ppo-lunarlander / config.json
enchan1's picture
step 1
afcccad verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f818d5d37f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f818d5d3880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f818d5d3910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f818d5d39a0>", "_build": "<function ActorCriticPolicy._build at 0x7f818d5d3a30>", "forward": "<function ActorCriticPolicy.forward at 0x7f818d5d3ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f818d5d3b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f818d5d3be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f818d5d3c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f818d5d3d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f818d5d3d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f818d5d3e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f818d57be40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715175801712902117, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOzFLzD8Xa6C/RhuitwkLYVSwY6IvOCOQAAgD8AAIA/M1+dvHtqgbpiHDW4S24ks3y8nzrr6VA3AACAPwAAgD8zfLC8KRQ8umVXZrrAz9C1x7/uul87iDkAAIA/AACAP5pJKzzOCYU96pWaPa8Mhb7V3F29lehGPQAAAAAAAAAAAFKJvCGQnT//76S92haavoCgi7zWVi+9AAAAAAAAAACad3Q9XETyPkdZOTxkK6u++iSWPFwwtLwAAAAAAAAAAGYEb7yfWCE+bsaKvdyugr4iCYm93fpRvQAAAAAAAAAAZoaOvY/CajeE2rq6zz/+tfq/iTvSo905AACAPwAAgD8AwAy6P/iyPi3RhL1HJ0C+k4nMvV5ouj0AAAAAAAAAAM3LQr2Pzla6em6tO0SJHTUzcJQ60ATMugAAgD8AAIA/jY+bPVkNhj4qS7O9gnd5vv2bq7wFFN+9AAAAAAAAAADNQlO8XG9UvNMYjDuvfOu9RvqivKp/hb4AAIA/AACAPw26gb2ccSI+QkrqPfc+ZL4xxxC9asgmPAAAAAAAAAAAGsUwvfZIPLqj+uu6LC5Yto0WLju2Rwk6AACAPwAAgD/NgtA8j8kBvArWbrw/EJE8DoFKvV7bcj0AAIA/AACAP7OTdT557lg/jkerPXAiub4O7Y0+e2TvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGik3qRlpXaMAWyUTegDjAF0lEdAoJzEHUtqYnV9lChoBkdAYHPxvNu+AWgHTegDaAhHQKCdGVKPGQ11fZQoaAZHQFPCf2bobGZoB00KAWgIR0CgoYyylenidX2UKGgGR0BwhgHlfZ27aAdNJgJoCEdAoKKvsC1Z1XV9lChoBkdAaEcmiQDFImgHTegDaAhHQKCjDXI2fkF1fZQoaAZHQGT7lkQPI4loB03oA2gIR0CgpODxsl9jdX2UKGgGR0BgjgRPGhmHaAdN6ANoCEdAoKWIOOKfnXV9lChoBkdAaAzPZ7HAAWgHTegDaAhHQKCllrmhdt51fZQoaAZHQGTEO3lS0jVoB03oA2gIR0CgpeJ5mh/RdX2UKGgGR0Bju6fe1rqMaAdN6ANoCEdAoKuYu5BkZ3V9lChoBkdAY0WI8hcJMWgHTegDaAhHQKCxJ9LHuJF1fZQoaAZHQGF8g13t8eFoB03oA2gIR0CgsaNQ0oBrdX2UKGgGR0BvvuDFqBVdaAdNrgJoCEdAoLG5u2qkunV9lChoBkdAXDipAD7qIWgHTegDaAhHQKCxzU6PsAx1fZQoaAZHQHHe+vdM0xdoB012AWgIR0CgsdPBBRhudX2UKGgGR0BhwlinYQJ5aAdN6ANoCEdAoLLKM3qA0HV9lChoBkdAZSqmBvrGBGgHTegDaAhHQKCz9tpmEoR1fZQoaAZHQGEadv0h/y5oB03oA2gIR0CgtNmw7kn1dX2UKGgGR0BPEQBo24usaAdL8mgIR0Cgtt3m/336dX2UKGgGR0Bl176k690zaAdN6ANoCEdAoMGsYO2AoXV9lChoBkdAQlMPBi1Aq2gHS/NoCEdAoMKqOgg5inV9lChoBkdAScJON5t3wGgHS99oCEdAoMWsYdhiLHV9lChoBkdAZNU8h9srNGgHTegDaAhHQKDGHFsHjZN1fZQoaAZHQGMX99tuUEBoB03oA2gIR0Cgx18ZLqUvdX2UKGgGR0Bh9x5C4SYgaAdN6ANoCEdAoMfKol2NenV9lChoBkdAYtnKnvUjLWgHTegDaAhHQKDJ7oJzDGd1fZQoaAZHQG9fXXiBGx5oB01RAmgIR0CgyhfvOQhfdX2UKGgGR0Bkgxky1uzhaAdN6ANoCEdAoMqpJ04io3V9lChoBkdAZbdi2DxsmGgHTegDaAhHQKDKubkwN9Z1fZQoaAZHQD8SJ53Tuv5oB0vwaAhHQKDMwM7U5Ml1fZQoaAZHQHALhQFcIJJoB01vA2gIR0CgzSJpN9H+dX2UKGgGR0Bwof8ejmCAaAdN8gJoCEdAoNGHAIppe3V9lChoBkdAaOZUqhDgImgHTegDaAhHQKDT7F4LThJ1fZQoaAZHQGSlof0VafVoB03oA2gIR0Cg1GdnscABdX2UKGgGR0BmpHBacI7eaAdN6ANoCEdAoNSDqyGBWnV9lChoBkdAcR/z/ZM+NmgHTQACaAhHQKDVFkbxVhl1fZQoaAZHQGOL9hqj8DVoB03oA2gIR0Cg1bxj8UEgdX2UKGgGR0BSwkSuhbnpaAdL/WgIR0Cg2/LmZE2HdX2UKGgGR0BiOTv/io87aAdN6ANoCEdAoNym9SMtLHV9lChoBkdAZioSZBsyi2gHTegDaAhHQKDo4FWXC0p1fZQoaAZHQHAqo9X9zfdoB03JAWgIR0Cg7B6lDWsjdX2UKGgGR0BiTyaTfR/maAdN6ANoCEdAoOyaXjU/fXV9lChoBkdAcUu4uK4x12gHTZUDaAhHQKDtly0a6z51fZQoaAZHQGSpK6e5Fw1oB03oA2gIR0Cg7eiUPhAGdX2UKGgGR0BwU2sr/bTMaAdN4wNoCEdAoO9QybhFVnV9lChoBkdAYXQ3Sa3I/GgHTegDaAhHQKDwCY51eSl1fZQoaAZHQGW2tcfNiYtoB03oA2gIR0Cg8BjB/I8ydX2UKGgGR0BvmBAbADaHaAdNDQNoCEdAoPGWcriEQHV9lChoBkdAcLB/e+Eh7mgHTVIBaAhHQKDxpH6uW8h1fZQoaAZHQHEC9DlYEGJoB02sAmgIR0Cg8cX2/SH/dX2UKGgGR0Be/CfcvduYaAdN6ANoCEdAoPIKB9TgmHV9lChoBkdAZSfGhEjPfWgHTegDaAhHQKDyaer+5vt1fZQoaAZHQG9vU2kzoEBoB00rAmgIR0Cg9XYWk8A8dX2UKGgGR0BP8tnXd0q6aAdL8mgIR0Cg9YP8Q7LddX2UKGgGR0ByZioxYaHcaAdNNgNoCEdAoPXHB3zMA3V9lChoBkdAPZvszEaVEGgHS+doCEdAoPa3GlyimHV9lChoBkdAcgl/o7muDGgHTYUBaAhHQKD2ws189fV1fZQoaAZHQGPJjwx33YdoB03oA2gIR0Cg+EoLofSydX2UKGgGR0Bwan6vaDf4aAdNDAJoCEdAoPi42bXpW3V9lChoBkdARNMjRlYlp2gHTQYBaAhHQKD80D9wWFh1fZQoaAZHQG+BAHVwxWVoB02kAWgIR0Cg/RtfgJkYdX2UKGgGR0Bx/sVARkEtaAdNLAFoCEdAoP2sKzAvc3V9lChoBkdAQd5pnHvMKWgHS9toCEdAoP7+cMEzPHV9lChoBkdAZmvmGucME2gHTegDaAhHQKEA2tLcsUZ1fZQoaAZHQG1MaNdZ7oloB00uAWgIR0ChAVzRplBhdX2UKGgGR0BsFwN7SiM6aAdN3wFoCEdAoQyDErGzbHV9lChoBkdAcr6kaMrEtWgHTS0DaAhHQKEMp3evZAZ1fZQoaAZHQHC7AMYuTRpoB00+AWgIR0ChDcF6JIlMdX2UKGgGR0BlxFoQFs55aAdN6ANoCEdAoQ3nAqNIb3V9lChoBkdActQMfigkC2gHTUMBaAhHQKEOYd/axot1fZQoaAZHQGQJfLkjopxoB03oA2gIR0ChDvfzSThYdX2UKGgGR0Bxnby1/lQuaAdNkwJoCEdAoQ8GjCYTkHV9lChoBkdAcAmP69CeE2gHTWgCaAhHQKEPTGyX2M91fZQoaAZHQHKaICU5dW1oB02sA2gIR0ChD66W5YozdX2UKGgGR0ByIzot+TePaAdNFgFoCEdAoQ+24b0e2nV9lChoBkdAb3VNnoPkJmgHTQwBaAhHQKEP5VOsT391fZQoaAZHQElHtKqXF99oB0vSaAhHQKEQXKZDzAh1fZQoaAZHQGTB+sYEW69oB03oA2gIR0ChEZHmzSkTdX2UKGgGR0ByWYt03fhuaAdN4wFoCEdAoRGnck+otXV9lChoBkdAZq5ZTQ3PzGgHTegDaAhHQKERtaL4vex1fZQoaAZHQHGDrZamoBJoB00oAWgIR0ChEc5kkKNRdX2UKGgGR0Bir3OB19v1aAdN6ANoCEdAoRHlLxqfvnV9lChoBkdAcObuVopQUGgHTWECaAhHQKESktfXwsp1fZQoaAZHQG5fJ5eJHiFoB01UAWgIR0ChE01q33HrdX2UKGgGR0BysU1CPZIyaAdNNwFoCEdAoRSJzDGcWnV9lChoBkdAcY42RaHKwWgHTXwBaAhHQKEVEm1pj+d1fZQoaAZHQHE4oAn2IwdoB035AWgIR0ChGaTJQtSRdX2UKGgGR0Bxy4btJFspaAdNHgFoCEdAoRoUgOjIrHV9lChoBkdAcJqVqesgdWgHTUMCaAhHQKEaHHWjGkx1fZQoaAZHQHGGlcQiA2BoB01wAWgIR0ChGs3OGCZndX2UKGgGR0Bxz4Bfa6BiaAdNhwFoCEdAoRsBUWEbpHV9lChoBkdAbVjhLGrCFmgHTawBaAhHQKEcb7m+0w91fZQoaAZHQG5GE9Mbm2doB00yAmgIR0ChHHZ/b0vodX2UKGgGR0By5Pq7iADraAdNyQFoCEdAoRzMDB/I83V9lChoBkdAccH7IT4+KWgHTXwBaAhHQKEdVMIu5Bl1fZQoaAZHQGzXcfeUILRoB03/AWgIR0ChHd/s3Q2NdX2UKGgGR0BvjIDcM3IdaAdNtQJoCEdAoR4eSIP9UHV9lChoBkdAUDrkeZG8VmgHS8FoCEdAoR5+waBI4HV9lChoBkdAS3vllsguAmgHTQ0BaAhHQKEf5loUSIx1fZQoaAZHQHCmr4Fiay9oB01HAWgIR0ChILkfDDTCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}