import torch import torch.nn as nn from transformers import CLIPTextModel, RobertaModel, CLIPVisionModel from timm import create_model EMBEDDING_DIM = 512 class ImageEncoder(nn.Module): def __init__(self): super(ImageEncoder, self).__init__() # Load the Swin Transformer with features_only=True self.swin = create_model("swin-tiny-patch4-window7-224", pretrained=True, features_only=True) for param in self.swin.parameters(): param.requires_grad = True # Get the feature size of the final stage self.swin_output_dim = self.swin.feature_info.channels()[-1] # Last stage: 1024 channels # Define FC layer self.fc1 = nn.Linear(self.swin_output_dim * 7 * 7, EMBEDDING_DIM) # Flattened input size nn.init.xavier_uniform_(self.fc1.weight) nn.init.zeros_(self.fc1.bias) for param in self.fc1.parameters(): param.requires_grad = True def forward(self, x): # Extract features from Swin swin_features = self.swin(x)[-1] # Use the last stage feature map (e.g., [B, 1024, 7, 7]) # Flatten feature map swin_features = swin_features.view(swin_features.size(0), -1) # Shape: (B, 1024*7*7) # Pass through FC layer output = self.fc1(swin_features) # Shape: (B, embedding_dim) return output from transformers import RobertaModel class RobertaEncoder(nn.Module): def __init__(self, roberta_model_path="roberta-base"): super(RobertaEncoder, self).__init__() # Load pre-trained RoBERTa model self.roberta = RobertaModel.from_pretrained(roberta_model_path) # Add a linear projection layer to reduce dimensionality self.projection = nn.Linear(self.roberta.config.hidden_size, EMBEDDING_DIM) # Initialize the projection layer weights nn.init.xavier_uniform_(self.projection.weight) nn.init.zeros_(self.projection.bias) # Allow fine-tuning of the RoBERTa model for param in self.roberta.parameters(): param.requires_grad = True def forward(self, input_ids, attention_mask): """ Forward pass through RoBERTa. Args: input_ids: Tensor of shape (batch_size, seq_length) attention_mask: Tensor of shape (batch_size, seq_length) Returns: Embedding: Tensor of shape (batch_size, EMBEDDING_DIM) """ roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask) cls_token = roberta_output.last_hidden_state[:, 0, :] # Use CLS token pooled_output = torch.mean(roberta_output.last_hidden_state, dim=1) # Mean pooling return self.projection(cls_token+pooled_output) from transformers import AutoTokenizer, Siglip2TextModel,AutoModel class SigLIP2TextEncoder(nn.Module): def __init__(self, embedding_dim=512): super(SigLIP2TextEncoder, self).__init__() model = AutoModel.from_pretrained("google/siglip2-base-patch16-224") self.text_encoder = model.text_model hidden_size = self.text_encoder.config.hidden_size self.projection = nn.Linear(hidden_size, embedding_dim) nn.init.xavier_uniform_(self.projection.weight) nn.init.zeros_(self.projection.bias) for param in self.text_encoder.parameters(): param.requires_grad = True for param in self.projection.parameters(): param.requires_grad = True def forward(self, tokens): """ Args: tokens: Returns: Tensor of shape (batch_size, embedding_dim) """ outputs = self.text_encoder(**tokens) return self.projection(outputs.pooler_output)