update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-xls-r-300m-ab-CV8
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-xls-r-300m-ab-CV8
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2105
|
20 |
+
- Wer: 0.5474
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 300
|
48 |
+
- num_epochs: 15
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 |
|
56 |
+
| 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 |
|
57 |
+
| 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 |
|
58 |
+
| 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 |
|
59 |
+
| 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 |
|
60 |
+
| 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 |
|
61 |
+
| 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 |
|
62 |
+
| 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 |
|
63 |
+
| 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 |
|
64 |
+
| 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 |
|
65 |
+
| 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 |
|
66 |
+
| 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 |
|
67 |
+
| 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 |
|
68 |
+
| 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 |
|
69 |
+
| 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 |
|
70 |
+
| 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 |
|
71 |
+
| 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 |
|
72 |
+
| 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 |
|
73 |
+
| 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 |
|
74 |
+
| 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 |
|
75 |
+
| 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 |
|
76 |
+
| 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 |
|
77 |
+
| 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.11.3
|
83 |
+
- Pytorch 1.10.0+cu111
|
84 |
+
- Datasets 1.18.1
|
85 |
+
- Tokenizers 0.10.3
|