06,
169
+ "loss": 0.0016,
170
+ "step": 675
171
+ },
172
+ {
173
+ "epoch": 41.18,
174
+ "learning_rate": 2.8311428571428574e-06,
175
+ "loss": 0.0013,
176
+ "step": 700
177
+ },
178
+ {
179
+ "epoch": 42.65,
180
+ "learning_rate": 2.809714285714286e-06,
181
+ "loss": 0.0014,
182
+ "step": 725
183
+ },
184
+ {
185
+ "epoch": 44.12,
186
+ "learning_rate": 2.788285714285714e-06,
187
+ "loss": 0.0012,
188
+ "step": 750
189
+ },
190
+ {
191
+ "epoch": 45.59,
192
+ "learning_rate": 2.766857142857143e-06,
193
+ "loss": 0.0014,
194
+ "step": 775
195
+ },
196
+ {
197
+ "epoch": 47.06,
198
+ "learning_rate": 2.7454285714285716e-06,
199
+ "loss": 0.0014,
200
+ "step": 800
201
+ },
202
+ {
203
+ "epoch": 48.53,
204
+ "learning_rate": 2.724e-06,
205
+ "loss": 0.0013,
206
+ "step": 825
207
+ },
208
+ {
209
+ "epoch": 50.0,
210
+ "learning_rate": 2.7025714285714286e-06,
211
+ "loss": 0.0011,
212
+ "step": 850
213
+ },
214
+ {
215
+ "epoch": 51.47,
216
+ "learning_rate": 2.681142857142857e-06,
217
+ "loss": 0.0013,
218
+ "step": 875
219
+ },
220
+ {
221
+ "epoch": 52.94,
222
+ "learning_rate": 2.6597142857142857e-06,
223
+ "loss": 0.0014,
224
+ "step": 900
225
+ },
226
+ {
227
+ "epoch": 54.41,
228
+ "learning_rate": 2.6382857142857142e-06,
229
+ "loss": 0.0011,
230
+ "step": 925
231
+ },
232
+ {
233
+ "epoch": 55.88,
234
+ "learning_rate": 2.616857142857143e-06,
235
+ "loss": 0.0021,
236
+ "step": 950
237
+ },
238
+ {
239
+ "epoch": 57.35,
240
+ "learning_rate": 2.5954285714285713e-06,
241
+ "loss": 0.0014,
242
+ "step": 975
243
+ },
244
+ {
245
+ "epoch": 58.82,
246
+ "learning_rate": 2.574e-06,
247
+ "loss": 0.0014,
248
+ "step": 1000
249
+ },
250
+ {
251
+ "epoch": 58.82,
252
+ "eval_loss": 0.4951171875,
253
+ "eval_runtime": 168.7172,
254
+ "eval_samples_per_second": 1.612,
255
+ "eval_steps_per_second": 0.101,
256
+ "eval_wer": 10.36404160475483,
257
+ "step": 1000
258
+ },
259
+ {
260
+ "epoch": 60.29,
261
+ "learning_rate": 2.5542857142857143e-06,
262
+ "loss": 0.0013,
263
+ "step": 1025
264
+ },
265
+ {
266
+ "epoch": 61.76,
267
+ "learning_rate": 2.532857142857143e-06,
268
+ "loss": 0.0009,
269
+ "step": 1050
270
+ },
271
+ {
272
+ "epoch": 63.24,
273
+ "learning_rate": 2.5114285714285718e-06,
274
+ "loss": 0.0012,
275
+ "step": 1075
276
+ },
277
+ {
278
+ "epoch": 64.71,
279
+ "learning_rate": 2.49e-06,
280
+ "loss": 0.0009,
281
+ "step": 1100
282
+ },
283
+ {
284
+ "epoch": 66.18,
285
+ "learning_rate": 2.4685714285714284e-06,
286
+ "loss": 0.0014,
287
+ "step": 1125
288
+ },
289
+ {
290
+ "epoch": 67.65,
291
+ "learning_rate": 2.4471428571428574e-06,
292
+ "loss": 0.0012,
293
+ "step": 1150
294
+ },
295
+ {
296
+ "epoch": 69.12,
297
+ "learning_rate": 2.425714285714286e-06,
298
+ "loss": 0.0009,
299
+ "step": 1175
300
+ },
301
+ {
302
+ "epoch": 70.59,
303
+ "learning_rate": 2.404285714285714e-06,
304
+ "loss": 0.0008,
305
+ "step": 1200
306
+ },
307
+ {
308
+ "epoch": 72.06,
309
+ "learning_rate": 2.382857142857143e-06,
310
+ "loss": 0.0011,
311
+ "step": 1225
312
+ },
313
+ {
314
+ "epoch": 73.53,
315
+ "learning_rate": 2.3614285714285715e-06,
316
+ "loss": 0.0015,
317
+ "step": 1250
318
+ },
319
+ {
320
+ "epoch": 75.0,
321
+ "learning_rate": 2.34e-06,
322
+ "loss": 0.0008,
323
+ "step": 1275
324
+ },
325
+ {
326
+ "epoch": 76.47,
327
+ "learning_rate": 2.3185714285714286e-06,
328
+ "loss": 0.001,
329
+ "step": 1300
330
+ },
331
+ {
332
+ "epoch": 77.94,
333
+ "learning_rate": 2.297142857142857e-06,
334
+ "loss": 0.0009,
335
+ "step": 1325
336
+ },
337
+ {
338
+ "epoch": 79.41,
339
+ "learning_rate": 2.2757142857142856e-06,
340
+ "loss": 0.0009,
341
+ "step": 1350
342
+ },
343
+ {
344
+ "epoch": 80.88,
345
+ "learning_rate": 2.2542857142857146e-06,
346
+ "loss": 0.0011,
347
+ "step": 1375
348
+ },
349
+ {
350
+ "epoch": 82.35,
351
+ "learning_rate": 2.232857142857143e-06,
352
+ "loss": 0.0007,
353
+ "step": 1400
354
+ },
355
+ {
356
+ "epoch": 83.82,
357
+ "learning_rate": 2.2114285714285712e-06,
358
+ "loss": 0.001,
359
+ "step": 1425
360
+ },
361
+ {
362
+ "epoch": 85.29,
363
+ "learning_rate": 2.19e-06,
364
+ "loss": 0.001,
365
+ "step": 1450
366
+ },
367
+ {
368
+ "epoch": 86.76,
369
+ "learning_rate": 2.1685714285714287e-06,
370
+ "loss": 0.0008,
371
+ "step": 1475
372
+ },
373
+ {
374
+ "epoch": 88.24,
375
+ "learning_rate": 2.1471428571428573e-06,
376
+ "loss": 0.001,
377
+ "step": 1500
378
+ },
379
+ {
380
+ "epoch": 89.71,
381
+ "learning_rate": 2.125714285714286e-06,
382
+ "loss": 0.0008,
383
+ "step": 1525
384
+ },
385
+ {
386
+ "epoch": 91.18,
387
+ "learning_rate": 2.1042857142857143e-06,
388
+ "loss": 0.0008,
389
+ "step": 1550
390
+ },
391
+ {
392
+ "epoch": 92.65,
393
+ "learning_rate": 2.082857142857143e-06,
394
+ "loss": 0.0006,
395
+ "step": 1575
396
+ },
397
+ {
398
+ "epoch": 94.12,
399
+ "learning_rate": 2.0614285714285714e-06,
400
+ "loss": 0.0008,
401
+ "step": 1600
402
+ },
403
+ {
404
+ "epoch": 95.59,
405
+ "learning_rate": 2.0400000000000004e-06,
406
+ "loss": 0.0009,
407
+ "step": 1625
408
+ },
409
+ {
410
+ "epoch": 97.06,
411
+ "learning_rate": 2.0185714285714285e-06,
412
+ "loss": 0.0009,
413
+ "step": 1650
414
+ },
415
+ {
416
+ "epoch": 98.53,
417
+ "learning_rate": 1.997142857142857e-06,
418
+ "loss": 0.0008,
419
+ "step": 1675
420
+ },
421
+ {
422
+ "epoch": 100.0,
423
+ "learning_rate": 1.975714285714286e-06,
424
+ "loss": 0.0008,
425
+ "step": 1700
426
+ },
427
+ {
428
+ "epoch": 101.47,
429
+ "learning_rate": 1.9542857142857145e-06,
430
+ "loss": 0.0007,
431
+ "step": 1725
432
+ },
433
+ {
434
+ "epoch": 102.94,
435
+ "learning_rate": 1.9328571428571426e-06,
436
+ "loss": 0.0005,
437
+ "step": 1750
438
+ },
439
+ {
440
+ "epoch": 104.41,
441
+ "learning_rate": 1.9114285714285716e-06,
442
+ "loss": 0.0008,
443
+ "step": 1775
444
+ },
445
+ {
446
+ "epoch": 105.88,
447
+ "learning_rate": 1.8900000000000001e-06,
448
+ "loss": 0.0006,
449
+ "step": 1800
450
+ },
451
+ {
452
+ "epoch": 107.35,
453
+ "learning_rate": 1.8685714285714287e-06,
454
+ "loss": 0.0007,
455
+ "step": 1825
456
+ },
457
+ {
458
+ "epoch": 108.82,
459
+ "learning_rate": 1.8471428571428574e-06,
460
+ "loss": 0.0008,
461
+ "step": 1850
462
+ },
463
+ {
464
+ "epoch": 110.29,
465
+ "learning_rate": 1.8257142857142857e-06,
466
+ "loss": 0.0008,
467
+ "step": 1875
468
+ },
469
+ {
470
+ "epoch": 111.76,
471
+ "learning_rate": 1.8042857142857143e-06,
472
+ "loss": 0.0005,
473
+ "step": 1900
474
+ },
475
+ {
476
+ "epoch": 113.24,
477
+ "learning_rate": 1.782857142857143e-06,
478
+ "loss": 0.0007,
479
+ "step": 1925
480
+ },
481
+ {
482
+ "epoch": 114.71,
483
+ "learning_rate": 1.7614285714285715e-06,
484
+ "loss": 0.0006,
485
+ "step": 1950
486
+ },
487
+ {
488
+ "epoch": 116.18,
489
+ "learning_rate": 1.7399999999999999e-06,
490
+ "loss": 0.0005,
491
+ "step": 1975
492
+ },
493
+ {
494
+ "epoch": 117.65,
495
+ "learning_rate": 1.7185714285714286e-06,
496
+ "loss": 0.0006,
497
+ "step": 2000
498
+ },
499
+ {
500
+ "epoch": 117.65,
501
+ "eval_loss": 0.51806640625,
502
+ "eval_runtime": 168.3992,
503
+ "eval_samples_per_second": 1.615,
504
+ "eval_steps_per_second": 0.101,
505
+ "eval_wer": 10.280460624071322,
506
+ "step": 2000
507
+ },
508
+ {
509
+ "epoch": 118.47,
510
+ "learning_rate": 2.4642352941176473e-06,
511
+ "loss": 0.0007,
512
+ "step": 2025
513
+ },
514
+ {
515
+ "epoch": 119.94,
516
+ "learning_rate": 2.4554117647058827e-06,
517
+ "loss": 0.0006,
518
+ "step": 2050
519
+ },
520
+ {
521
+ "epoch": 121.41,
522
+ "learning_rate": 2.4465882352941176e-06,
523
+ "loss": 0.0003,
524
+ "step": 2075
525
+ },
526
+ {
527
+ "epoch": 122.88,
528
+ "learning_rate": 2.437764705882353e-06,
529
+ "loss": 0.0007,
530
+ "step": 2100
531
+ },
532
+ {
533
+ "epoch": 124.35,
534
+ "learning_rate": 2.4289411764705882e-06,
535
+ "loss": 0.0005,
536
+ "step": 2125
537
+ },
538
+ {
539
+ "epoch": 125.82,
540
+ "learning_rate": 2.4201176470588236e-06,
541
+ "loss": 0.0006,
542
+ "step": 2150
543
+ },
544
+ {
545
+ "epoch": 127.29,
546
+ "learning_rate": 2.411294117647059e-06,
547
+ "loss": 0.0007,
548
+ "step": 2175
549
+ },
550
+ {
551
+ "epoch": 128.76,
552
+ "learning_rate": 2.4024705882352942e-06,
553
+ "loss": 0.0006,
554
+ "step": 2200
555
+ },
556
+ {
557
+ "epoch": 130.24,
558
+ "learning_rate": 2.3936470588235295e-06,
559
+ "loss": 0.0011,
560
+ "step": 2225
561
+ },
562
+ {
563
+ "epoch": 131.71,
564
+ "learning_rate": 2.384823529411765e-06,
565
+ "loss": 0.0007,
566
+ "step": 2250
567
+ },
568
+ {
569
+ "epoch": 133.18,
570
+ "learning_rate": 2.376e-06,
571
+ "loss": 0.0006,
572
+ "step": 2275
573
+ },
574
+ {
575
+ "epoch": 134.65,
576
+ "learning_rate": 2.3671764705882355e-06,
577
+ "loss": 0.0005,
578
+ "step": 2300
579
+ },
580
+ {
581
+ "epoch": 136.12,
582
+ "learning_rate": 2.3583529411764704e-06,
583
+ "loss": 0.0007,
584
+ "step": 2325
585
+ },
586
+ {
587
+ "epoch": 137.59,
588
+ "learning_rate": 2.3495294117647058e-06,
589
+ "loss": 0.0008,
590
+ "step": 2350
591
+ },
592
+ {
593
+ "epoch": 139.06,
594
+ "learning_rate": 2.340705882352941e-06,
595
+ "loss": 0.0036,
596
+ "step": 2375
597
+ },
598
+ {
599
+ "epoch": 140.53,
600
+ "learning_rate": 2.3318823529411764e-06,
601
+ "loss": 0.0006,
602
+ "step": 2400
603
+ },
604
+ {
605
+ "epoch": 142.0,
606
+ "learning_rate": 2.3230588235294118e-06,
607
+ "loss": 0.0006,
608
+ "step": 2425
609
+ },
610
+ {
611
+ "epoch": 143.47,
612
+ "learning_rate": 2.314235294117647e-06,
613
+ "loss": 0.0004,
614
+ "step": 2450
615
+ },
616
+ {
617
+ "epoch": 144.94,
618
+ "learning_rate": 2.3054117647058824e-06,
619
+ "loss": 0.0018,
620
+ "step": 2475
621
+ },
622
+ {
623
+ "epoch": 146.41,
624
+ "learning_rate": 2.2965882352941177e-06,
625
+ "loss": 0.0007,
626
+ "step": 2500
627
+ },
628
+ {
629
+ "epoch": 147.88,
630
+ "learning_rate": 2.287764705882353e-06,
631
+ "loss": 0.0005,
632
+ "step": 2525
633
+ },
634
+ {
635
+ "epoch": 149.35,
636
+ "learning_rate": 2.2789411764705884e-06,
637
+ "loss": 0.0006,
638
+ "step": 2550
639
+ },
640
+ {
641
+ "epoch": 150.82,
642
+ "learning_rate": 2.2701176470588237e-06,
643
+ "loss": 0.0007,
644
+ "step": 2575
645
+ },
646
+ {
647
+ "epoch": 152.29,
648
+ "learning_rate": 2.2612941176470586e-06,
649
+ "loss": 0.0007,
650
+ "step": 2600
651
+ },
652
+ {
653
+ "epoch": 153.76,
654
+ "learning_rate": 2.252470588235294e-06,
655
+ "loss": 0.0008,
656
+ "step": 2625
657
+ },
658
+ {
659
+ "epoch": 155.24,
660
+ "learning_rate": 2.2436470588235293e-06,
661
+ "loss": 0.0005,
662
+ "step": 2650
663
+ },
664
+ {
665
+ "epoch": 156.71,
666
+ "learning_rate": 2.2348235294117646e-06,
667
+ "loss": 0.0005,
668
+ "step": 2675
669
+ },
670
+ {
671
+ "epoch": 158.18,
672
+ "learning_rate": 2.226e-06,
673
+ "loss": 0.0004,
674
+ "step": 2700
675
+ },
676
+ {
677
+ "epoch": 159.65,
678
+ "learning_rate": 2.2171764705882353e-06,
679
+ "loss": 0.0008,
680
+ "step": 2725
681
+ },
682
+ {
683
+ "epoch": 161.12,
684
+ "learning_rate": 2.2083529411764706e-06,
685
+ "loss": 0.0005,
686
+ "step": 2750
687
+ },
688
+ {
689
+ "epoch": 162.59,
690
+ "learning_rate": 2.199529411764706e-06,
691
+ "loss": 0.0005,
692
+ "step": 2775
693
+ },
694
+ {
695
+ "epoch": 164.06,
696
+ "learning_rate": 2.1907058823529413e-06,
697
+ "loss": 0.0005,
698
+ "step": 2800
699
+ },
700
+ {
701
+ "epoch": 165.53,
702
+ "learning_rate": 2.1818823529411766e-06,
703
+ "loss": 0.0006,
704
+ "step": 2825
705
+ },
706
+ {
707
+ "epoch": 167.0,
708
+ "learning_rate": 2.1730588235294115e-06,
709
+ "loss": 0.0006,
710
+ "step": 2850
711
+ },
712
+ {
713
+ "epoch": 168.47,
714
+ "learning_rate": 2.164235294117647e-06,
715
+ "loss": 0.0006,
716
+ "step": 2875
717
+ },
718
+ {
719
+ "epoch": 169.94,
720
+ "learning_rate": 2.155411764705882e-06,
721
+ "loss": 0.0008,
722
+ "step": 2900
723
+ },
724
+ {
725
+ "epoch": 171.41,
726
+ "learning_rate": 2.1465882352941175e-06,
727
+ "loss": 0.0005,
728
+ "step": 2925
729
+ },
730
+ {
731
+ "epoch": 172.88,
732
+ "learning_rate": 2.137764705882353e-06,
733
+ "loss": 0.0005,
734
+ "step": 2950
735
+ },
736
+ {
737
+ "epoch": 174.35,
738
+ "learning_rate": 2.128941176470588e-06,
739
+ "loss": 0.0004,
740
+ "step": 2975
741
+ },
742
+ {
743
+ "epoch": 175.82,
744
+ "learning_rate": 2.1201176470588235e-06,
745
+ "loss": 0.0007,
746
+ "step": 3000
747
+ },
748
+ {
749
+ "epoch": 175.82,
750
+ "eval_loss": 0.53173828125,
751
+ "eval_runtime": 153.6387,
752
+ "eval_samples_per_second": 1.77,
753
+ "eval_steps_per_second": 0.111,
754
+ "eval_wer": 10.11329866270431,
755
+ "step": 3000
756
+ },
757
+ {
758
+ "epoch": 177.29,
759
+ "learning_rate": 2.112e-06,
760
+ "loss": 0.0005,
761
+ "step": 3025
762
+ },
763
+ {
764
+ "epoch": 178.76,
765
+ "learning_rate": 2.103176470588235e-06,
766
+ "loss": 0.0005,
767
+ "step": 3050
768
+ },
769
+ {
770
+ "epoch": 180.24,
771
+ "learning_rate": 2.0943529411764705e-06,
772
+ "loss": 0.0007,
773
+ "step": 3075
774
+ },
775
+ {
776
+ "epoch": 181.71,
777
+ "learning_rate": 2.085529411764706e-06,
778
+ "loss": 0.0004,
779
+ "step": 3100
780
+ },
781
+ {
782
+ "epoch": 183.18,
783
+ "learning_rate": 2.076705882352941e-06,
784
+ "loss": 0.0004,
785
+ "step": 3125
786
+ },
787
+ {
788
+ "epoch": 184.65,
789
+ "learning_rate": 2.0678823529411765e-06,
790
+ "loss": 0.0005,
791
+ "step": 3150
792
+ },
793
+ {
794
+ "epoch": 186.12,
795
+ "learning_rate": 2.059058823529412e-06,
796
+ "loss": 0.0005,
797
+ "step": 3175
798
+ },
799
+ {
800
+ "epoch": 187.59,
801
+ "learning_rate": 2.050235294117647e-06,
802
+ "loss": 0.0004,
803
+ "step": 3200
804
+ },
805
+ {
806
+ "epoch": 189.06,
807
+ "learning_rate": 2.0414117647058825e-06,
808
+ "loss": 0.0005,
809
+ "step": 3225
810
+ },
811
+ {
812
+ "epoch": 190.53,
813
+ "learning_rate": 2.032588235294118e-06,
814
+ "loss": 0.0003,
815
+ "step": 3250
816
+ },
817
+ {
818
+ "epoch": 192.0,
819
+ "learning_rate": 2.0237647058823527e-06,
820
+ "loss": 0.0006,
821
+ "step": 3275
822
+ },
823
+ {
824
+ "epoch": 193.47,
825
+ "learning_rate": 2.014941176470588e-06,
826
+ "loss": 0.0005,
827
+ "step": 3300
828
+ },
829
+ {
830
+ "epoch": 194.94,
831
+ "learning_rate": 2.0061176470588234e-06,
832
+ "loss": 0.0004,
833
+ "step": 3325
834
+ },
835
+ {
836
+ "epoch": 196.41,
837
+ "learning_rate": 1.9972941176470587e-06,
838
+ "loss": 0.0004,
839
+ "step": 3350
840
+ },
841
+ {
842
+ "epoch": 197.88,
843
+ "learning_rate": 1.988470588235294e-06,
844
+ "loss": 0.0004,
845
+ "step": 3375
846
+ },
847
+ {
848
+ "epoch": 199.35,
849
+ "learning_rate": 1.9796470588235294e-06,
850
+ "loss": 0.0006,
851
+ "step": 3400
852
+ },
853
+ {
854
+ "epoch": 200.82,
855
+ "learning_rate": 1.9708235294117647e-06,
856
+ "loss": 0.0005,
857
+ "step": 3425
858
+ },
859
+ {
860
+ "epoch": 202.29,
861
+ "learning_rate": 1.962e-06,
862
+ "loss": 0.0004,
863
+ "step": 3450
864
+ },
865
+ {
866
+ "epoch": 203.76,
867
+ "learning_rate": 1.9531764705882353e-06,
868
+ "loss": 0.0005,
869
+ "step": 3475
870
+ },
871
+ {
872
+ "epoch": 205.24,
873
+ "learning_rate": 1.9443529411764707e-06,
874
+ "loss": 0.0006,
875
+ "step": 3500
876
+ },
877
+ {
878
+ "epoch": 206.71,
879
+ "learning_rate": 1.9355294117647056e-06,
880
+ "loss": 0.0003,
881
+ "step": 3525
882
+ },
883
+ {
884
+ "epoch": 208.18,
885
+ "learning_rate": 1.926705882352941e-06,
886
+ "loss": 0.0004,
887
+ "step": 3550
888
+ },
889
+ {
890
+ "epoch": 209.65,
891
+ "learning_rate": 1.9178823529411762e-06,
892
+ "loss": 0.0005,
893
+ "step": 3575
894
+ },
895
+ {
896
+ "epoch": 211.12,
897
+ "learning_rate": 1.9090588235294116e-06,
898
+ "loss": 0.0004,
899
+ "step": 3600
900
+ },
901
+ {
902
+ "epoch": 212.59,
903
+ "learning_rate": 1.9002352941176471e-06,
904
+ "loss": 0.0004,
905
+ "step": 3625
906
+ },
907
+ {
908
+ "epoch": 214.06,
909
+ "learning_rate": 1.8914117647058824e-06,
910
+ "loss": 0.0003,
911
+ "step": 3650
912
+ },
913
+ {
914
+ "epoch": 215.53,
915
+ "learning_rate": 1.8825882352941178e-06,
916
+ "loss": 0.0004,
917
+ "step": 3675
918
+ },
919
+ {
920
+ "epoch": 217.0,
921
+ "learning_rate": 1.873764705882353e-06,
922
+ "loss": 0.0005,
923
+ "step": 3700
924
+ },
925
+ {
926
+ "epoch": 218.47,
927
+ "learning_rate": 1.8649411764705884e-06,
928
+ "loss": 0.0004,
929
+ "step": 3725
930
+ },
931
+ {
932
+ "epoch": 219.94,
933
+ "learning_rate": 1.8561176470588238e-06,
934
+ "loss": 0.0005,
935
+ "step": 3750
936
+ },
937
+ {
938
+ "epoch": 221.41,
939
+ "learning_rate": 1.847294117647059e-06,
940
+ "loss": 0.0003,
941
+ "step": 3775
942
+ },
943
+ {
944
+ "epoch": 222.88,
945
+ "learning_rate": 1.838470588235294e-06,
946
+ "loss": 0.0004,
947
+ "step": 3800
948
+ },
949
+ {
950
+ "epoch": 224.35,
951
+ "learning_rate": 1.8296470588235293e-06,
952
+ "loss": 0.0003,
953
+ "step": 3825
954
+ },
955
+ {
956
+ "epoch": 225.82,
957
+ "learning_rate": 1.8208235294117646e-06,
958
+ "loss": 0.0003,
959
+ "step": 3850
960
+ },
961
+ {
962
+ "epoch": 227.29,
963
+ "learning_rate": 1.812e-06,
964
+ "loss": 0.0003,
965
+ "step": 3875
966
+ },
967
+ {
968
+ "epoch": 228.76,
969
+ "learning_rate": 1.8031764705882353e-06,
970
+ "loss": 0.0005,
971
+ "step": 3900
972
+ },
973
+ {
974
+ "epoch": 230.24,
975
+ "learning_rate": 1.7943529411764706e-06,
976
+ "loss": 0.0004,
977
+ "step": 3925
978
+ },
979
+ {
980
+ "epoch": 231.71,
981
+ "learning_rate": 1.785529411764706e-06,
982
+ "loss": 0.0004,
983
+ "step": 3950
984
+ },
985
+ {
986
+ "epoch": 233.18,
987
+ "learning_rate": 1.7767058823529413e-06,
988
+ "loss": 0.0003,
989
+ "step": 3975
990
+ },
991
+ {
992
+ "epoch": 234.65,
993
+ "learning_rate": 1.7678823529411766e-06,
994
+ "loss": 0.0004,
995
+ "step": 4000
996
+ },
997
+ {
998
+ "epoch": 234.65,
999
+ "eval_loss": 0.53955078125,
1000
+ "eval_runtime": 161.7321,
1001
+ "eval_samples_per_second": 1.682,
1002
+ "eval_steps_per_second": 0.105,
1003
+ "eval_wer": 10.12258543833581,
1004
+ "step": 4000
1005
+ },
1006
+ {
1007
+ "epoch": 236.12,
1008
+ "learning_rate": 1.759764705882353e-06,
1009
+ "loss": 0.0003,
1010
+ "step": 4025
1011
+ },
1012
+ {
1013
+ "epoch": 237.59,
1014
+ "learning_rate": 1.7509411764705883e-06,
1015
+ "loss": 0.0003,
1016
+ "step": 4050
1017
+ },
1018
+ {
1019
+ "epoch": 239.06,
1020
+ "learning_rate": 1.7421176470588237e-06,
1021
+ "loss": 0.0002,
1022
+ "step": 4075
1023
+ },
1024
+ {
1025
+ "epoch": 240.53,
1026
+ "learning_rate": 1.733294117647059e-06,
1027
+ "loss": 0.0004,
1028
+ "step": 4100
1029
+ },
1030
+ {
1031
+ "epoch": 242.0,
1032
+ "learning_rate": 1.7244705882352943e-06,
1033
+ "loss": 0.0005,
1034
+ "step": 4125
1035
+ },
1036
+ {
1037
+ "epoch": 243.47,
1038
+ "learning_rate": 1.7156470588235296e-06,
1039
+ "loss": 0.0003,
1040
+ "step": 4150
1041
+ },
1042
+ {
1043
+ "epoch": 244.94,
1044
+ "learning_rate": 1.706823529411765e-06,
1045
+ "loss": 0.0003,
1046
+ "step": 4175
1047
+ },
1048
+ {
1049
+ "epoch": 246.41,
1050
+ "learning_rate": 1.6979999999999999e-06,
1051
+ "loss": 0.0004,
1052
+ "step": 4200
1053
+ },
1054
+ {
1055
+ "epoch": 247.88,
1056
+ "learning_rate": 1.6891764705882352e-06,
1057
+ "loss": 0.0003,
1058
+ "step": 4225
1059
+ },
1060
+ {
1061
+ "epoch": 249.35,
1062
+ "learning_rate": 1.6803529411764705e-06,
1063
+ "loss": 0.0003,
1064
+ "step": 4250
1065
+ },
1066
+ {
1067
+ "epoch": 250.82,
1068
+ "learning_rate": 1.6715294117647059e-06,
1069
+ "loss": 0.0003,
1070
+ "step": 4275
1071
+ },
1072
+ {
1073
+ "epoch": 252.29,
1074
+ "learning_rate": 1.6627058823529412e-06,
1075
+ "loss": 0.0004,
1076
+ "step": 4300
1077
+ },
1078
+ {
1079
+ "epoch": 253.76,
1080
+ "learning_rate": 1.6538823529411765e-06,
1081
+ "loss": 0.0004,
1082
+ "step": 4325
1083
+ },
1084
+ {
1085
+ "epoch": 255.24,
1086
+ "learning_rate": 1.6450588235294119e-06,
1087
+ "loss": 0.0003,
1088
+ "step": 4350
1089
+ },
1090
+ {
1091
+ "epoch": 256.71,
1092
+ "learning_rate": 1.6362352941176472e-06,
1093
+ "loss": 0.0003,
1094
+ "step": 4375
1095
+ },
1096
+ {
1097
+ "epoch": 258.18,
1098
+ "learning_rate": 1.6274117647058825e-06,
1099
+ "loss": 0.0003,
1100
+ "step": 4400
1101
+ },
1102
+ {
1103
+ "epoch": 259.65,
1104
+ "learning_rate": 1.6185882352941178e-06,
1105
+ "loss": 0.0007,
1106
+ "step": 4425
1107
+ },
1108
+ {
1109
+ "epoch": 261.12,
1110
+ "learning_rate": 1.6097647058823532e-06,
1111
+ "loss": 0.0003,
1112
+ "step": 4450
1113
+ },
1114
+ {
1115
+ "epoch": 262.59,
1116
+ "learning_rate": 1.600941176470588e-06,
1117
+ "loss": 0.0004,
1118
+ "step": 4475
1119
+ },
1120
+ {
1121
+ "epoch": 264.06,
1122
+ "learning_rate": 1.5921176470588234e-06,
1123
+ "loss": 0.0003,
1124
+ "step": 4500
1125
+ },
1126
+ {
1127
+ "epoch": 265.53,
1128
+ "learning_rate": 1.5832941176470587e-06,
1129
+ "loss": 0.0004,
1130
+ "step": 4525
1131
+ },
1132
+ {
1133
+ "epoch": 267.0,
1134
+ "learning_rate": 1.574470588235294e-06,
1135
+ "loss": 0.0002,
1136
+ "step": 4550
1137
+ },
1138
+ {
1139
+ "epoch": 268.47,
1140
+ "learning_rate": 1.5656470588235294e-06,
1141
+ "loss": 0.0004,
1142
+ "step": 4575
1143
+ },
1144
+ {
1145
+ "epoch": 269.94,
1146
+ "learning_rate": 1.5568235294117647e-06,
1147
+ "loss": 0.0003,
1148
+ "step": 4600
1149
+ },
1150
+ {
1151
+ "epoch": 271.41,
1152
+ "learning_rate": 1.548e-06,
1153
+ "loss": 0.0002,
1154
+ "step": 4625
1155
+ },
1156
+ {
1157
+ "epoch": 272.88,
1158
+ "learning_rate": 1.5391764705882354e-06,
1159
+ "loss": 0.0002,
1160
+ "step": 4650
1161
+ },
1162
+ {
1163
+ "epoch": 274.35,
1164
+ "learning_rate": 1.5303529411764707e-06,
1165
+ "loss": 0.0003,
1166
+ "step": 4675
1167
+ },
1168
+ {
1169
+ "epoch": 275.82,
1170
+ "learning_rate": 1.521529411764706e-06,
1171
+ "loss": 0.0003,
1172
+ "step": 4700
1173
+ },
1174
+ {
1175
+ "epoch": 277.29,
1176
+ "learning_rate": 1.5127058823529411e-06,
1177
+ "loss": 0.0003,
1178
+ "step": 4725
1179
+ },
1180
+ {
1181
+ "epoch": 278.76,
1182
+ "learning_rate": 1.5038823529411765e-06,
1183
+ "loss": 0.0002,
1184
+ "step": 4750
1185
+ },
1186
+ {
1187
+ "epoch": 280.24,
1188
+ "learning_rate": 1.4950588235294118e-06,
1189
+ "loss": 0.0002,
1190
+ "step": 4775
1191
+ },
1192
+ {
1193
+ "epoch": 281.71,
1194
+ "learning_rate": 1.486235294117647e-06,
1195
+ "loss": 0.0003,
1196
+ "step": 4800
1197
+ },
1198
+ {
1199
+ "epoch": 283.18,
1200
+ "learning_rate": 1.4774117647058823e-06,
1201
+ "loss": 0.0003,
1202
+ "step": 4825
1203
+ },
1204
+ {
1205
+ "epoch": 284.65,
1206
+ "learning_rate": 1.4685882352941176e-06,
1207
+ "loss": 0.0004,
1208
+ "step": 4850
1209
+ },
1210
+ {
1211
+ "epoch": 286.12,
1212
+ "learning_rate": 1.459764705882353e-06,
1213
+ "loss": 0.0002,
1214
+ "step": 4875
1215
+ },
1216
+ {
1217
+ "epoch": 287.59,
1218
+ "learning_rate": 1.4509411764705882e-06,
1219
+ "loss": 0.0002,
1220
+ "step": 4900
1221
+ },
1222
+ {
1223
+ "epoch": 289.06,
1224
+ "learning_rate": 1.4421176470588236e-06,
1225
+ "loss": 0.0012,
1226
+ "step": 4925
1227
+ },
1228
+ {
1229
+ "epoch": 290.53,
1230
+ "learning_rate": 1.433294117647059e-06,
1231
+ "loss": 0.0003,
1232
+ "step": 4950
1233
+ },
1234
+ {
1235
+ "epoch": 292.0,
1236
+ "learning_rate": 1.4244705882352942e-06,
1237
+ "loss": 0.0002,
1238
+ "step": 4975
1239
+ },
1240
+ {
1241
+ "epoch": 293.47,
1242
+ "learning_rate": 1.4156470588235296e-06,
1243
+ "loss": 0.0004,
1244
+ "step": 5000
1245
+ },
1246
+ {
1247
+ "epoch": 293.47,
1248
+ "eval_loss": 0.55322265625,
1249
+ "eval_runtime": 164.7504,
1250
+ "eval_samples_per_second": 1.651,
1251
+ "eval_steps_per_second": 0.103,
1252
+ "eval_wer": 10.104011887072808,
1253
+ "step": 5000
1254
+ },
1255
+ {
1256
+ "epoch": 294.94,
1257
+ "learning_rate": 1.407529411764706e-06,
1258
+ "loss": 0.0002,
1259
+ "step": 5025
1260
+ },
1261
+ {
1262
+ "epoch": 296.41,
1263
+ "learning_rate": 1.3987058823529413e-06,
1264
+ "loss": 0.0004,
1265
+ "step": 5050
1266
+ },
1267
+ {
1268
+ "epoch": 297.88,
1269
+ "learning_rate": 1.3898823529411764e-06,
1270
+ "loss": 0.0003,
1271
+ "step": 5075
1272
+ },
1273
+ {
1274
+ "epoch": 299.35,
1275
+ "learning_rate": 1.3810588235294117e-06,
1276
+ "loss": 0.0003,
1277
+ "step": 5100
1278
+ },
1279
+ {
1280
+ "epoch": 300.82,
1281
+ "learning_rate": 1.372235294117647e-06,
1282
+ "loss": 0.0004,
1283
+ "step": 5125
1284
+ },
1285
+ {
1286
+ "epoch": 302.29,
1287
+ "learning_rate": 1.3634117647058824e-06,
1288
+ "loss": 0.0004,
1289
+ "step": 5150
1290
+ },
1291
+ {
1292
+ "epoch": 303.76,
1293
+ "learning_rate": 1.3545882352941177e-06,
1294
+ "loss": 0.0002,
1295
+ "step": 5175
1296
+ },
1297
+ {
1298
+ "epoch": 305.24,
1299
+ "learning_rate": 1.3457647058823528e-06,
1300
+ "loss": 0.0003,
1301
+ "step": 5200
1302
+ },
1303
+ {
1304
+ "epoch": 306.71,
1305
+ "learning_rate": 1.3369411764705881e-06,
1306
+ "loss": 0.0005,
1307
+ "step": 5225
1308
+ },
1309
+ {
1310
+ "epoch": 308.18,
1311
+ "learning_rate": 1.3281176470588235e-06,
1312
+ "loss": 0.0002,
1313
+ "step": 5250
1314
+ },
1315
+ {
1316
+ "epoch": 309.65,
1317
+ "learning_rate": 1.3192941176470588e-06,
1318
+ "loss": 0.0002,
1319
+ "step": 5275
1320
+ },
1321
+ {
1322
+ "epoch": 311.12,
1323
+ "learning_rate": 1.3104705882352941e-06,
1324
+ "loss": 0.0002,
1325
+ "step": 5300
1326
+ },
1327
+ {
1328
+ "epoch": 312.59,
1329
+ "learning_rate": 1.3016470588235295e-06,
1330
+ "loss": 0.0003,
1331
+ "step": 5325
1332
+ },
1333
+ {
1334
+ "epoch": 314.06,
1335
+ "learning_rate": 1.2928235294117648e-06,
1336
+ "loss": 0.0003,
1337
+ "step": 5350
1338
+ },
1339
+ {
1340
+ "epoch": 315.53,
1341
+ "learning_rate": 1.284e-06,
1342
+ "loss": 0.0003,
1343
+ "step": 5375
1344
+ },
1345
+ {
1346
+ "epoch": 317.0,
1347
+ "learning_rate": 1.2751764705882352e-06,
1348
+ "loss": 0.0003,
1349
+ "step": 5400
1350
+ },
1351
+ {
1352
+ "epoch": 318.47,
1353
+ "learning_rate": 1.2663529411764706e-06,
1354
+ "loss": 0.0003,
1355
+ "step": 5425
1356
+ },
1357
+ {
1358
+ "epoch": 319.94,
1359
+ "learning_rate": 1.2575294117647059e-06,
1360
+ "loss": 0.0002,
1361
+ "step": 5450
1362
+ },
1363
+ {
1364
+ "epoch": 321.41,
1365
+ "learning_rate": 1.2487058823529412e-06,
1366
+ "loss": 0.0002,
1367
+ "step": 5475
1368
+ },
1369
+ {
1370
+ "epoch": 322.88,
1371
+ "learning_rate": 1.2398823529411765e-06,
1372
+ "loss": 0.0002,
1373
+ "step": 5500
1374
+ },
1375
+ {
1376
+ "epoch": 324.35,
1377
+ "learning_rate": 1.2310588235294119e-06,
1378
+ "loss": 0.0001,
1379
+ "step": 5525
1380
+ },
1381
+ {
1382
+ "epoch": 325.82,
1383
+ "learning_rate": 1.2222352941176472e-06,
1384
+ "loss": 0.0002,
1385
+ "step": 5550
1386
+ },
1387
+ {
1388
+ "epoch": 327.29,
1389
+ "learning_rate": 1.2134117647058825e-06,
1390
+ "loss": 0.0002,
1391
+ "step": 5575
1392
+ },
1393
+ {
1394
+ "epoch": 328.76,
1395
+ "learning_rate": 1.2045882352941177e-06,
1396
+ "loss": 0.0003,
1397
+ "step": 5600
1398
+ },
1399
+ {
1400
+ "epoch": 330.24,
1401
+ "learning_rate": 1.195764705882353e-06,
1402
+ "loss": 0.0003,
1403
+ "step": 5625
1404
+ },
1405
+ {
1406
+ "epoch": 331.71,
1407
+ "learning_rate": 1.1869411764705883e-06,
1408
+ "loss": 0.0003,
1409
+ "step": 5650
1410
+ },
1411
+ {
1412
+ "epoch": 333.18,
1413
+ "learning_rate": 1.1781176470588236e-06,
1414
+ "loss": 0.0003,
1415
+ "step": 5675
1416
+ },
1417
+ {
1418
+ "epoch": 334.65,
1419
+ "learning_rate": 1.169294117647059e-06,
1420
+ "loss": 0.0004,
1421
+ "step": 5700
1422
+ },
1423
+ {
1424
+ "epoch": 336.12,
1425
+ "learning_rate": 1.1604705882352943e-06,
1426
+ "loss": 0.0002,
1427
+ "step": 5725
1428
+ },
1429
+ {
1430
+ "epoch": 337.59,
1431
+ "learning_rate": 1.1516470588235294e-06,
1432
+ "loss": 0.0003,
1433
+ "step": 5750
1434
+ },
1435
+ {
1436
+ "epoch": 339.06,
1437
+ "learning_rate": 1.1428235294117647e-06,
1438
+ "loss": 0.0002,
1439
+ "step": 5775
1440
+ },
1441
+ {
1442
+ "epoch": 340.53,
1443
+ "learning_rate": 1.134e-06,
1444
+ "loss": 0.0002,
1445
+ "step": 5800
1446
+ },
1447
+ {
1448
+ "epoch": 342.0,
1449
+ "learning_rate": 1.1251764705882354e-06,
1450
+ "loss": 0.0003,
1451
+ "step": 5825
1452
+ },
1453
+ {
1454
+ "epoch": 343.47,
1455
+ "learning_rate": 1.1163529411764707e-06,
1456
+ "loss": 0.0002,
1457
+ "step": 5850
1458
+ },
1459
+ {
1460
+ "epoch": 344.94,
1461
+ "learning_rate": 1.1075294117647058e-06,
1462
+ "loss": 0.0002,
1463
+ "step": 5875
1464
+ },
1465
+ {
1466
+ "epoch": 346.41,
1467
+ "learning_rate": 1.0987058823529412e-06,
1468
+ "loss": 0.0002,
1469
+ "step": 5900
1470
+ },
1471
+ {
1472
+ "epoch": 347.88,
1473
+ "learning_rate": 1.0898823529411765e-06,
1474
+ "loss": 0.0002,
1475
+ "step": 5925
1476
+ },
1477
+ {
1478
+ "epoch": 349.35,
1479
+ "learning_rate": 1.0810588235294118e-06,
1480
+ "loss": 0.0003,
1481
+ "step": 5950
1482
+ },
1483
+ {
1484
+ "epoch": 350.82,
1485
+ "learning_rate": 1.0722352941176472e-06,
1486
+ "loss": 0.0002,
1487
+ "step": 5975
1488
+ },
1489
+ {
1490
+ "epoch": 352.29,
1491
+ "learning_rate": 1.0634117647058823e-06,
1492
+ "loss": 0.0013,
1493
+ "step": 6000
1494
+ },
1495
+ {
1496
+ "epoch": 352.29,
1497
+ "eval_loss": 0.564453125,
1498
+ "eval_runtime": 167.4651,
1499
+ "eval_samples_per_second": 1.624,
1500
+ "eval_steps_per_second": 0.102,
1501
+ "eval_wer": 10.085438335809807,
1502
+ "step": 6000
1503
+ },
1504
+ {
1505
+ "epoch": 353.76,
1506
+ "learning_rate": 1.0552941176470589e-06,
1507
+ "loss": 0.0002,
1508
+ "step": 6025
1509
+ },
1510
+ {
1511
+ "epoch": 355.24,
1512
+ "learning_rate": 1.0464705882352942e-06,
1513
+ "loss": 0.0002,
1514
+ "step": 6050
1515
+ },
1516
+ {
1517
+ "epoch": 356.71,
1518
+ "learning_rate": 1.0376470588235295e-06,
1519
+ "loss": 0.0002,
1520
+ "step": 6075
1521
+ },
1522
+ {
1523
+ "epoch": 358.18,
1524
+ "learning_rate": 1.0288235294117649e-06,
1525
+ "loss": 0.0002,
1526
+ "step": 6100
1527
+ },
1528
+ {
1529
+ "epoch": 359.65,
1530
+ "learning_rate": 1.0200000000000002e-06,
1531
+ "loss": 0.0002,
1532
+ "step": 6125
1533
+ },
1534
+ {
1535
+ "epoch": 361.12,
1536
+ "learning_rate": 1.0111764705882353e-06,
1537
+ "loss": 0.0002,
1538
+ "step": 6150
1539
+ },
1540
+ {
1541
+ "epoch": 362.59,
1542
+ "learning_rate": 1.0023529411764706e-06,
1543
+ "loss": 0.0002,
1544
+ "step": 6175
1545
+ },
1546
+ {
1547
+ "epoch": 364.06,
1548
+ "learning_rate": 9.93529411764706e-07,
1549
+ "loss": 0.0004,
1550
+ "step": 6200
1551
+ },
1552
+ {
1553
+ "epoch": 365.53,
1554
+ "learning_rate": 9.847058823529413e-07,
1555
+ "loss": 0.0002,
1556
+ "step": 6225
1557
+ },
1558
+ {
1559
+ "epoch": 367.0,
1560
+ "learning_rate": 9.758823529411766e-07,
1561
+ "loss": 0.0002,
1562
+ "step": 6250
1563
+ },
1564
+ {
1565
+ "epoch": 368.47,
1566
+ "learning_rate": 9.670588235294117e-07,
1567
+ "loss": 0.0002,
1568
+ "step": 6275
1569
+ },
1570
+ {
1571
+ "epoch": 369.94,
1572
+ "learning_rate": 9.58235294117647e-07,
1573
+ "loss": 0.0002,
1574
+ "step": 6300
1575
+ },
1576
+ {
1577
+ "epoch": 371.41,
1578
+ "learning_rate": 9.494117647058824e-07,
1579
+ "loss": 0.0002,
1580
+ "step": 6325
1581
+ },
1582
+ {
1583
+ "epoch": 372.88,
1584
+ "learning_rate": 9.405882352941177e-07,
1585
+ "loss": 0.0003,
1586
+ "step": 6350
1587
+ },
1588
+ {
1589
+ "epoch": 374.35,
1590
+ "learning_rate": 9.31764705882353e-07,
1591
+ "loss": 0.0002,
1592
+ "step": 6375
1593
+ },
1594
+ {
1595
+ "epoch": 375.82,
1596
+ "learning_rate": 9.229411764705882e-07,
1597
+ "loss": 0.0002,
1598
+ "step": 6400
1599
+ },
1600
+ {
1601
+ "epoch": 377.29,
1602
+ "learning_rate": 9.141176470588235e-07,
1603
+ "loss": 0.0002,
1604
+ "step": 6425
1605
+ },
1606
+ {
1607
+ "epoch": 378.76,
1608
+ "learning_rate": 9.052941176470588e-07,
1609
+ "loss": 0.0002,
1610
+ "step": 6450
1611
+ },
1612
+ {
1613
+ "epoch": 380.24,
1614
+ "learning_rate": 8.964705882352942e-07,
1615
+ "loss": 0.0002,
1616
+ "step": 6475
1617
+ },
1618
+ {
1619
+ "epoch": 381.71,
1620
+ "learning_rate": 8.876470588235295e-07,
1621
+ "loss": 0.0002,
1622
+ "step": 6500
1623
+ },
1624
+ {
1625
+ "epoch": 383.18,
1626
+ "learning_rate": 8.788235294117648e-07,
1627
+ "loss": 0.0002,
1628
+ "step": 6525
1629
+ },
1630
+ {
1631
+ "epoch": 384.65,
1632
+ "learning_rate": 8.699999999999999e-07,
1633
+ "loss": 0.0003,
1634
+ "step": 6550
1635
+ },
1636
+ {
1637
+ "epoch": 386.12,
1638
+ "learning_rate": 8.611764705882353e-07,
1639
+ "loss": 0.0003,
1640
+ "step": 6575
1641
+ },
1642
+ {
1643
+ "epoch": 387.59,
1644
+ "learning_rate": 8.523529411764706e-07,
1645
+ "loss": 0.0002,
1646
+ "step": 6600
1647
+ },
1648
+ {
1649
+ "epoch": 389.06,
1650
+ "learning_rate": 8.435294117647059e-07,
1651
+ "loss": 0.0002,
1652
+ "step": 6625
1653
+ },
1654
+ {
1655
+ "epoch": 390.53,
1656
+ "learning_rate": 8.347058823529412e-07,
1657
+ "loss": 0.0001,
1658
+ "step": 6650
1659
+ },
1660
+ {
1661
+ "epoch": 392.0,
1662
+ "learning_rate": 8.258823529411765e-07,
1663
+ "loss": 0.0002,
1664
+ "step": 6675
1665
+ },
1666
+ {
1667
+ "epoch": 393.47,
1668
+ "learning_rate": 8.170588235294118e-07,
1669
+ "loss": 0.0001,
1670
+ "step": 6700
1671
+ },
1672
+ {
1673
+ "epoch": 394.94,
1674
+ "learning_rate": 8.082352941176471e-07,
1675
+ "loss": 0.0001,
1676
+ "step": 6725
1677
+ },
1678
+ {
1679
+ "epoch": 396.41,
1680
+ "learning_rate": 7.994117647058823e-07,
1681
+ "loss": 0.0002,
1682
+ "step": 6750
1683
+ },
1684
+ {
1685
+ "epoch": 397.88,
1686
+ "learning_rate": 7.905882352941177e-07,
1687
+ "loss": 0.0003,
1688
+ "step": 6775
1689
+ },
1690
+ {
1691
+ "epoch": 399.35,
1692
+ "learning_rate": 7.817647058823529e-07,
1693
+ "loss": 0.0004,
1694
+ "step": 6800
1695
+ },
1696
+ {
1697
+ "epoch": 400.82,
1698
+ "learning_rate": 7.729411764705882e-07,
1699
+ "loss": 0.0003,
1700
+ "step": 6825
1701
+ },
1702
+ {
1703
+ "epoch": 402.29,
1704
+ "learning_rate": 7.641176470588236e-07,
1705
+ "loss": 0.0002,
1706
+ "step": 6850
1707
+ },
1708
+ {
1709
+ "epoch": 403.76,
1710
+ "learning_rate": 7.552941176470589e-07,
1711
+ "loss": 0.0002,
1712
+ "step": 6875
1713
+ },
1714
+ {
1715
+ "epoch": 405.24,
1716
+ "learning_rate": 7.464705882352941e-07,
1717
+ "loss": 0.0002,
1718
+ "step": 6900
1719
+ },
1720
+ {
1721
+ "epoch": 406.71,
1722
+ "learning_rate": 7.376470588235294e-07,
1723
+ "loss": 0.0002,
1724
+ "step": 6925
1725
+ },
1726
+ {
1727
+ "epoch": 408.18,
1728
+ "learning_rate": 7.288235294117648e-07,
1729
+ "loss": 0.0001,
1730
+ "step": 6950
1731
+ },
1732
+ {
1733
+ "epoch": 409.65,
1734
+ "learning_rate": 7.2e-07,
1735
+ "loss": 0.0001,
1736
+ "step": 6975
1737
+ },
1738
+ {
1739
+ "epoch": 411.12,
1740
+ "learning_rate": 7.111764705882353e-07,
1741
+ "loss": 0.0002,
1742
+ "step": 7000
1743
+ },
1744
+ {
1745
+ "epoch": 411.12,
1746
+ "eval_loss": 0.56689453125,
1747
+ "eval_runtime": 168.4232,
1748
+ "eval_samples_per_second": 1.615,
1749
+ "eval_steps_per_second": 0.101,
1750
+ "eval_wer": 10.11329866270431,
1751
+ "step": 7000
1752
+ },
1753
+ {
1754
+ "epoch": 412.59,
1755
+ "learning_rate": 7.030588235294118e-07,
1756
+ "loss": 0.0002,
1757
+ "step": 7025
1758
+ },
1759
+ {
1760
+ "epoch": 414.06,
1761
+ "learning_rate": 6.94235294117647e-07,
1762
+ "loss": 0.0003,
1763
+ "step": 7050
1764
+ },
1765
+ {
1766
+ "epoch": 415.53,
1767
+ "learning_rate": 6.854117647058824e-07,
1768
+ "loss": 0.0002,
1769
+ "step": 7075
1770
+ },
1771
+ {
1772
+ "epoch": 417.0,
1773
+ "learning_rate": 6.765882352941177e-07,
1774
+ "loss": 0.0001,
1775
+ "step": 7100
1776
+ },
1777
+ {
1778
+ "epoch": 418.47,
1779
+ "learning_rate": 6.677647058823529e-07,
1780
+ "loss": 0.0003,
1781
+ "step": 7125
1782
+ },
1783
+ {
1784
+ "epoch": 419.94,
1785
+ "learning_rate": 6.589411764705882e-07,
1786
+ "loss": 0.0002,
1787
+ "step": 7150
1788
+ },
1789
+ {
1790
+ "epoch": 421.41,
1791
+ "learning_rate": 6.501176470588235e-07,
1792
+ "loss": 0.0003,
1793
+ "step": 7175
1794
+ },
1795
+ {
1796
+ "epoch": 422.88,
1797
+ "learning_rate": 6.412941176470588e-07,
1798
+ "loss": 0.0003,
1799
+ "step": 7200
1800
+ },
1801
+ {
1802
+ "epoch": 424.35,
1803
+ "learning_rate": 6.324705882352941e-07,
1804
+ "loss": 0.0003,
1805
+ "step": 7225
1806
+ },
1807
+ {
1808
+ "epoch": 425.82,
1809
+ "learning_rate": 6.236470588235294e-07,
1810
+ "loss": 0.0002,
1811
+ "step": 7250
1812
+ },
1813
+ {
1814
+ "epoch": 427.29,
1815
+ "learning_rate": 6.148235294117648e-07,
1816
+ "loss": 0.0002,
1817
+ "step": 7275
1818
+ },
1819
+ {
1820
+ "epoch": 428.76,
1821
+ "learning_rate": 6.060000000000001e-07,
1822
+ "loss": 0.0003,
1823
+ "step": 7300
1824
+ },
1825
+ {
1826
+ "epoch": 430.24,
1827
+ "learning_rate": 5.971764705882353e-07,
1828
+ "loss": 0.0002,
1829
+ "step": 7325
1830
+ },
1831
+ {
1832
+ "epoch": 431.71,
1833
+ "learning_rate": 5.883529411764707e-07,
1834
+ "loss": 0.0003,
1835
+ "step": 7350
1836
+ },
1837
+ {
1838
+ "epoch": 433.18,
1839
+ "learning_rate": 5.795294117647059e-07,
1840
+ "loss": 0.0004,
1841
+ "step": 7375
1842
+ },
1843
+ {
1844
+ "epoch": 434.65,
1845
+ "learning_rate": 5.707058823529412e-07,
1846
+ "loss": 0.0002,
1847
+ "step": 7400
1848
+ },
1849
+ {
1850
+ "epoch": 436.12,
1851
+ "learning_rate": 5.618823529411765e-07,
1852
+ "loss": 0.0001,
1853
+ "step": 7425
1854
+ },
1855
+ {
1856
+ "epoch": 437.59,
1857
+ "learning_rate": 5.530588235294118e-07,
1858
+ "loss": 0.0002,
1859
+ "step": 7450
1860
+ },
1861
+ {
1862
+ "epoch": 439.06,
1863
+ "learning_rate": 5.442352941176471e-07,
1864
+ "loss": 0.0002,
1865
+ "step": 7475
1866
+ },
1867
+ {
1868
+ "epoch": 440.53,
1869
+ "learning_rate": 5.354117647058824e-07,
1870
+ "loss": 0.0001,
1871
+ "step": 7500
1872
+ },
1873
+ {
1874
+ "epoch": 442.0,
1875
+ "learning_rate": 5.265882352941176e-07,
1876
+ "loss": 0.0003,
1877
+ "step": 7525
1878
+ },
1879
+ {
1880
+ "epoch": 443.47,
1881
+ "learning_rate": 5.17764705882353e-07,
1882
+ "loss": 0.0008,
1883
+ "step": 7550
1884
+ },
1885
+ {
1886
+ "epoch": 444.94,
1887
+ "learning_rate": 5.089411764705882e-07,
1888
+ "loss": 0.0002,
1889
+ "step": 7575
1890
+ },
1891
+ {
1892
+ "epoch": 446.41,
1893
+ "learning_rate": 5.001176470588235e-07,
1894
+ "loss": 0.0001,
1895
+ "step": 7600
1896
+ },
1897
+ {
1898
+ "epoch": 447.88,
1899
+ "learning_rate": 4.912941176470589e-07,
1900
+ "loss": 0.0001,
1901
+ "step": 7625
1902
+ },
1903
+ {
1904
+ "epoch": 449.35,
1905
+ "learning_rate": 4.824705882352941e-07,
1906
+ "loss": 0.0001,
1907
+ "step": 7650
1908
+ },
1909
+ {
1910
+ "epoch": 450.82,
1911
+ "learning_rate": 4.7364705882352946e-07,
1912
+ "loss": 0.0001,
1913
+ "step": 7675
1914
+ },
1915
+ {
1916
+ "epoch": 452.29,
1917
+ "learning_rate": 4.648235294117648e-07,
1918
+ "loss": 0.0001,
1919
+ "step": 7700
1920
+ },
1921
+ {
1922
+ "epoch": 453.76,
1923
+ "learning_rate": 4.56e-07,
1924
+ "loss": 0.0003,
1925
+ "step": 7725
1926
+ },
1927
+ {
1928
+ "epoch": 455.24,
1929
+ "learning_rate": 4.4717647058823534e-07,
1930
+ "loss": 0.0001,
1931
+ "step": 7750
1932
+ },
1933
+ {
1934
+ "epoch": 456.71,
1935
+ "learning_rate": 4.3835294117647056e-07,
1936
+ "loss": 0.0003,
1937
+ "step": 7775
1938
+ },
1939
+ {
1940
+ "epoch": 458.18,
1941
+ "learning_rate": 4.295294117647059e-07,
1942
+ "loss": 0.0001,
1943
+ "step": 7800
1944
+ },
1945
+ {
1946
+ "epoch": 459.65,
1947
+ "learning_rate": 4.207058823529412e-07,
1948
+ "loss": 0.0002,
1949
+ "step": 7825
1950
+ },
1951
+ {
1952
+ "epoch": 461.12,
1953
+ "learning_rate": 4.1188235294117644e-07,
1954
+ "loss": 0.0002,
1955
+ "step": 7850
1956
+ },
1957
+ {
1958
+ "epoch": 462.59,
1959
+ "learning_rate": 4.0305882352941177e-07,
1960
+ "loss": 0.0001,
1961
+ "step": 7875
1962
+ },
1963
+ {
1964
+ "epoch": 464.06,
1965
+ "learning_rate": 3.942352941176471e-07,
1966
+ "loss": 0.0002,
1967
+ "step": 7900
1968
+ },
1969
+ {
1970
+ "epoch": 465.53,
1971
+ "learning_rate": 3.8541176470588237e-07,
1972
+ "loss": 0.0002,
1973
+ "step": 7925
1974
+ },
1975
+ {
1976
+ "epoch": 467.0,
1977
+ "learning_rate": 3.765882352941177e-07,
1978
+ "loss": 0.0002,
1979
+ "step": 7950
1980
+ },
1981
+ {
1982
+ "epoch": 468.47,
1983
+ "learning_rate": 3.67764705882353e-07,
1984
+ "loss": 0.0003,
1985
+ "step": 7975
1986
+ },
1987
+ {
1988
+ "epoch": 469.94,
1989
+ "learning_rate": 3.5894117647058825e-07,
1990
+ "loss": 0.0001,
1991
+ "step": 8000
1992
+ },
1993
+ {
1994
+ "epoch": 469.94,
1995
+ "eval_loss": 0.56689453125,
1996
+ "eval_runtime": 163.3464,
1997
+ "eval_samples_per_second": 1.665,
1998
+ "eval_steps_per_second": 0.104,
1999
+ "eval_wer": 9.899702823179792,
2000
+ "step": 8000
2001
+ }
2002
+ ],
2003
+ "max_steps": 9000,
2004
+ "num_train_epochs": 530,
2005
+ "total_flos": 2.4643627644348688e+20,
2006
+ "trial_name": null,
2007
+ "trial_params": null
2008
+ }
checkpoint-8000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405e2f7c140f1d634318230fb26d9b2a3efb9f11f42a90f24dfd6e792f539418
3
+ size 4795
checkpoint-8000/zero_to_fp32.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ from deepspeed.utils import logger
21
+ from deepspeed.checkpoint.constants import (DS_VERSION,
22
+ OPTIMIZER_STATE_DICT,
23
+ SINGLE_PARTITION_OF_FP32_GROUPS,
24
+ FP32_FLAT_GROUPS,
25
+ ZERO_STAGE,
26
+ PARTITION_COUNT,
27
+ PARAM_SHAPES,
28
+ BUFFER_NAMES)
29
+
30
+ debug = 0
31
+
32
+ # load to cpu
33
+ device = torch.device('cpu')
34
+
35
+
36
+ def atoi(text):
37
+ return int(text) if text.isdigit() else text
38
+
39
+
40
+ def natural_keys(text):
41
+ '''
42
+ alist.sort(key=natural_keys) sorts in human order
43
+ http://nedbatchelder.com/blog/200712/human_sorting.html
44
+ (See Toothy's implementation in the comments)
45
+ '''
46
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
47
+
48
+
49
+ def get_model_state_file(checkpoint_dir, zero_stage):
50
+ if not os.path.isdir(checkpoint_dir):
51
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
52
+
53
+ # there should be only one file
54
+ if zero_stage == 2:
55
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
56
+ elif zero_stage == 3:
57
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
58
+
59
+ if not os.path.exists(file):
60
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
61
+
62
+ return file
63
+
64
+
65
+ def get_optim_files(checkpoint_dir):
66
+ # XXX: need to test that this simple glob rule works for multi-node setup too
67
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
68
+ "*_optim_states.pt")),
69
+ key=natural_keys)
70
+
71
+ if len(optim_files) == 0:
72
+ raise FileNotFoundError(
73
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
74
+
75
+ return optim_files
76
+
77
+
78
+ def parse_model_state(file):
79
+ state_dict = torch.load(file, map_location=device)
80
+
81
+ if BUFFER_NAMES not in state_dict:
82
+ raise ValueError(f"{file} is not a model state checkpoint")
83
+ buffer_names = state_dict[BUFFER_NAMES]
84
+ if debug:
85
+ print("Found buffers:", buffer_names)
86
+
87
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
88
+ buffers = {
89
+ k: v.float()
90
+ for k,
91
+ v in state_dict["module"].items() if k in buffer_names
92
+ }
93
+ param_shapes = state_dict[PARAM_SHAPES]
94
+
95
+ ds_version = state_dict.get(DS_VERSION, None)
96
+
97
+ return buffers, param_shapes, ds_version
98
+
99
+
100
+ def parse_optim_states(files, ds_checkpoint_dir):
101
+
102
+ total_files = len(files)
103
+ state_dicts = []
104
+ for f in files:
105
+ state_dicts.append(torch.load(f, map_location=device))
106
+
107
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
108
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
109
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
110
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
111
+
112
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
113
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
114
+ # use the max of the partition_count to get the dp world_size.
115
+
116
+ if type(world_size) is list:
117
+ world_size = max(world_size)
118
+
119
+ if world_size != total_files:
120
+ raise ValueError(
121
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
122
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
123
+ )
124
+
125
+ # the groups are named differently in each stage
126
+ if zero_stage == 2:
127
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
128
+ elif zero_stage == 3:
129
+ fp32_groups_key = FP32_FLAT_GROUPS
130
+ else:
131
+ raise ValueError(f"unknown zero stage {zero_stage}")
132
+
133
+ if zero_stage == 2:
134
+ fp32_flat_groups = [
135
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
136
+ for i in range(len(state_dicts))
137
+ ]
138
+ elif zero_stage == 3:
139
+ # if there is more than one param group, there will be multiple flattened tensors - one
140
+ # flattened tensor per group - for simplicity merge them into a single tensor
141
+ #
142
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
143
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
144
+
145
+ fp32_flat_groups = [
146
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
147
+ 0) for i in range(len(state_dicts))
148
+ ]
149
+
150
+ return zero_stage, world_size, fp32_flat_groups
151
+
152
+
153
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
154
+ """
155
+ Returns fp32 state_dict reconstructed from ds checkpoint
156
+
157
+ Args:
158
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
159
+
160
+ """
161
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
162
+
163
+ optim_files = get_optim_files(ds_checkpoint_dir)
164
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
165
+ print(
166
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
167
+
168
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
169
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
170
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
171
+
172
+ if zero_stage == 2:
173
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
174
+ param_shapes,
175
+ fp32_flat_groups,
176
+ buffers)
177
+ elif zero_stage == 3:
178
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
179
+ param_shapes,
180
+ fp32_flat_groups,
181
+ buffers)
182
+
183
+
184
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
185
+ param_shapes,
186
+ fp32_flat_groups,
187
+ buffers):
188
+
189
+ # Reconstruction protocol:
190
+ #
191
+ # XXX: document this
192
+
193
+ if debug:
194
+ for i in range(world_size):
195
+ for j in range(len(fp32_flat_groups[0])):
196
+ print(
197
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
198
+
199
+ # XXX: memory usage doubles here (zero2)
200
+ num_param_groups = len(fp32_flat_groups[0])
201
+ merged_single_partition_of_fp32_groups = []
202
+ for i in range(num_param_groups):
203
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
204
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
205
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
206
+ avail_numel = sum([
207
+ full_single_fp32_vector.numel()
208
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
209
+ ])
210
+
211
+ if debug:
212
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
213
+ wanted_numel = sum(
214
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
215
+ # not asserting if there is a mismatch due to possible padding
216
+ print(f"Have {avail_numel} numels to process.")
217
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
218
+
219
+ state_dict = OrderedDict()
220
+
221
+ # buffers
222
+ state_dict.update(buffers)
223
+ if debug:
224
+ print(f"added {len(buffers)} buffers")
225
+
226
+ # params
227
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
228
+ # out-of-core computing solution
229
+ total_numel = 0
230
+ total_params = 0
231
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
232
+ offset = 0
233
+ avail_numel = full_single_fp32_vector.numel()
234
+ for name, shape in shapes.items():
235
+
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+ total_params += 1
239
+
240
+ if debug:
241
+ print(
242
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
243
+ )
244
+ state_dict[name] = full_single_fp32_vector.narrow(
245
+ 0,
246
+ offset,
247
+ unpartitioned_numel).view(shape)
248
+ offset += unpartitioned_numel
249
+
250
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
251
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
252
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
253
+ # live optimizer object, so we are checking that the numbers are within the right range
254
+ align_to = 2 * world_size
255
+
256
+ def zero2_align(x):
257
+ return align_to * math.ceil(x / align_to)
258
+
259
+ if debug:
260
+ print(f"original offset={offset}, avail_numel={avail_numel}")
261
+
262
+ offset = zero2_align(offset)
263
+ avail_numel = zero2_align(avail_numel)
264
+
265
+ if debug:
266
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
267
+
268
+ # Sanity check
269
+ if offset != avail_numel:
270
+ raise ValueError(
271
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
272
+
273
+ print(
274
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
275
+ )
276
+
277
+ return state_dict
278
+
279
+
280
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
281
+ remainder = unpartitioned_numel % world_size
282
+ padding_numel = (world_size - remainder) if remainder else 0
283
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
284
+ return partitioned_numel, padding_numel
285
+
286
+
287
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
288
+ param_shapes,
289
+ fp32_flat_groups,
290
+ buffers):
291
+
292
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
293
+ # param, re-consolidating each param, while dealing with padding if any
294
+
295
+ avail_numel = fp32_flat_groups[0].numel() * world_size
296
+ # merge list of dicts, preserving order
297
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
298
+
299
+ if debug:
300
+ for i in range(world_size):
301
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
302
+
303
+ wanted_params = len(param_shapes)
304
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
305
+ # not asserting if there is a mismatch due to possible padding
306
+ print(f"Have {avail_numel} numels to process.")
307
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
308
+
309
+ state_dict = OrderedDict()
310
+
311
+ # buffers
312
+ state_dict.update(buffers)
313
+ if debug:
314
+ print(f"added {len(buffers)} buffers")
315
+
316
+ # params
317
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
318
+ # out-of-core computing solution
319
+ offset = 0
320
+ total_numel = 0
321
+ total_params = 0
322
+ for name, shape in param_shapes.items():
323
+
324
+ unpartitioned_numel = shape.numel()
325
+ total_numel += unpartitioned_numel
326
+ total_params += 1
327
+
328
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
329
+
330
+ if debug:
331
+ print(
332
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
333
+ )
334
+
335
+ # XXX: memory usage doubles here
336
+ state_dict[name] = torch.cat(
337
+ tuple(fp32_flat_groups[i].narrow(0,
338
+ offset,
339
+ partitioned_numel)
340
+ for i in range(world_size)),
341
+ 0).narrow(0,
342
+ 0,
343
+ unpartitioned_numel).view(shape)
344
+ offset += partitioned_numel
345
+
346
+ offset *= world_size
347
+
348
+ # Sanity check
349
+ if offset != avail_numel:
350
+ raise ValueError(
351
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
352
+
353
+ print(
354
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
355
+ )
356
+
357
+ return state_dict
358
+
359
+
360
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
361
+ """
362
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
363
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
364
+ via a model hub.
365
+
366
+ Args:
367
+ - ``checkpoint_dir``: path to the desired checkpoint folder
368
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
369
+
370
+ Returns:
371
+ - pytorch ``state_dict``
372
+
373
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
374
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
375
+ the checkpoint.
376
+
377
+ A typical usage might be ::
378
+
379
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
380
+ # do the training and checkpoint saving
381
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
382
+ model = model.cpu() # move to cpu
383
+ model.load_state_dict(state_dict)
384
+ # submit to model hub or save the model to share with others
385
+
386
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
387
+ application. i.e. you will need to re-initialize the deepspeed engine, since
388
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
389
+
390
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
391
+
392
+ """
393
+ if tag is None:
394
+ latest_path = os.path.join(checkpoint_dir, 'latest')
395
+ if os.path.isfile(latest_path):
396
+ with open(latest_path, 'r') as fd:
397
+ tag = fd.read().strip()
398
+ else:
399
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
400
+
401
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
402
+
403
+ if not os.path.isdir(ds_checkpoint_dir):
404
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
405
+
406
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
407
+
408
+
409
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
410
+ """
411
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
412
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
413
+
414
+ Args:
415
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
416
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
417
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
418
+ """
419
+
420
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
421
+ print(f"Saving fp32 state dict to {output_file}")
422
+ torch.save(state_dict, output_file)
423
+
424
+
425
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
426
+ """
427
+ 1. Put the provided model to cpu
428
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
429
+ 3. Load it into the provided model
430
+
431
+ Args:
432
+ - ``model``: the model object to update
433
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
434
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
435
+
436
+ Returns:
437
+ - ``model`: modified model
438
+
439
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
440
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
441
+ conveniently placed for you in the checkpoint folder.
442
+
443
+ A typical usage might be ::
444
+
445
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
446
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
447
+ # submit to model hub or save the model to share with others
448
+
449
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
450
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
451
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
452
+
453
+ """
454
+ logger.info(f"Extracting fp32 weights")
455
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
456
+
457
+ logger.info(f"Overwriting model with fp32 weights")
458
+ model = model.cpu()
459
+ model.load_state_dict(state_dict, strict=False)
460
+
461
+ return model
462
+
463
+
464
+ if __name__ == "__main__":
465
+
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument(
468
+ "checkpoint_dir",
469
+ type=str,
470
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
471
+ parser.add_argument(
472
+ "output_file",
473
+ type=str,
474
+ help=
475
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
476
+ )
477
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
478
+ args = parser.parse_args()
479
+
480
+ debug = args.debug
481
+
482
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:73391e01ae78440c548bd3f6d327e43048c43c15a1986a7fe6e3899aab9ecb2d
3
  size 1527847357
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292ed5692b25c5ef882949ab1088ccf2a62e2935100cd3609d1745d6a0afdc10
3
  size 1527847357
runs/Dec22_23-06-37_129-146-176-120/events.out.tfevents.1671750444.129-146-176-120.850347.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1707c83a45bcd245bc15e615f1fea52cd399cd069ca212fdeeea365121551ddc
3
- size 37305
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31b7ca987f7c5eb5ba0d19094c91d71052cfc66ee22b568f590621e95e2d17e2
3
+ size 43903