Zhongfang Zhuang
commited on
Upload folder using huggingface_hub
Browse files- README.md +29 -3
- config.json +24 -0
- mlp.py +269 -0
- model.safetensors +3 -0
- models_hf.py +431 -0
- ndlinear.py +91 -0
README.md
CHANGED
|
@@ -1,3 +1,29 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DiT Model
|
| 2 |
+
|
| 3 |
+
This repository contains the implementation of the DiT (Diffusion Transformer) model, which leverages NdLinear layers for efficient multi-dimensional linear transformations. The model is designed to be compact yet powerful, suitable for various tasks requiring high-dimensional data processing.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
The DiT model is built using several components:
|
| 8 |
+
|
| 9 |
+
- **NdLinear**: A custom PyTorch layer for projecting tensors into multi-space representations, capturing multivariate structures.
|
| 10 |
+
- **NdMlp**: A multi-layer perceptron using NdLinear layers for enhanced feature extraction.
|
| 11 |
+
- **NdTimestepEmbedder**: Embeds scalar timesteps into vector representations using NdLinear transformations.
|
| 12 |
+
|
| 13 |
+
## Files
|
| 14 |
+
|
| 15 |
+
- **mlp.py**: Contains the implementation of various MLP architectures, including NdMlp and GluMlp.
|
| 16 |
+
- **models_hf.py**: Defines the DiT model architecture, including the DiTBlock and FinalLayer.
|
| 17 |
+
- **ndlinear.py**: Implements the NdLinear layer, which is central to the model's ability to handle multi-dimensional data efficiently.
|
| 18 |
+
|
| 19 |
+
## Installation
|
| 20 |
+
|
| 21 |
+
To use the DiT model, ensure you have the required dependencies installed:
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
pip install torch transformers==4.52.4
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## License
|
| 28 |
+
|
| 29 |
+
This project is licensed under the MIT License. See the LICENSE file for more details.
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DiT"
|
| 4 |
+
],
|
| 5 |
+
"class_dropout_prob": 0.1,
|
| 6 |
+
"depth": 28,
|
| 7 |
+
"hidden_size": 1152,
|
| 8 |
+
"in_channels": 4,
|
| 9 |
+
"input_size": 32,
|
| 10 |
+
"learn_sigma": true,
|
| 11 |
+
"mlp_ratio": 4.0,
|
| 12 |
+
"model_type": "ndlinear_dit",
|
| 13 |
+
"num_classes": 1000,
|
| 14 |
+
"num_heads": 16,
|
| 15 |
+
"out_channels": 8,
|
| 16 |
+
"patch_size": 2,
|
| 17 |
+
"torch_dtype": "float32",
|
| 18 |
+
"transformers_version": "4.52.4",
|
| 19 |
+
"tse_scale_factor": 8.0,
|
| 20 |
+
"use_ndmlp": true,
|
| 21 |
+
"use_ndtse": true,
|
| 22 |
+
"use_num_transforms": 20,
|
| 23 |
+
"use_variant": 4
|
| 24 |
+
}
|
mlp.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" MLP module w/ dropout and configurable activation layer
|
| 2 |
+
|
| 3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
| 4 |
+
|
| 5 |
+
Modified by Ensemble AI to use NdLinear instead of Linear. Copyright 2025
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
from functools import partial
|
| 9 |
+
|
| 10 |
+
from torch import nn as nn
|
| 11 |
+
from ndlinear import NdLinear
|
| 12 |
+
from timm.layers.grn import GlobalResponseNorm
|
| 13 |
+
from timm.layers.helpers import to_2tuple
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class NdMlp(nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
in_features,
|
| 20 |
+
hidden_features=None,
|
| 21 |
+
out_features=None,
|
| 22 |
+
act_layer=nn.GELU,
|
| 23 |
+
norm_layer=None,
|
| 24 |
+
bias=True,
|
| 25 |
+
drop=0.,
|
| 26 |
+
use_variant=4
|
| 27 |
+
):
|
| 28 |
+
super().__init__()
|
| 29 |
+
out_features = out_features or in_features
|
| 30 |
+
hidden_features = hidden_features or in_features
|
| 31 |
+
bias = to_2tuple(bias)
|
| 32 |
+
self.use_variant = use_variant
|
| 33 |
+
drop_probs = to_2tuple(drop)
|
| 34 |
+
self.fc1 = NdLinear((in_features, 1), (hidden_features // 4, 1)) # (384, 1), (384, 1)
|
| 35 |
+
self.fc2 = NdLinear((in_features, 1), (hidden_features // 4, 1))
|
| 36 |
+
|
| 37 |
+
self.act = act_layer()
|
| 38 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 39 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 40 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x_dim0, x_dim1, x_dim2 = x.shape
|
| 44 |
+
# print(f"x.shape: {x.shape}")
|
| 45 |
+
x = x.reshape(x_dim0 * x_dim1, x_dim2, 1) if self.use_variant != 9 else x
|
| 46 |
+
x = self.fc1(x)
|
| 47 |
+
x = self.act(x)
|
| 48 |
+
x = self.drop1(x)
|
| 49 |
+
# x = self.norm(x) #
|
| 50 |
+
x = self.fc2(x)
|
| 51 |
+
x = x.reshape(x_dim0, x_dim1, x_dim2) if self.use_variant != 9 else x
|
| 52 |
+
x = self.drop2(x)
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
class GluMlp(nn.Module):
|
| 56 |
+
""" MLP w/ GLU style gating
|
| 57 |
+
See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202
|
| 58 |
+
|
| 59 |
+
NOTE: When use_conv=True, expects 2D NCHW tensors, otherwise N*C expected.
|
| 60 |
+
"""
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
in_features,
|
| 64 |
+
hidden_features=None,
|
| 65 |
+
out_features=None,
|
| 66 |
+
act_layer=nn.Sigmoid,
|
| 67 |
+
norm_layer=None,
|
| 68 |
+
bias=True,
|
| 69 |
+
drop=0.,
|
| 70 |
+
use_conv=False,
|
| 71 |
+
gate_last=True,
|
| 72 |
+
):
|
| 73 |
+
super().__init__()
|
| 74 |
+
out_features = out_features or in_features
|
| 75 |
+
hidden_features = hidden_features or in_features
|
| 76 |
+
assert hidden_features % 2 == 0
|
| 77 |
+
bias = to_2tuple(bias)
|
| 78 |
+
drop_probs = to_2tuple(drop)
|
| 79 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
| 80 |
+
self.chunk_dim = 1 if use_conv else -1
|
| 81 |
+
self.gate_last = gate_last # use second half of width for gate
|
| 82 |
+
|
| 83 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 84 |
+
self.act = act_layer()
|
| 85 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 86 |
+
self.norm = norm_layer(hidden_features // 2) if norm_layer is not None else nn.Identity()
|
| 87 |
+
self.fc2 = linear_layer(hidden_features // 2, out_features, bias=bias[1])
|
| 88 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 89 |
+
|
| 90 |
+
def init_weights(self):
|
| 91 |
+
# override init of fc1 w/ gate portion set to weight near zero, bias=1
|
| 92 |
+
if self.fc1.bias is not None:
|
| 93 |
+
nn.init.ones_(self.fc1.bias[self.fc1.bias.shape[0] // 2:])
|
| 94 |
+
nn.init.normal_(self.fc1.weight[self.fc1.weight.shape[0] // 2:], std=1e-6)
|
| 95 |
+
|
| 96 |
+
def forward(self, x):
|
| 97 |
+
x = self.fc1(x)
|
| 98 |
+
x1, x2 = x.chunk(2, dim=self.chunk_dim)
|
| 99 |
+
x = x1 * self.act(x2) if self.gate_last else self.act(x1) * x2
|
| 100 |
+
x = self.drop1(x)
|
| 101 |
+
x = self.norm(x)
|
| 102 |
+
x = self.fc2(x)
|
| 103 |
+
x = self.drop2(x)
|
| 104 |
+
return x
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
SwiGLUPacked = partial(GluMlp, act_layer=nn.SiLU, gate_last=False)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class SwiGLU(nn.Module):
|
| 111 |
+
""" SwiGLU
|
| 112 |
+
NOTE: GluMLP above can implement SwiGLU, but this impl has split fc1 and
|
| 113 |
+
better matches some other common impl which makes mapping checkpoints simpler.
|
| 114 |
+
"""
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
in_features,
|
| 118 |
+
hidden_features=None,
|
| 119 |
+
out_features=None,
|
| 120 |
+
act_layer=nn.SiLU,
|
| 121 |
+
norm_layer=None,
|
| 122 |
+
bias=True,
|
| 123 |
+
drop=0.,
|
| 124 |
+
):
|
| 125 |
+
super().__init__()
|
| 126 |
+
out_features = out_features or in_features
|
| 127 |
+
hidden_features = hidden_features or in_features
|
| 128 |
+
bias = to_2tuple(bias)
|
| 129 |
+
drop_probs = to_2tuple(drop)
|
| 130 |
+
|
| 131 |
+
self.fc1_g = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 132 |
+
self.fc1_x = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 133 |
+
self.act = act_layer()
|
| 134 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 135 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 136 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
|
| 137 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 138 |
+
|
| 139 |
+
def init_weights(self):
|
| 140 |
+
# override init of fc1 w/ gate portion set to weight near zero, bias=1
|
| 141 |
+
if self.fc1_g.bias is not None:
|
| 142 |
+
nn.init.ones_(self.fc1_g.bias)
|
| 143 |
+
nn.init.normal_(self.fc1_g.weight, std=1e-6)
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
x_gate = self.fc1_g(x)
|
| 147 |
+
x = self.fc1_x(x)
|
| 148 |
+
x = self.act(x_gate) * x
|
| 149 |
+
x = self.drop1(x)
|
| 150 |
+
x = self.norm(x)
|
| 151 |
+
x = self.fc2(x)
|
| 152 |
+
x = self.drop2(x)
|
| 153 |
+
return x
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class GatedMlp(nn.Module):
|
| 157 |
+
""" MLP as used in gMLP
|
| 158 |
+
"""
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
in_features,
|
| 162 |
+
hidden_features=None,
|
| 163 |
+
out_features=None,
|
| 164 |
+
act_layer=nn.GELU,
|
| 165 |
+
norm_layer=None,
|
| 166 |
+
gate_layer=None,
|
| 167 |
+
bias=True,
|
| 168 |
+
drop=0.,
|
| 169 |
+
):
|
| 170 |
+
super().__init__()
|
| 171 |
+
out_features = out_features or in_features
|
| 172 |
+
hidden_features = hidden_features or in_features
|
| 173 |
+
bias = to_2tuple(bias)
|
| 174 |
+
drop_probs = to_2tuple(drop)
|
| 175 |
+
|
| 176 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
|
| 177 |
+
self.act = act_layer()
|
| 178 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 179 |
+
if gate_layer is not None:
|
| 180 |
+
assert hidden_features % 2 == 0
|
| 181 |
+
self.gate = gate_layer(hidden_features)
|
| 182 |
+
hidden_features = hidden_features // 2 # FIXME base reduction on gate property?
|
| 183 |
+
else:
|
| 184 |
+
self.gate = nn.Identity()
|
| 185 |
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
| 186 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
|
| 187 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 188 |
+
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
x = self.fc1(x)
|
| 191 |
+
x = self.act(x)
|
| 192 |
+
x = self.drop1(x)
|
| 193 |
+
x = self.gate(x)
|
| 194 |
+
x = self.norm(x)
|
| 195 |
+
x = self.fc2(x)
|
| 196 |
+
x = self.drop2(x)
|
| 197 |
+
return x
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class ConvMlp(nn.Module):
|
| 201 |
+
""" MLP using 1x1 convs that keeps spatial dims (for 2D NCHW tensors)
|
| 202 |
+
"""
|
| 203 |
+
def __init__(
|
| 204 |
+
self,
|
| 205 |
+
in_features,
|
| 206 |
+
hidden_features=None,
|
| 207 |
+
out_features=None,
|
| 208 |
+
act_layer=nn.ReLU,
|
| 209 |
+
norm_layer=None,
|
| 210 |
+
bias=True,
|
| 211 |
+
drop=0.,
|
| 212 |
+
):
|
| 213 |
+
super().__init__()
|
| 214 |
+
out_features = out_features or in_features
|
| 215 |
+
hidden_features = hidden_features or in_features
|
| 216 |
+
bias = to_2tuple(bias)
|
| 217 |
+
|
| 218 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
|
| 219 |
+
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
|
| 220 |
+
self.act = act_layer()
|
| 221 |
+
self.drop = nn.Dropout(drop)
|
| 222 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
|
| 223 |
+
|
| 224 |
+
def forward(self, x):
|
| 225 |
+
x = self.fc1(x)
|
| 226 |
+
x = self.norm(x)
|
| 227 |
+
x = self.act(x)
|
| 228 |
+
x = self.drop(x)
|
| 229 |
+
x = self.fc2(x)
|
| 230 |
+
return x
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class GlobalResponseNormMlp(nn.Module):
|
| 234 |
+
""" MLP w/ Global Response Norm (see grn.py), nn.Linear or 1x1 Conv2d
|
| 235 |
+
|
| 236 |
+
NOTE: Intended for '2D' NCHW (use_conv=True) or NHWC (use_conv=False, channels-last) tensor layouts
|
| 237 |
+
"""
|
| 238 |
+
def __init__(
|
| 239 |
+
self,
|
| 240 |
+
in_features,
|
| 241 |
+
hidden_features=None,
|
| 242 |
+
out_features=None,
|
| 243 |
+
act_layer=nn.GELU,
|
| 244 |
+
bias=True,
|
| 245 |
+
drop=0.,
|
| 246 |
+
use_conv=False,
|
| 247 |
+
):
|
| 248 |
+
super().__init__()
|
| 249 |
+
out_features = out_features or in_features
|
| 250 |
+
hidden_features = hidden_features or in_features
|
| 251 |
+
bias = to_2tuple(bias)
|
| 252 |
+
drop_probs = to_2tuple(drop)
|
| 253 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
| 254 |
+
|
| 255 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 256 |
+
self.act = act_layer()
|
| 257 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
| 258 |
+
self.grn = GlobalResponseNorm(hidden_features, channels_last=not use_conv)
|
| 259 |
+
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
| 260 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
| 261 |
+
|
| 262 |
+
def forward(self, x):
|
| 263 |
+
x = self.fc1(x)
|
| 264 |
+
x = self.act(x)
|
| 265 |
+
x = self.drop1(x)
|
| 266 |
+
x = self.grn(x)
|
| 267 |
+
x = self.fc2(x)
|
| 268 |
+
x = self.drop2(x)
|
| 269 |
+
return x
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8d3d3e218068ea8163743a1d4049dc3e225ac3bec897cda9816598f7ce07a19
|
| 3 |
+
size 915766976
|
models_hf.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# References:
|
| 8 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
| 9 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
| 10 |
+
#
|
| 11 |
+
# Modifications Copyright (c) Ensemble AI, 2025.
|
| 12 |
+
# Description of modifications: Using NdLinear in the model to
|
| 13 |
+
# make the model more compact yet with similar performance.
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import numpy as np
|
| 17 |
+
import math
|
| 18 |
+
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
|
| 19 |
+
from mlp import NdMlp
|
| 20 |
+
from ndlinear import NdLinear
|
| 21 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 22 |
+
|
| 23 |
+
def modulate(x, shift, scale):
|
| 24 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 25 |
+
|
| 26 |
+
class TimestepEmbedder(nn.Module):
|
| 27 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.mlp = nn.Sequential(
|
| 30 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 31 |
+
nn.SiLU(),
|
| 32 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 33 |
+
)
|
| 34 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 35 |
+
|
| 36 |
+
@staticmethod
|
| 37 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 38 |
+
half = dim // 2
|
| 39 |
+
freqs = torch.exp(
|
| 40 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 41 |
+
).to(device=t.device)
|
| 42 |
+
args = t[:, None].float() * freqs[None]
|
| 43 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 44 |
+
if dim % 2:
|
| 45 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 46 |
+
return embedding
|
| 47 |
+
|
| 48 |
+
def forward(self, t):
|
| 49 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 50 |
+
t_emb = self.mlp(t_freq)
|
| 51 |
+
return t_emb
|
| 52 |
+
|
| 53 |
+
class NdTimestepEmbedder(nn.Module):
|
| 54 |
+
def __init__(self, hidden_size, frequency_embedding_size=256, use_num_transforms=2, tse_scale_factor=1, knowledge_transfer=False, src_layers=None):
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.activation = nn.SiLU()
|
| 57 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 58 |
+
self.use_num_transforms = use_num_transforms
|
| 59 |
+
|
| 60 |
+
if knowledge_transfer and not src_layers:
|
| 61 |
+
raise ValueError("Source layers must be provided for knowledge transfer.")
|
| 62 |
+
|
| 63 |
+
if use_num_transforms == 2:
|
| 64 |
+
self.ndlinear_1 = NdLinear((frequency_embedding_size // 16, 16), (int(hidden_size // tse_scale_factor // 2), 2))
|
| 65 |
+
self.ndlinear_2 = NdLinear((int(hidden_size // tse_scale_factor // 2), 2), (hidden_size, 1))
|
| 66 |
+
|
| 67 |
+
if use_num_transforms == 20:
|
| 68 |
+
self.ndlinear_1 = NdLinear((frequency_embedding_size, 1), (int(hidden_size // tse_scale_factor), 1))
|
| 69 |
+
self.ndlinear_2 = NdLinear((int(hidden_size // tse_scale_factor), 1), (hidden_size, 1))
|
| 70 |
+
|
| 71 |
+
@staticmethod
|
| 72 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 73 |
+
half = dim // 2
|
| 74 |
+
freqs = torch.exp(
|
| 75 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 76 |
+
).to(device=t.device)
|
| 77 |
+
args = t[:, None].float() * freqs[None]
|
| 78 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 79 |
+
if dim % 2:
|
| 80 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 81 |
+
return embedding
|
| 82 |
+
|
| 83 |
+
def forward(self, t):
|
| 84 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 85 |
+
if self.use_num_transforms == 2:
|
| 86 |
+
t_freq = t_freq.reshape(*t_freq.shape, 1)
|
| 87 |
+
elif self.use_num_transforms == 21:
|
| 88 |
+
t_freq = t_freq.reshape(t_freq.shape[0], 16, 16)
|
| 89 |
+
elif self.use_num_transforms == 3:
|
| 90 |
+
t_freq = t_freq.reshape(t_freq.shape[0], t_freq.shape[1] // 16, 16, 1)
|
| 91 |
+
elif self.use_num_transforms == 4:
|
| 92 |
+
t_freq = t_freq.reshape(t_freq.shape[0], t_freq.shape[1] // 16, 4, 4, 1)
|
| 93 |
+
t_emb = self.ndlinear_1(t_freq)
|
| 94 |
+
t_emb = self.activation(t_emb)
|
| 95 |
+
t_emb = self.ndlinear_2(t_emb)
|
| 96 |
+
t_emb = t_emb.squeeze()
|
| 97 |
+
return t_emb
|
| 98 |
+
|
| 99 |
+
class LabelEmbedder(nn.Module):
|
| 100 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 101 |
+
super().__init__()
|
| 102 |
+
use_cfg_embedding = dropout_prob > 0
|
| 103 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 104 |
+
self.num_classes = num_classes
|
| 105 |
+
self.dropout_prob = dropout_prob
|
| 106 |
+
|
| 107 |
+
def token_drop(self, labels, force_drop_ids=None):
|
| 108 |
+
if force_drop_ids is None:
|
| 109 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 110 |
+
else:
|
| 111 |
+
drop_ids = force_drop_ids == 1
|
| 112 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
| 113 |
+
return labels
|
| 114 |
+
|
| 115 |
+
def forward(self, labels, train, force_drop_ids=None):
|
| 116 |
+
use_dropout = self.dropout_prob > 0
|
| 117 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
| 118 |
+
labels = self.token_drop(labels, force_drop_ids)
|
| 119 |
+
embeddings = self.embedding_table(labels)
|
| 120 |
+
return embeddings
|
| 121 |
+
|
| 122 |
+
class DiTBlock(nn.Module):
|
| 123 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, use_ndmlp=False, use_variant=4, use_ndadaln=False, **block_kwargs):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 126 |
+
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
|
| 127 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 128 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
| 129 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
| 130 |
+
if use_ndmlp:
|
| 131 |
+
self.mlp = NdMlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, use_variant=use_variant)
|
| 132 |
+
else:
|
| 133 |
+
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
|
| 134 |
+
|
| 135 |
+
def forward(self, x, c):
|
| 136 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
|
| 137 |
+
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
|
| 138 |
+
modulated_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
|
| 139 |
+
mlp_output = self.mlp(modulated_x)
|
| 140 |
+
gated_mlp_output = gate_mlp.unsqueeze(1) * mlp_output
|
| 141 |
+
x = x + gated_mlp_output
|
| 142 |
+
return x
|
| 143 |
+
|
| 144 |
+
class FinalLayer(nn.Module):
|
| 145 |
+
def __init__(self, hidden_size, patch_size, out_channels, use_ndadaln=False):
|
| 146 |
+
super().__init__()
|
| 147 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 148 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
| 149 |
+
self.use_ndadaln = use_ndadaln
|
| 150 |
+
if self.use_ndadaln:
|
| 151 |
+
self.adaLN_modulation = nn.Sequential(
|
| 152 |
+
nn.SiLU(),
|
| 153 |
+
NdLinear((hidden_size, 1), (2 * hidden_size, 1))
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
self.adaLN_modulation = nn.Sequential(
|
| 157 |
+
nn.SiLU(),
|
| 158 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def forward(self, x, c):
|
| 162 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
| 163 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 164 |
+
x = self.linear(x)
|
| 165 |
+
return x
|
| 166 |
+
|
| 167 |
+
class DiTConfig(PretrainedConfig):
|
| 168 |
+
model_type = "ndlinear_dit"
|
| 169 |
+
|
| 170 |
+
def __init__(self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, use_ndmlp=False, use_ndtse=False, use_variant=4, tse_scale_factor=2, use_num_transforms=2, **kwargs):
|
| 171 |
+
super().__init__(**kwargs)
|
| 172 |
+
self.input_size = input_size
|
| 173 |
+
self.patch_size = patch_size
|
| 174 |
+
self.in_channels = in_channels
|
| 175 |
+
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
| 176 |
+
self.hidden_size = hidden_size
|
| 177 |
+
self.depth = depth
|
| 178 |
+
self.num_heads = num_heads
|
| 179 |
+
self.mlp_ratio = mlp_ratio
|
| 180 |
+
self.class_dropout_prob = class_dropout_prob
|
| 181 |
+
self.num_classes = num_classes
|
| 182 |
+
self.learn_sigma = learn_sigma
|
| 183 |
+
self.use_ndmlp = use_ndmlp
|
| 184 |
+
self.use_ndtse = use_ndtse
|
| 185 |
+
self.use_variant = use_variant
|
| 186 |
+
self.tse_scale_factor = tse_scale_factor
|
| 187 |
+
self.use_num_transforms = use_num_transforms
|
| 188 |
+
|
| 189 |
+
class DiT(PreTrainedModel):
|
| 190 |
+
config_class = DiTConfig
|
| 191 |
+
|
| 192 |
+
def __init__(self, config):
|
| 193 |
+
super().__init__(config)
|
| 194 |
+
self.input_size = config.input_size
|
| 195 |
+
self.patch_size = config.patch_size
|
| 196 |
+
self.in_channels = config.in_channels
|
| 197 |
+
self.hidden_size = config.hidden_size
|
| 198 |
+
self.depth = config.depth
|
| 199 |
+
self.num_heads = config.num_heads
|
| 200 |
+
self.mlp_ratio = config.mlp_ratio
|
| 201 |
+
self.class_dropout_prob = config.class_dropout_prob
|
| 202 |
+
self.num_classes = config.num_classes
|
| 203 |
+
self.learn_sigma = config.learn_sigma
|
| 204 |
+
self.use_ndmlp = config.use_ndmlp
|
| 205 |
+
self.use_ndtse = config.use_ndtse
|
| 206 |
+
self.use_variant = config.use_variant
|
| 207 |
+
self.tse_scale_factor = config.tse_scale_factor
|
| 208 |
+
self.use_num_transforms = config.use_num_transforms
|
| 209 |
+
self.out_channels = config.out_channels
|
| 210 |
+
self.ndadaln = getattr(config, "ndadaln", False)
|
| 211 |
+
|
| 212 |
+
self.x_embedder = PatchEmbed(self.input_size, self.patch_size, self.in_channels, self.hidden_size, bias=True)
|
| 213 |
+
|
| 214 |
+
if self.use_ndtse:
|
| 215 |
+
self.t_embedder = NdTimestepEmbedder(
|
| 216 |
+
hidden_size=self.hidden_size,
|
| 217 |
+
frequency_embedding_size=256,
|
| 218 |
+
use_num_transforms=self.use_num_transforms,
|
| 219 |
+
tse_scale_factor=1,
|
| 220 |
+
knowledge_transfer=False,
|
| 221 |
+
src_layers=None
|
| 222 |
+
)
|
| 223 |
+
else:
|
| 224 |
+
self.t_embedder = TimestepEmbedder(self.hidden_size)
|
| 225 |
+
|
| 226 |
+
self.y_embedder = LabelEmbedder(self.num_classes, self.hidden_size, self.class_dropout_prob)
|
| 227 |
+
num_patches = self.x_embedder.num_patches
|
| 228 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.hidden_size), requires_grad=False)
|
| 229 |
+
|
| 230 |
+
self.blocks = nn.ModuleList([
|
| 231 |
+
DiTBlock(self.hidden_size, self.num_heads, mlp_ratio=self.mlp_ratio,
|
| 232 |
+
use_ndmlp=self.use_ndmlp, use_variant=self.use_variant)
|
| 233 |
+
for _ in range(self.depth)
|
| 234 |
+
])
|
| 235 |
+
if self.use_ndmlp:
|
| 236 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
| 237 |
+
for idx, layer in enumerate(self.blocks):
|
| 238 |
+
if idx % 2 == 0:
|
| 239 |
+
layer.mlp = NdMlp(
|
| 240 |
+
in_features=self.hidden_size,
|
| 241 |
+
hidden_features=self.hidden_size * 4,
|
| 242 |
+
act_layer=approx_gelu,
|
| 243 |
+
drop=0,
|
| 244 |
+
use_variant=self.use_variant
|
| 245 |
+
)
|
| 246 |
+
self.final_layer = FinalLayer(self.hidden_size, self.patch_size, self.out_channels, use_ndadaln=self.ndadaln)
|
| 247 |
+
self.initialize_weights()
|
| 248 |
+
|
| 249 |
+
def initialize_weights(self):
|
| 250 |
+
def _basic_init(module):
|
| 251 |
+
if isinstance(module, nn.Linear):
|
| 252 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 253 |
+
if module.bias is not None:
|
| 254 |
+
nn.init.constant_(module.bias, 0)
|
| 255 |
+
|
| 256 |
+
self.apply(_basic_init)
|
| 257 |
+
|
| 258 |
+
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
|
| 259 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
| 260 |
+
|
| 261 |
+
w = self.x_embedder.proj.weight.data
|
| 262 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 263 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
| 264 |
+
|
| 265 |
+
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
|
| 266 |
+
|
| 267 |
+
if not self.use_ndtse:
|
| 268 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 269 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 270 |
+
|
| 271 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 272 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 273 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 274 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 275 |
+
|
| 276 |
+
def unpatchify(self, x):
|
| 277 |
+
c = self.out_channels
|
| 278 |
+
p = self.x_embedder.patch_size[0]
|
| 279 |
+
h = w = int(x.shape[1] ** 0.5)
|
| 280 |
+
assert h * w == x.shape[1]
|
| 281 |
+
|
| 282 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
| 283 |
+
x = torch.einsum('nhwpqc->nchpwq', x)
|
| 284 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
|
| 285 |
+
return imgs
|
| 286 |
+
|
| 287 |
+
def ckpt_wrapper(self, module):
|
| 288 |
+
def ckpt_forward(*inputs):
|
| 289 |
+
outputs = module(*inputs)
|
| 290 |
+
return outputs
|
| 291 |
+
|
| 292 |
+
return ckpt_forward
|
| 293 |
+
|
| 294 |
+
def forward(self, x, t, y):
|
| 295 |
+
x = self.x_embedder(x) + self.pos_embed
|
| 296 |
+
t = self.t_embedder(t)
|
| 297 |
+
y = self.y_embedder(y, self.training)
|
| 298 |
+
c = t + y
|
| 299 |
+
|
| 300 |
+
for block in self.blocks:
|
| 301 |
+
x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, c)
|
| 302 |
+
x = self.final_layer(x, c)
|
| 303 |
+
x = self.unpatchify(x)
|
| 304 |
+
return x
|
| 305 |
+
|
| 306 |
+
def forward_with_cfg(self, x, t, y, cfg_scale):
|
| 307 |
+
half = x[: len(x) // 2]
|
| 308 |
+
combined = torch.cat([half, half], dim=0)
|
| 309 |
+
model_out = self.forward(combined, t, y)
|
| 310 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 311 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 312 |
+
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
| 313 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
| 314 |
+
return torch.cat([eps, rest], dim=1)
|
| 315 |
+
|
| 316 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
| 317 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 318 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 319 |
+
grid = np.meshgrid(grid_w, grid_h)
|
| 320 |
+
grid = np.stack(grid, axis=0)
|
| 321 |
+
|
| 322 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 323 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 324 |
+
if cls_token and extra_tokens > 0:
|
| 325 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
| 326 |
+
return pos_embed
|
| 327 |
+
|
| 328 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 329 |
+
assert embed_dim % 2 == 0
|
| 330 |
+
|
| 331 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
|
| 332 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
|
| 333 |
+
|
| 334 |
+
emb = np.concatenate([emb_h, emb_w], axis=1)
|
| 335 |
+
return emb
|
| 336 |
+
|
| 337 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 338 |
+
assert embed_dim % 2 == 0
|
| 339 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 340 |
+
omega /= embed_dim / 2.
|
| 341 |
+
omega = 1. / 10000 ** omega
|
| 342 |
+
|
| 343 |
+
pos = pos.reshape(-1)
|
| 344 |
+
out = np.einsum('m,d->md', pos, omega)
|
| 345 |
+
|
| 346 |
+
emb_sin = np.sin(out)
|
| 347 |
+
emb_cos = np.cos(out)
|
| 348 |
+
|
| 349 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1)
|
| 350 |
+
return emb
|
| 351 |
+
|
| 352 |
+
def DiT_XL_2(**kwargs):
|
| 353 |
+
config = DiTConfig(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
|
| 354 |
+
return DiT(config)
|
| 355 |
+
|
| 356 |
+
def DiT_XL_4(**kwargs):
|
| 357 |
+
config = DiTConfig(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
|
| 358 |
+
return DiT(config)
|
| 359 |
+
|
| 360 |
+
def DiT_XL_8(**kwargs):
|
| 361 |
+
config = DiTConfig(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
|
| 362 |
+
return DiT(config)
|
| 363 |
+
|
| 364 |
+
def DiT_L_2(**kwargs):
|
| 365 |
+
config = DiTConfig(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
|
| 366 |
+
return DiT(config)
|
| 367 |
+
|
| 368 |
+
def DiT_L_4(**kwargs):
|
| 369 |
+
config = DiTConfig(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
|
| 370 |
+
return DiT(config)
|
| 371 |
+
|
| 372 |
+
def DiT_L_8(**kwargs):
|
| 373 |
+
config = DiTConfig(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
|
| 374 |
+
return DiT(config)
|
| 375 |
+
|
| 376 |
+
def DiT_B_2(**kwargs):
|
| 377 |
+
config = DiTConfig(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
|
| 378 |
+
return DiT(config)
|
| 379 |
+
|
| 380 |
+
def DiT_B_4(**kwargs):
|
| 381 |
+
config = DiTConfig(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
|
| 382 |
+
return DiT(config)
|
| 383 |
+
|
| 384 |
+
def DiT_B_8(**kwargs):
|
| 385 |
+
config = DiTConfig(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
|
| 386 |
+
return DiT(config)
|
| 387 |
+
|
| 388 |
+
def DiT_S_2(**kwargs):
|
| 389 |
+
config = DiTConfig(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
| 390 |
+
return DiT(config)
|
| 391 |
+
|
| 392 |
+
def DiT_S_4(**kwargs):
|
| 393 |
+
config = DiTConfig(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
| 394 |
+
return DiT(config)
|
| 395 |
+
|
| 396 |
+
def DiT_S_8(**kwargs):
|
| 397 |
+
config = DiTConfig(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
| 398 |
+
return DiT(config)
|
| 399 |
+
|
| 400 |
+
def DiT_MS_2(**kwargs):
|
| 401 |
+
config = DiTConfig(depth=6, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
| 402 |
+
return DiT(config)
|
| 403 |
+
|
| 404 |
+
def DiT_MS_4(**kwargs):
|
| 405 |
+
config = DiTConfig(depth=6, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
| 406 |
+
return DiT(config)
|
| 407 |
+
|
| 408 |
+
def DiT_MS_8(**kwargs):
|
| 409 |
+
config = DiTConfig(depth=6, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
| 410 |
+
return DiT(config)
|
| 411 |
+
|
| 412 |
+
def DiT_XS_2(**kwargs):
|
| 413 |
+
config = DiTConfig(depth=1, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
| 414 |
+
return DiT(config)
|
| 415 |
+
|
| 416 |
+
def DiT_XS_4(**kwargs):
|
| 417 |
+
config = DiTConfig(depth=1, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
| 418 |
+
return DiT(config)
|
| 419 |
+
|
| 420 |
+
def DiT_XS_8(**kwargs):
|
| 421 |
+
config = DiTConfig(depth=1, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
| 422 |
+
return DiT(config)
|
| 423 |
+
|
| 424 |
+
DiT_models = {
|
| 425 |
+
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
|
| 426 |
+
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
|
| 427 |
+
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
|
| 428 |
+
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
|
| 429 |
+
'DiT-XS/2': DiT_XS_2, 'DiT-XS/4': DiT_XS_4, 'DiT-XS/8': DiT_XS_8,
|
| 430 |
+
'DiT-MS/2': DiT_MS_2, 'DiT-MS/4': DiT_MS_4, 'DiT-MS/8': DiT_MS_8
|
| 431 |
+
}
|
ndlinear.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class NdLinear(nn.Module):
|
| 8 |
+
def __init__(self, input_dims: tuple, hidden_size: tuple, transform_outer=True, act_func=None, use_bias=True):
|
| 9 |
+
"""
|
| 10 |
+
NdLinear: A PyTorch layer for projecting tensors into multi-space representations.
|
| 11 |
+
|
| 12 |
+
Unlike conventional embedding layers that map into a single vector space, NdLinear
|
| 13 |
+
transforms tensors across a collection of vector spaces, capturing multivariate structure
|
| 14 |
+
and topical information that standard deep learning architectures typically lose.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
input_dims (tuple): Shape of input tensor (excluding batch dimension).
|
| 18 |
+
hidden_size (tuple): Target hidden dimensions after transformation.
|
| 19 |
+
"""
|
| 20 |
+
super(NdLinear, self).__init__()
|
| 21 |
+
|
| 22 |
+
if len(input_dims) != len(hidden_size):
|
| 23 |
+
raise Exception("Input shape and hidden shape do not match.")
|
| 24 |
+
|
| 25 |
+
self.input_dims = input_dims
|
| 26 |
+
self.hidden_size = hidden_size
|
| 27 |
+
self.num_layers = len(input_dims) # Must match since dims are equal
|
| 28 |
+
# Custom activation function. Default to Identity -> Do nothing.
|
| 29 |
+
self.act_func = act_func if act_func is not None else nn.Identity()
|
| 30 |
+
self.transform_outer = transform_outer
|
| 31 |
+
|
| 32 |
+
# Define transformation layers per dimension
|
| 33 |
+
self.align_layers = nn.ModuleList([
|
| 34 |
+
nn.Linear(input_dims[i], hidden_size[i], bias=use_bias) for i in range(self.num_layers)
|
| 35 |
+
])
|
| 36 |
+
self.initialize_weights()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def initialize_weights(self, mean=0.0, std=0.02):
|
| 40 |
+
for layer in self.align_layers:
|
| 41 |
+
nn.init.normal_(layer.weight, mean=mean, std=std)
|
| 42 |
+
if layer.bias is not None:
|
| 43 |
+
nn.init.constant_(layer.bias, 0)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def forward(self, X):
|
| 47 |
+
"""
|
| 48 |
+
Forward pass to project input tensor into a new multi-space representation.
|
| 49 |
+
- Incrementally transposes, flattens, applies linear layers, and restores shape.
|
| 50 |
+
|
| 51 |
+
Expected Input Shape: [batch_size, *input_dims]
|
| 52 |
+
Output Shape: [batch_size, *hidden_size]
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
X (torch.Tensor): Input tensor with shape [batch_size, *input_dims]
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
torch.Tensor: Output tensor with shape [batch_size, *hidden_size]
|
| 59 |
+
"""
|
| 60 |
+
num_transforms = self.num_layers # Number of transformations
|
| 61 |
+
|
| 62 |
+
# Define iteration order
|
| 63 |
+
# transform_indices = range(num_transforms) if transform_outer else reversed(range(num_transforms))
|
| 64 |
+
|
| 65 |
+
for i in range(num_transforms):
|
| 66 |
+
if self.transform_outer:
|
| 67 |
+
layer = self.align_layers[i]
|
| 68 |
+
transpose_dim = i + 1
|
| 69 |
+
else:
|
| 70 |
+
layer = self.align_layers[num_transforms - (i+1)]
|
| 71 |
+
transpose_dim = num_transforms - i
|
| 72 |
+
|
| 73 |
+
# Transpose the selected dimension to the last position
|
| 74 |
+
X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
|
| 75 |
+
|
| 76 |
+
# Store original shape before transformation
|
| 77 |
+
X_size = X.shape[:-1]
|
| 78 |
+
|
| 79 |
+
# Flatten everything except the last dimension
|
| 80 |
+
X = X.view(-1, X.shape[-1])
|
| 81 |
+
|
| 82 |
+
# Apply transformation
|
| 83 |
+
X = self.act_func(layer(X))
|
| 84 |
+
|
| 85 |
+
# Reshape back to the original spatial structure (with new embedding dim)
|
| 86 |
+
X = X.view(*X_size, X.shape[-1])
|
| 87 |
+
|
| 88 |
+
# Transpose the dimension back to its original position
|
| 89 |
+
X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
|
| 90 |
+
|
| 91 |
+
return X
|