Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- Qwen3-1.7B-CSQA-NdLinearLoRA.safetensors +3 -0
- README.md +67 -3
- added_tokens.json +28 -0
- config.json +30 -0
- merges.txt +0 -0
- modeling_ndlinear.py +53 -0
- ndlinear.py +82 -0
- ndlinear_lora_config.json +2372 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Qwen3-1.7B-CSQA-NdLinearLoRA.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9dbc1819dbd6f801bc1c052f07073c0c3affd9094460af3ed7881cd9502a076
|
| 3 |
+
size 8131640472
|
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language: en
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# NdLinear-LoRA Fine-Tuned Models
|
| 7 |
+
|
| 8 |
+
This repository contains a collection of language models fine-tuned using a custom NdLinear-LoRA architecture. NdLinear-LoRA is a variant of Low-Rank Adaptation (LoRA) that reshapes weight matrices into N-dimensional tensors and applies a factorized linear transformation for parameter-efficient fine-tuning.
|
| 9 |
+
|
| 10 |
+
## Available Models
|
| 11 |
+
|
| 12 |
+
Below is a list of the fine-tuned models. For best results, it's recommended to host each model in its own repository on the Hugging Face Hub.
|
| 13 |
+
|
| 14 |
+
| Fine-Tuned Model Name | Base Model | Fine-Tuning Dataset |
|
| 15 |
+
| ------------------------------------------------ | -------------------------- | ------------------- |
|
| 16 |
+
| `Meta-Llama-3-8B-CSQA-NdLinearLoRA` | `meta-llama/Llama-3-8B` | `commonsense_qa` |
|
| 17 |
+
| `Meta-Llama-3-8B-Math10K-NdLinearLoRA` | `meta-llama/Llama-3-8B` | `lmms-lab/Math10K` |
|
| 18 |
+
| `Qwen3-1.7B-CSQA-NdLinearLoRA` | `Qwen/Qwen3-1.7B-Base` | `commonsense_qa` |
|
| 19 |
+
| `Qwen3-1.7B-Math10K-NdLinearLoRA` | `Qwen/Qwen3-1.7B-Base` | `lmms-lab/Math10K` |
|
| 20 |
+
|
| 21 |
+
## How to Use
|
| 22 |
+
|
| 23 |
+
Because these models use a custom architecture, you must pass `trust_remote_code=True` when loading them. This allows the `transformers` library to download and use the `modeling_ndlinear.py` file that should be included in each model's repository.
|
| 24 |
+
|
| 25 |
+
**Dependencies:** Before you start, make sure you have the necessary libraries installed:
|
| 26 |
+
```bash
|
| 27 |
+
pip install torch transformers safetensors huggingface_hub accelerate
|
| 28 |
+
pip install ndlinear
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### Example Loading Script
|
| 32 |
+
This script will work for any of the models listed above. Just change the `REPO_ID`.
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
import torch
|
| 36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 37 |
+
|
| 38 |
+
# --- Example Usage ---
|
| 39 |
+
|
| 40 |
+
# 1. Choose the model you want to use from the table above
|
| 41 |
+
# Replace "YourUsername" with your Hugging Face username or organization.
|
| 42 |
+
REPO_ID = "YourUsername/Qwen3-1.7B-Math10K-NdLinearLoRA"
|
| 43 |
+
|
| 44 |
+
# 2. Load the model and tokenizer
|
| 45 |
+
# `trust_remote_code=True` is required to load the custom architecture.
|
| 46 |
+
print(f"Loading model: {REPO_ID}")
|
| 47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
+
REPO_ID,
|
| 49 |
+
torch_dtype="auto",
|
| 50 |
+
device_map="auto",
|
| 51 |
+
trust_remote_code=True
|
| 52 |
+
)
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained(REPO_ID)
|
| 54 |
+
print("Model and tokenizer loaded successfully.")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# 3. Generate text
|
| 58 |
+
# This prompt is geared for a math model. Adjust it for a QA model if needed.
|
| 59 |
+
prompt = "### Instruction:\\nSolve the following math problem: If a train travels at 60 miles per hour, how long does it take to travel 180 miles?\\n\\n### Solution:\\n"
|
| 60 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model.generate(**inputs, max_new_tokens=150, eos_token_id=tokenizer.eos_token_id)
|
| 64 |
+
|
| 65 |
+
print("\\n--- Generated Output ---")
|
| 66 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 67 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 2048,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 6144,
|
| 14 |
+
"max_position_embeddings": 32768,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 1000000,
|
| 23 |
+
"sliding_window": null,
|
| 24 |
+
"tie_word_embeddings": true,
|
| 25 |
+
"torch_dtype": "bfloat16",
|
| 26 |
+
"transformers_version": "4.51.0",
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_ndlinear.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from ndlinear import NdLinear
|
| 4 |
+
|
| 5 |
+
# This file contains the custom building blocks for the NdLinear-LoRA architecture.
|
| 6 |
+
# It should be in the same directory as the model when loading it.
|
| 7 |
+
|
| 8 |
+
def find_factor(n):
|
| 9 |
+
"""Finds the most balanced integer factors for n."""
|
| 10 |
+
for i in range(int(n ** 0.5), 0, -1):
|
| 11 |
+
if n % i == 0:
|
| 12 |
+
return (i, n // i)
|
| 13 |
+
return (1, n)
|
| 14 |
+
|
| 15 |
+
class NdLinearLoRA(nn.Module):
|
| 16 |
+
"""The NdLinear-LoRA adapter layer."""
|
| 17 |
+
def __init__(self, d_in, d_out, alpha=1.0, dropout=0.0):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.d_in = d_in
|
| 20 |
+
self.d_out = d_out
|
| 21 |
+
self.in_factors = find_factor(d_in)
|
| 22 |
+
self.out_factors = find_factor(d_out)
|
| 23 |
+
self.adapter = NdLinear(
|
| 24 |
+
input_dims=self.in_factors,
|
| 25 |
+
hidden_size=self.out_factors,
|
| 26 |
+
transform_outer=False,
|
| 27 |
+
bias=False
|
| 28 |
+
)
|
| 29 |
+
self.scaling = alpha
|
| 30 |
+
self.drop = nn.Dropout(dropout)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
orig_shape = x.shape
|
| 34 |
+
x = self.drop(x).view(-1, *self.in_factors)
|
| 35 |
+
y = self.adapter(x).view(*orig_shape[:-1], self.d_out)
|
| 36 |
+
return y * self.scaling
|
| 37 |
+
|
| 38 |
+
class LinearWithNdLinearLoRA(nn.Module):
|
| 39 |
+
"""A nn.Linear layer wrapped with the NdLinear-LoRA adapter."""
|
| 40 |
+
def __init__(self, base_layer, alpha=1.0, dropout=0.0):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.base_layer = base_layer
|
| 43 |
+
for param in self.base_layer.parameters():
|
| 44 |
+
param.requires_grad = False
|
| 45 |
+
self.adapter = NdLinearLoRA(
|
| 46 |
+
d_in=self.base_layer.in_features,
|
| 47 |
+
d_out=self.base_layer.out_features,
|
| 48 |
+
alpha=alpha,
|
| 49 |
+
dropout=dropout
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
return self.base_layer(x) + self.adapter(x)
|
ndlinear.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class NdLinear(nn.Module):
|
| 7 |
+
def __init__(self, input_dims: tuple, hidden_size: tuple, transform_outer=True, bias: bool = True):
|
| 8 |
+
"""
|
| 9 |
+
NdLinear: A PyTorch layer for projecting tensors into multi-space representations.
|
| 10 |
+
|
| 11 |
+
Unlike conventional embedding layers that map into a single vector space, NdLinear
|
| 12 |
+
transforms tensors across a collection of vector spaces, capturing multivariate structure
|
| 13 |
+
and topical information that standard deep learning architectures typically lose.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
input_dims (tuple): Shape of input tensor (excluding batch dimension).
|
| 17 |
+
hidden_size (tuple): Target hidden dimensions after transformation.
|
| 18 |
+
"""
|
| 19 |
+
super(NdLinear, self).__init__()
|
| 20 |
+
|
| 21 |
+
if len(input_dims) != len(hidden_size):
|
| 22 |
+
raise Exception("Input shape and hidden shape do not match.")
|
| 23 |
+
|
| 24 |
+
self.input_dims = input_dims
|
| 25 |
+
self.hidden_size = hidden_size
|
| 26 |
+
self.num_layers = len(input_dims) # Must match since dims are equal
|
| 27 |
+
# self.relu = nn.ReLU() # self.relu is not being used.
|
| 28 |
+
self.transform_outer = transform_outer
|
| 29 |
+
self.bias = bias
|
| 30 |
+
|
| 31 |
+
# Define transformation layers per dimension
|
| 32 |
+
self.align_layers = nn.ModuleList([
|
| 33 |
+
nn.Linear(input_dims[i], hidden_size[i], bias=self.bias) for i in range(self.num_layers)
|
| 34 |
+
])
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def forward(self, X):
|
| 38 |
+
"""
|
| 39 |
+
Forward pass to project input tensor into a new multi-space representation.
|
| 40 |
+
- Incrementally transposes, flattens, applies linear layers, and restores shape.
|
| 41 |
+
|
| 42 |
+
Expected Input Shape: [batch_size, *input_dims]
|
| 43 |
+
Output Shape: [batch_size, *hidden_size]
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
X (torch.Tensor): Input tensor with shape [batch_size, *input_dims]
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
torch.Tensor: Output tensor with shape [batch_size, *hidden_size]
|
| 50 |
+
"""
|
| 51 |
+
num_transforms = self.num_layers # Number of transformations
|
| 52 |
+
|
| 53 |
+
# Define iteration order
|
| 54 |
+
# transform_indices = range(num_transforms) if transform_outer else reversed(range(num_transforms))
|
| 55 |
+
|
| 56 |
+
for i in range(num_transforms):
|
| 57 |
+
if self.transform_outer:
|
| 58 |
+
layer = self.align_layers[i]
|
| 59 |
+
transpose_dim = i + 1
|
| 60 |
+
else:
|
| 61 |
+
layer = self.align_layers[num_transforms - (i+1)]
|
| 62 |
+
transpose_dim = num_transforms - i
|
| 63 |
+
|
| 64 |
+
# Transpose the selected dimension to the last position
|
| 65 |
+
X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
|
| 66 |
+
|
| 67 |
+
# Store original shape before transformation
|
| 68 |
+
X_size = X.shape[:-1]
|
| 69 |
+
|
| 70 |
+
# Flatten everything except the last dimension
|
| 71 |
+
X = X.view(-1, X.shape[-1])
|
| 72 |
+
|
| 73 |
+
# Apply transformation
|
| 74 |
+
X = layer(X)
|
| 75 |
+
|
| 76 |
+
# Reshape back to the original spatial structure (with new embedding dim)
|
| 77 |
+
X = X.view(*X_size, X.shape[-1])
|
| 78 |
+
|
| 79 |
+
# Transpose the dimension back to its original position
|
| 80 |
+
X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
|
| 81 |
+
|
| 82 |
+
return X
|
ndlinear_lora_config.json
ADDED
|
@@ -0,0 +1,2372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "Qwen/Qwen3-1.7B-Base",
|
| 3 |
+
"lora_r": 1,
|
| 4 |
+
"lora_alpha": 1,
|
| 5 |
+
"target_modules": [
|
| 6 |
+
"q_proj",
|
| 7 |
+
"k_proj",
|
| 8 |
+
"v_proj",
|
| 9 |
+
"o_proj",
|
| 10 |
+
"gate_proj",
|
| 11 |
+
"up_proj",
|
| 12 |
+
"down_proj"
|
| 13 |
+
],
|
| 14 |
+
"use_factorized": true,
|
| 15 |
+
"wrapped_modules": {
|
| 16 |
+
"model.layers.0.self_attn.q_proj": {
|
| 17 |
+
"in_features": 2048,
|
| 18 |
+
"out_features": 2048,
|
| 19 |
+
"in_factors": [
|
| 20 |
+
32,
|
| 21 |
+
64
|
| 22 |
+
],
|
| 23 |
+
"out_factors": [
|
| 24 |
+
32,
|
| 25 |
+
64
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
"model.layers.0.self_attn.k_proj": {
|
| 29 |
+
"in_features": 2048,
|
| 30 |
+
"out_features": 1024,
|
| 31 |
+
"in_factors": [
|
| 32 |
+
32,
|
| 33 |
+
64
|
| 34 |
+
],
|
| 35 |
+
"out_factors": [
|
| 36 |
+
32,
|
| 37 |
+
32
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
"model.layers.0.self_attn.v_proj": {
|
| 41 |
+
"in_features": 2048,
|
| 42 |
+
"out_features": 1024,
|
| 43 |
+
"in_factors": [
|
| 44 |
+
32,
|
| 45 |
+
64
|
| 46 |
+
],
|
| 47 |
+
"out_factors": [
|
| 48 |
+
32,
|
| 49 |
+
32
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
"model.layers.0.self_attn.o_proj": {
|
| 53 |
+
"in_features": 2048,
|
| 54 |
+
"out_features": 2048,
|
| 55 |
+
"in_factors": [
|
| 56 |
+
32,
|
| 57 |
+
64
|
| 58 |
+
],
|
| 59 |
+
"out_factors": [
|
| 60 |
+
32,
|
| 61 |
+
64
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
"model.layers.0.mlp.gate_proj": {
|
| 65 |
+
"in_features": 2048,
|
| 66 |
+
"out_features": 6144,
|
| 67 |
+
"in_factors": [
|
| 68 |
+
32,
|
| 69 |
+
64
|
| 70 |
+
],
|
| 71 |
+
"out_factors": [
|
| 72 |
+
64,
|
| 73 |
+
96
|
| 74 |
+
]
|
| 75 |
+
},
|
| 76 |
+
"model.layers.0.mlp.up_proj": {
|
| 77 |
+
"in_features": 2048,
|
| 78 |
+
"out_features": 6144,
|
| 79 |
+
"in_factors": [
|
| 80 |
+
32,
|
| 81 |
+
64
|
| 82 |
+
],
|
| 83 |
+
"out_factors": [
|
| 84 |
+
64,
|
| 85 |
+
96
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
"model.layers.0.mlp.down_proj": {
|
| 89 |
+
"in_features": 6144,
|
| 90 |
+
"out_features": 2048,
|
| 91 |
+
"in_factors": [
|
| 92 |
+
64,
|
| 93 |
+
96
|
| 94 |
+
],
|
| 95 |
+
"out_factors": [
|
| 96 |
+
32,
|
| 97 |
+
64
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
"model.layers.1.self_attn.q_proj": {
|
| 101 |
+
"in_features": 2048,
|
| 102 |
+
"out_features": 2048,
|
| 103 |
+
"in_factors": [
|
| 104 |
+
32,
|
| 105 |
+
64
|
| 106 |
+
],
|
| 107 |
+
"out_factors": [
|
| 108 |
+
32,
|
| 109 |
+
64
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
"model.layers.1.self_attn.k_proj": {
|
| 113 |
+
"in_features": 2048,
|
| 114 |
+
"out_features": 1024,
|
| 115 |
+
"in_factors": [
|
| 116 |
+
32,
|
| 117 |
+
64
|
| 118 |
+
],
|
| 119 |
+
"out_factors": [
|
| 120 |
+
32,
|
| 121 |
+
32
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
"model.layers.1.self_attn.v_proj": {
|
| 125 |
+
"in_features": 2048,
|
| 126 |
+
"out_features": 1024,
|
| 127 |
+
"in_factors": [
|
| 128 |
+
32,
|
| 129 |
+
64
|
| 130 |
+
],
|
| 131 |
+
"out_factors": [
|
| 132 |
+
32,
|
| 133 |
+
32
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
"model.layers.1.self_attn.o_proj": {
|
| 137 |
+
"in_features": 2048,
|
| 138 |
+
"out_features": 2048,
|
| 139 |
+
"in_factors": [
|
| 140 |
+
32,
|
| 141 |
+
64
|
| 142 |
+
],
|
| 143 |
+
"out_factors": [
|
| 144 |
+
32,
|
| 145 |
+
64
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
"model.layers.1.mlp.gate_proj": {
|
| 149 |
+
"in_features": 2048,
|
| 150 |
+
"out_features": 6144,
|
| 151 |
+
"in_factors": [
|
| 152 |
+
32,
|
| 153 |
+
64
|
| 154 |
+
],
|
| 155 |
+
"out_factors": [
|
| 156 |
+
64,
|
| 157 |
+
96
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
"model.layers.1.mlp.up_proj": {
|
| 161 |
+
"in_features": 2048,
|
| 162 |
+
"out_features": 6144,
|
| 163 |
+
"in_factors": [
|
| 164 |
+
32,
|
| 165 |
+
64
|
| 166 |
+
],
|
| 167 |
+
"out_factors": [
|
| 168 |
+
64,
|
| 169 |
+
96
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"model.layers.1.mlp.down_proj": {
|
| 173 |
+
"in_features": 6144,
|
| 174 |
+
"out_features": 2048,
|
| 175 |
+
"in_factors": [
|
| 176 |
+
64,
|
| 177 |
+
96
|
| 178 |
+
],
|
| 179 |
+
"out_factors": [
|
| 180 |
+
32,
|
| 181 |
+
64
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
"model.layers.2.self_attn.q_proj": {
|
| 185 |
+
"in_features": 2048,
|
| 186 |
+
"out_features": 2048,
|
| 187 |
+
"in_factors": [
|
| 188 |
+
32,
|
| 189 |
+
64
|
| 190 |
+
],
|
| 191 |
+
"out_factors": [
|
| 192 |
+
32,
|
| 193 |
+
64
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
"model.layers.2.self_attn.k_proj": {
|
| 197 |
+
"in_features": 2048,
|
| 198 |
+
"out_features": 1024,
|
| 199 |
+
"in_factors": [
|
| 200 |
+
32,
|
| 201 |
+
64
|
| 202 |
+
],
|
| 203 |
+
"out_factors": [
|
| 204 |
+
32,
|
| 205 |
+
32
|
| 206 |
+
]
|
| 207 |
+
},
|
| 208 |
+
"model.layers.2.self_attn.v_proj": {
|
| 209 |
+
"in_features": 2048,
|
| 210 |
+
"out_features": 1024,
|
| 211 |
+
"in_factors": [
|
| 212 |
+
32,
|
| 213 |
+
64
|
| 214 |
+
],
|
| 215 |
+
"out_factors": [
|
| 216 |
+
32,
|
| 217 |
+
32
|
| 218 |
+
]
|
| 219 |
+
},
|
| 220 |
+
"model.layers.2.self_attn.o_proj": {
|
| 221 |
+
"in_features": 2048,
|
| 222 |
+
"out_features": 2048,
|
| 223 |
+
"in_factors": [
|
| 224 |
+
32,
|
| 225 |
+
64
|
| 226 |
+
],
|
| 227 |
+
"out_factors": [
|
| 228 |
+
32,
|
| 229 |
+
64
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
"model.layers.2.mlp.gate_proj": {
|
| 233 |
+
"in_features": 2048,
|
| 234 |
+
"out_features": 6144,
|
| 235 |
+
"in_factors": [
|
| 236 |
+
32,
|
| 237 |
+
64
|
| 238 |
+
],
|
| 239 |
+
"out_factors": [
|
| 240 |
+
64,
|
| 241 |
+
96
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
"model.layers.2.mlp.up_proj": {
|
| 245 |
+
"in_features": 2048,
|
| 246 |
+
"out_features": 6144,
|
| 247 |
+
"in_factors": [
|
| 248 |
+
32,
|
| 249 |
+
64
|
| 250 |
+
],
|
| 251 |
+
"out_factors": [
|
| 252 |
+
64,
|
| 253 |
+
96
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
"model.layers.2.mlp.down_proj": {
|
| 257 |
+
"in_features": 6144,
|
| 258 |
+
"out_features": 2048,
|
| 259 |
+
"in_factors": [
|
| 260 |
+
64,
|
| 261 |
+
96
|
| 262 |
+
],
|
| 263 |
+
"out_factors": [
|
| 264 |
+
32,
|
| 265 |
+
64
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
"model.layers.3.self_attn.q_proj": {
|
| 269 |
+
"in_features": 2048,
|
| 270 |
+
"out_features": 2048,
|
| 271 |
+
"in_factors": [
|
| 272 |
+
32,
|
| 273 |
+
64
|
| 274 |
+
],
|
| 275 |
+
"out_factors": [
|
| 276 |
+
32,
|
| 277 |
+
64
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
"model.layers.3.self_attn.k_proj": {
|
| 281 |
+
"in_features": 2048,
|
| 282 |
+
"out_features": 1024,
|
| 283 |
+
"in_factors": [
|
| 284 |
+
32,
|
| 285 |
+
64
|
| 286 |
+
],
|
| 287 |
+
"out_factors": [
|
| 288 |
+
32,
|
| 289 |
+
32
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
"model.layers.3.self_attn.v_proj": {
|
| 293 |
+
"in_features": 2048,
|
| 294 |
+
"out_features": 1024,
|
| 295 |
+
"in_factors": [
|
| 296 |
+
32,
|
| 297 |
+
64
|
| 298 |
+
],
|
| 299 |
+
"out_factors": [
|
| 300 |
+
32,
|
| 301 |
+
32
|
| 302 |
+
]
|
| 303 |
+
},
|
| 304 |
+
"model.layers.3.self_attn.o_proj": {
|
| 305 |
+
"in_features": 2048,
|
| 306 |
+
"out_features": 2048,
|
| 307 |
+
"in_factors": [
|
| 308 |
+
32,
|
| 309 |
+
64
|
| 310 |
+
],
|
| 311 |
+
"out_factors": [
|
| 312 |
+
32,
|
| 313 |
+
64
|
| 314 |
+
]
|
| 315 |
+
},
|
| 316 |
+
"model.layers.3.mlp.gate_proj": {
|
| 317 |
+
"in_features": 2048,
|
| 318 |
+
"out_features": 6144,
|
| 319 |
+
"in_factors": [
|
| 320 |
+
32,
|
| 321 |
+
64
|
| 322 |
+
],
|
| 323 |
+
"out_factors": [
|
| 324 |
+
64,
|
| 325 |
+
96
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
"model.layers.3.mlp.up_proj": {
|
| 329 |
+
"in_features": 2048,
|
| 330 |
+
"out_features": 6144,
|
| 331 |
+
"in_factors": [
|
| 332 |
+
32,
|
| 333 |
+
64
|
| 334 |
+
],
|
| 335 |
+
"out_factors": [
|
| 336 |
+
64,
|
| 337 |
+
96
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
"model.layers.3.mlp.down_proj": {
|
| 341 |
+
"in_features": 6144,
|
| 342 |
+
"out_features": 2048,
|
| 343 |
+
"in_factors": [
|
| 344 |
+
64,
|
| 345 |
+
96
|
| 346 |
+
],
|
| 347 |
+
"out_factors": [
|
| 348 |
+
32,
|
| 349 |
+
64
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
"model.layers.4.self_attn.q_proj": {
|
| 353 |
+
"in_features": 2048,
|
| 354 |
+
"out_features": 2048,
|
| 355 |
+
"in_factors": [
|
| 356 |
+
32,
|
| 357 |
+
64
|
| 358 |
+
],
|
| 359 |
+
"out_factors": [
|
| 360 |
+
32,
|
| 361 |
+
64
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
"model.layers.4.self_attn.k_proj": {
|
| 365 |
+
"in_features": 2048,
|
| 366 |
+
"out_features": 1024,
|
| 367 |
+
"in_factors": [
|
| 368 |
+
32,
|
| 369 |
+
64
|
| 370 |
+
],
|
| 371 |
+
"out_factors": [
|
| 372 |
+
32,
|
| 373 |
+
32
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
"model.layers.4.self_attn.v_proj": {
|
| 377 |
+
"in_features": 2048,
|
| 378 |
+
"out_features": 1024,
|
| 379 |
+
"in_factors": [
|
| 380 |
+
32,
|
| 381 |
+
64
|
| 382 |
+
],
|
| 383 |
+
"out_factors": [
|
| 384 |
+
32,
|
| 385 |
+
32
|
| 386 |
+
]
|
| 387 |
+
},
|
| 388 |
+
"model.layers.4.self_attn.o_proj": {
|
| 389 |
+
"in_features": 2048,
|
| 390 |
+
"out_features": 2048,
|
| 391 |
+
"in_factors": [
|
| 392 |
+
32,
|
| 393 |
+
64
|
| 394 |
+
],
|
| 395 |
+
"out_factors": [
|
| 396 |
+
32,
|
| 397 |
+
64
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
"model.layers.4.mlp.gate_proj": {
|
| 401 |
+
"in_features": 2048,
|
| 402 |
+
"out_features": 6144,
|
| 403 |
+
"in_factors": [
|
| 404 |
+
32,
|
| 405 |
+
64
|
| 406 |
+
],
|
| 407 |
+
"out_factors": [
|
| 408 |
+
64,
|
| 409 |
+
96
|
| 410 |
+
]
|
| 411 |
+
},
|
| 412 |
+
"model.layers.4.mlp.up_proj": {
|
| 413 |
+
"in_features": 2048,
|
| 414 |
+
"out_features": 6144,
|
| 415 |
+
"in_factors": [
|
| 416 |
+
32,
|
| 417 |
+
64
|
| 418 |
+
],
|
| 419 |
+
"out_factors": [
|
| 420 |
+
64,
|
| 421 |
+
96
|
| 422 |
+
]
|
| 423 |
+
},
|
| 424 |
+
"model.layers.4.mlp.down_proj": {
|
| 425 |
+
"in_features": 6144,
|
| 426 |
+
"out_features": 2048,
|
| 427 |
+
"in_factors": [
|
| 428 |
+
64,
|
| 429 |
+
96
|
| 430 |
+
],
|
| 431 |
+
"out_factors": [
|
| 432 |
+
32,
|
| 433 |
+
64
|
| 434 |
+
]
|
| 435 |
+
},
|
| 436 |
+
"model.layers.5.self_attn.q_proj": {
|
| 437 |
+
"in_features": 2048,
|
| 438 |
+
"out_features": 2048,
|
| 439 |
+
"in_factors": [
|
| 440 |
+
32,
|
| 441 |
+
64
|
| 442 |
+
],
|
| 443 |
+
"out_factors": [
|
| 444 |
+
32,
|
| 445 |
+
64
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
"model.layers.5.self_attn.k_proj": {
|
| 449 |
+
"in_features": 2048,
|
| 450 |
+
"out_features": 1024,
|
| 451 |
+
"in_factors": [
|
| 452 |
+
32,
|
| 453 |
+
64
|
| 454 |
+
],
|
| 455 |
+
"out_factors": [
|
| 456 |
+
32,
|
| 457 |
+
32
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
"model.layers.5.self_attn.v_proj": {
|
| 461 |
+
"in_features": 2048,
|
| 462 |
+
"out_features": 1024,
|
| 463 |
+
"in_factors": [
|
| 464 |
+
32,
|
| 465 |
+
64
|
| 466 |
+
],
|
| 467 |
+
"out_factors": [
|
| 468 |
+
32,
|
| 469 |
+
32
|
| 470 |
+
]
|
| 471 |
+
},
|
| 472 |
+
"model.layers.5.self_attn.o_proj": {
|
| 473 |
+
"in_features": 2048,
|
| 474 |
+
"out_features": 2048,
|
| 475 |
+
"in_factors": [
|
| 476 |
+
32,
|
| 477 |
+
64
|
| 478 |
+
],
|
| 479 |
+
"out_factors": [
|
| 480 |
+
32,
|
| 481 |
+
64
|
| 482 |
+
]
|
| 483 |
+
},
|
| 484 |
+
"model.layers.5.mlp.gate_proj": {
|
| 485 |
+
"in_features": 2048,
|
| 486 |
+
"out_features": 6144,
|
| 487 |
+
"in_factors": [
|
| 488 |
+
32,
|
| 489 |
+
64
|
| 490 |
+
],
|
| 491 |
+
"out_factors": [
|
| 492 |
+
64,
|
| 493 |
+
96
|
| 494 |
+
]
|
| 495 |
+
},
|
| 496 |
+
"model.layers.5.mlp.up_proj": {
|
| 497 |
+
"in_features": 2048,
|
| 498 |
+
"out_features": 6144,
|
| 499 |
+
"in_factors": [
|
| 500 |
+
32,
|
| 501 |
+
64
|
| 502 |
+
],
|
| 503 |
+
"out_factors": [
|
| 504 |
+
64,
|
| 505 |
+
96
|
| 506 |
+
]
|
| 507 |
+
},
|
| 508 |
+
"model.layers.5.mlp.down_proj": {
|
| 509 |
+
"in_features": 6144,
|
| 510 |
+
"out_features": 2048,
|
| 511 |
+
"in_factors": [
|
| 512 |
+
64,
|
| 513 |
+
96
|
| 514 |
+
],
|
| 515 |
+
"out_factors": [
|
| 516 |
+
32,
|
| 517 |
+
64
|
| 518 |
+
]
|
| 519 |
+
},
|
| 520 |
+
"model.layers.6.self_attn.q_proj": {
|
| 521 |
+
"in_features": 2048,
|
| 522 |
+
"out_features": 2048,
|
| 523 |
+
"in_factors": [
|
| 524 |
+
32,
|
| 525 |
+
64
|
| 526 |
+
],
|
| 527 |
+
"out_factors": [
|
| 528 |
+
32,
|
| 529 |
+
64
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
"model.layers.6.self_attn.k_proj": {
|
| 533 |
+
"in_features": 2048,
|
| 534 |
+
"out_features": 1024,
|
| 535 |
+
"in_factors": [
|
| 536 |
+
32,
|
| 537 |
+
64
|
| 538 |
+
],
|
| 539 |
+
"out_factors": [
|
| 540 |
+
32,
|
| 541 |
+
32
|
| 542 |
+
]
|
| 543 |
+
},
|
| 544 |
+
"model.layers.6.self_attn.v_proj": {
|
| 545 |
+
"in_features": 2048,
|
| 546 |
+
"out_features": 1024,
|
| 547 |
+
"in_factors": [
|
| 548 |
+
32,
|
| 549 |
+
64
|
| 550 |
+
],
|
| 551 |
+
"out_factors": [
|
| 552 |
+
32,
|
| 553 |
+
32
|
| 554 |
+
]
|
| 555 |
+
},
|
| 556 |
+
"model.layers.6.self_attn.o_proj": {
|
| 557 |
+
"in_features": 2048,
|
| 558 |
+
"out_features": 2048,
|
| 559 |
+
"in_factors": [
|
| 560 |
+
32,
|
| 561 |
+
64
|
| 562 |
+
],
|
| 563 |
+
"out_factors": [
|
| 564 |
+
32,
|
| 565 |
+
64
|
| 566 |
+
]
|
| 567 |
+
},
|
| 568 |
+
"model.layers.6.mlp.gate_proj": {
|
| 569 |
+
"in_features": 2048,
|
| 570 |
+
"out_features": 6144,
|
| 571 |
+
"in_factors": [
|
| 572 |
+
32,
|
| 573 |
+
64
|
| 574 |
+
],
|
| 575 |
+
"out_factors": [
|
| 576 |
+
64,
|
| 577 |
+
96
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
"model.layers.6.mlp.up_proj": {
|
| 581 |
+
"in_features": 2048,
|
| 582 |
+
"out_features": 6144,
|
| 583 |
+
"in_factors": [
|
| 584 |
+
32,
|
| 585 |
+
64
|
| 586 |
+
],
|
| 587 |
+
"out_factors": [
|
| 588 |
+
64,
|
| 589 |
+
96
|
| 590 |
+
]
|
| 591 |
+
},
|
| 592 |
+
"model.layers.6.mlp.down_proj": {
|
| 593 |
+
"in_features": 6144,
|
| 594 |
+
"out_features": 2048,
|
| 595 |
+
"in_factors": [
|
| 596 |
+
64,
|
| 597 |
+
96
|
| 598 |
+
],
|
| 599 |
+
"out_factors": [
|
| 600 |
+
32,
|
| 601 |
+
64
|
| 602 |
+
]
|
| 603 |
+
},
|
| 604 |
+
"model.layers.7.self_attn.q_proj": {
|
| 605 |
+
"in_features": 2048,
|
| 606 |
+
"out_features": 2048,
|
| 607 |
+
"in_factors": [
|
| 608 |
+
32,
|
| 609 |
+
64
|
| 610 |
+
],
|
| 611 |
+
"out_factors": [
|
| 612 |
+
32,
|
| 613 |
+
64
|
| 614 |
+
]
|
| 615 |
+
},
|
| 616 |
+
"model.layers.7.self_attn.k_proj": {
|
| 617 |
+
"in_features": 2048,
|
| 618 |
+
"out_features": 1024,
|
| 619 |
+
"in_factors": [
|
| 620 |
+
32,
|
| 621 |
+
64
|
| 622 |
+
],
|
| 623 |
+
"out_factors": [
|
| 624 |
+
32,
|
| 625 |
+
32
|
| 626 |
+
]
|
| 627 |
+
},
|
| 628 |
+
"model.layers.7.self_attn.v_proj": {
|
| 629 |
+
"in_features": 2048,
|
| 630 |
+
"out_features": 1024,
|
| 631 |
+
"in_factors": [
|
| 632 |
+
32,
|
| 633 |
+
64
|
| 634 |
+
],
|
| 635 |
+
"out_factors": [
|
| 636 |
+
32,
|
| 637 |
+
32
|
| 638 |
+
]
|
| 639 |
+
},
|
| 640 |
+
"model.layers.7.self_attn.o_proj": {
|
| 641 |
+
"in_features": 2048,
|
| 642 |
+
"out_features": 2048,
|
| 643 |
+
"in_factors": [
|
| 644 |
+
32,
|
| 645 |
+
64
|
| 646 |
+
],
|
| 647 |
+
"out_factors": [
|
| 648 |
+
32,
|
| 649 |
+
64
|
| 650 |
+
]
|
| 651 |
+
},
|
| 652 |
+
"model.layers.7.mlp.gate_proj": {
|
| 653 |
+
"in_features": 2048,
|
| 654 |
+
"out_features": 6144,
|
| 655 |
+
"in_factors": [
|
| 656 |
+
32,
|
| 657 |
+
64
|
| 658 |
+
],
|
| 659 |
+
"out_factors": [
|
| 660 |
+
64,
|
| 661 |
+
96
|
| 662 |
+
]
|
| 663 |
+
},
|
| 664 |
+
"model.layers.7.mlp.up_proj": {
|
| 665 |
+
"in_features": 2048,
|
| 666 |
+
"out_features": 6144,
|
| 667 |
+
"in_factors": [
|
| 668 |
+
32,
|
| 669 |
+
64
|
| 670 |
+
],
|
| 671 |
+
"out_factors": [
|
| 672 |
+
64,
|
| 673 |
+
96
|
| 674 |
+
]
|
| 675 |
+
},
|
| 676 |
+
"model.layers.7.mlp.down_proj": {
|
| 677 |
+
"in_features": 6144,
|
| 678 |
+
"out_features": 2048,
|
| 679 |
+
"in_factors": [
|
| 680 |
+
64,
|
| 681 |
+
96
|
| 682 |
+
],
|
| 683 |
+
"out_factors": [
|
| 684 |
+
32,
|
| 685 |
+
64
|
| 686 |
+
]
|
| 687 |
+
},
|
| 688 |
+
"model.layers.8.self_attn.q_proj": {
|
| 689 |
+
"in_features": 2048,
|
| 690 |
+
"out_features": 2048,
|
| 691 |
+
"in_factors": [
|
| 692 |
+
32,
|
| 693 |
+
64
|
| 694 |
+
],
|
| 695 |
+
"out_factors": [
|
| 696 |
+
32,
|
| 697 |
+
64
|
| 698 |
+
]
|
| 699 |
+
},
|
| 700 |
+
"model.layers.8.self_attn.k_proj": {
|
| 701 |
+
"in_features": 2048,
|
| 702 |
+
"out_features": 1024,
|
| 703 |
+
"in_factors": [
|
| 704 |
+
32,
|
| 705 |
+
64
|
| 706 |
+
],
|
| 707 |
+
"out_factors": [
|
| 708 |
+
32,
|
| 709 |
+
32
|
| 710 |
+
]
|
| 711 |
+
},
|
| 712 |
+
"model.layers.8.self_attn.v_proj": {
|
| 713 |
+
"in_features": 2048,
|
| 714 |
+
"out_features": 1024,
|
| 715 |
+
"in_factors": [
|
| 716 |
+
32,
|
| 717 |
+
64
|
| 718 |
+
],
|
| 719 |
+
"out_factors": [
|
| 720 |
+
32,
|
| 721 |
+
32
|
| 722 |
+
]
|
| 723 |
+
},
|
| 724 |
+
"model.layers.8.self_attn.o_proj": {
|
| 725 |
+
"in_features": 2048,
|
| 726 |
+
"out_features": 2048,
|
| 727 |
+
"in_factors": [
|
| 728 |
+
32,
|
| 729 |
+
64
|
| 730 |
+
],
|
| 731 |
+
"out_factors": [
|
| 732 |
+
32,
|
| 733 |
+
64
|
| 734 |
+
]
|
| 735 |
+
},
|
| 736 |
+
"model.layers.8.mlp.gate_proj": {
|
| 737 |
+
"in_features": 2048,
|
| 738 |
+
"out_features": 6144,
|
| 739 |
+
"in_factors": [
|
| 740 |
+
32,
|
| 741 |
+
64
|
| 742 |
+
],
|
| 743 |
+
"out_factors": [
|
| 744 |
+
64,
|
| 745 |
+
96
|
| 746 |
+
]
|
| 747 |
+
},
|
| 748 |
+
"model.layers.8.mlp.up_proj": {
|
| 749 |
+
"in_features": 2048,
|
| 750 |
+
"out_features": 6144,
|
| 751 |
+
"in_factors": [
|
| 752 |
+
32,
|
| 753 |
+
64
|
| 754 |
+
],
|
| 755 |
+
"out_factors": [
|
| 756 |
+
64,
|
| 757 |
+
96
|
| 758 |
+
]
|
| 759 |
+
},
|
| 760 |
+
"model.layers.8.mlp.down_proj": {
|
| 761 |
+
"in_features": 6144,
|
| 762 |
+
"out_features": 2048,
|
| 763 |
+
"in_factors": [
|
| 764 |
+
64,
|
| 765 |
+
96
|
| 766 |
+
],
|
| 767 |
+
"out_factors": [
|
| 768 |
+
32,
|
| 769 |
+
64
|
| 770 |
+
]
|
| 771 |
+
},
|
| 772 |
+
"model.layers.9.self_attn.q_proj": {
|
| 773 |
+
"in_features": 2048,
|
| 774 |
+
"out_features": 2048,
|
| 775 |
+
"in_factors": [
|
| 776 |
+
32,
|
| 777 |
+
64
|
| 778 |
+
],
|
| 779 |
+
"out_factors": [
|
| 780 |
+
32,
|
| 781 |
+
64
|
| 782 |
+
]
|
| 783 |
+
},
|
| 784 |
+
"model.layers.9.self_attn.k_proj": {
|
| 785 |
+
"in_features": 2048,
|
| 786 |
+
"out_features": 1024,
|
| 787 |
+
"in_factors": [
|
| 788 |
+
32,
|
| 789 |
+
64
|
| 790 |
+
],
|
| 791 |
+
"out_factors": [
|
| 792 |
+
32,
|
| 793 |
+
32
|
| 794 |
+
]
|
| 795 |
+
},
|
| 796 |
+
"model.layers.9.self_attn.v_proj": {
|
| 797 |
+
"in_features": 2048,
|
| 798 |
+
"out_features": 1024,
|
| 799 |
+
"in_factors": [
|
| 800 |
+
32,
|
| 801 |
+
64
|
| 802 |
+
],
|
| 803 |
+
"out_factors": [
|
| 804 |
+
32,
|
| 805 |
+
32
|
| 806 |
+
]
|
| 807 |
+
},
|
| 808 |
+
"model.layers.9.self_attn.o_proj": {
|
| 809 |
+
"in_features": 2048,
|
| 810 |
+
"out_features": 2048,
|
| 811 |
+
"in_factors": [
|
| 812 |
+
32,
|
| 813 |
+
64
|
| 814 |
+
],
|
| 815 |
+
"out_factors": [
|
| 816 |
+
32,
|
| 817 |
+
64
|
| 818 |
+
]
|
| 819 |
+
},
|
| 820 |
+
"model.layers.9.mlp.gate_proj": {
|
| 821 |
+
"in_features": 2048,
|
| 822 |
+
"out_features": 6144,
|
| 823 |
+
"in_factors": [
|
| 824 |
+
32,
|
| 825 |
+
64
|
| 826 |
+
],
|
| 827 |
+
"out_factors": [
|
| 828 |
+
64,
|
| 829 |
+
96
|
| 830 |
+
]
|
| 831 |
+
},
|
| 832 |
+
"model.layers.9.mlp.up_proj": {
|
| 833 |
+
"in_features": 2048,
|
| 834 |
+
"out_features": 6144,
|
| 835 |
+
"in_factors": [
|
| 836 |
+
32,
|
| 837 |
+
64
|
| 838 |
+
],
|
| 839 |
+
"out_factors": [
|
| 840 |
+
64,
|
| 841 |
+
96
|
| 842 |
+
]
|
| 843 |
+
},
|
| 844 |
+
"model.layers.9.mlp.down_proj": {
|
| 845 |
+
"in_features": 6144,
|
| 846 |
+
"out_features": 2048,
|
| 847 |
+
"in_factors": [
|
| 848 |
+
64,
|
| 849 |
+
96
|
| 850 |
+
],
|
| 851 |
+
"out_factors": [
|
| 852 |
+
32,
|
| 853 |
+
64
|
| 854 |
+
]
|
| 855 |
+
},
|
| 856 |
+
"model.layers.10.self_attn.q_proj": {
|
| 857 |
+
"in_features": 2048,
|
| 858 |
+
"out_features": 2048,
|
| 859 |
+
"in_factors": [
|
| 860 |
+
32,
|
| 861 |
+
64
|
| 862 |
+
],
|
| 863 |
+
"out_factors": [
|
| 864 |
+
32,
|
| 865 |
+
64
|
| 866 |
+
]
|
| 867 |
+
},
|
| 868 |
+
"model.layers.10.self_attn.k_proj": {
|
| 869 |
+
"in_features": 2048,
|
| 870 |
+
"out_features": 1024,
|
| 871 |
+
"in_factors": [
|
| 872 |
+
32,
|
| 873 |
+
64
|
| 874 |
+
],
|
| 875 |
+
"out_factors": [
|
| 876 |
+
32,
|
| 877 |
+
32
|
| 878 |
+
]
|
| 879 |
+
},
|
| 880 |
+
"model.layers.10.self_attn.v_proj": {
|
| 881 |
+
"in_features": 2048,
|
| 882 |
+
"out_features": 1024,
|
| 883 |
+
"in_factors": [
|
| 884 |
+
32,
|
| 885 |
+
64
|
| 886 |
+
],
|
| 887 |
+
"out_factors": [
|
| 888 |
+
32,
|
| 889 |
+
32
|
| 890 |
+
]
|
| 891 |
+
},
|
| 892 |
+
"model.layers.10.self_attn.o_proj": {
|
| 893 |
+
"in_features": 2048,
|
| 894 |
+
"out_features": 2048,
|
| 895 |
+
"in_factors": [
|
| 896 |
+
32,
|
| 897 |
+
64
|
| 898 |
+
],
|
| 899 |
+
"out_factors": [
|
| 900 |
+
32,
|
| 901 |
+
64
|
| 902 |
+
]
|
| 903 |
+
},
|
| 904 |
+
"model.layers.10.mlp.gate_proj": {
|
| 905 |
+
"in_features": 2048,
|
| 906 |
+
"out_features": 6144,
|
| 907 |
+
"in_factors": [
|
| 908 |
+
32,
|
| 909 |
+
64
|
| 910 |
+
],
|
| 911 |
+
"out_factors": [
|
| 912 |
+
64,
|
| 913 |
+
96
|
| 914 |
+
]
|
| 915 |
+
},
|
| 916 |
+
"model.layers.10.mlp.up_proj": {
|
| 917 |
+
"in_features": 2048,
|
| 918 |
+
"out_features": 6144,
|
| 919 |
+
"in_factors": [
|
| 920 |
+
32,
|
| 921 |
+
64
|
| 922 |
+
],
|
| 923 |
+
"out_factors": [
|
| 924 |
+
64,
|
| 925 |
+
96
|
| 926 |
+
]
|
| 927 |
+
},
|
| 928 |
+
"model.layers.10.mlp.down_proj": {
|
| 929 |
+
"in_features": 6144,
|
| 930 |
+
"out_features": 2048,
|
| 931 |
+
"in_factors": [
|
| 932 |
+
64,
|
| 933 |
+
96
|
| 934 |
+
],
|
| 935 |
+
"out_factors": [
|
| 936 |
+
32,
|
| 937 |
+
64
|
| 938 |
+
]
|
| 939 |
+
},
|
| 940 |
+
"model.layers.11.self_attn.q_proj": {
|
| 941 |
+
"in_features": 2048,
|
| 942 |
+
"out_features": 2048,
|
| 943 |
+
"in_factors": [
|
| 944 |
+
32,
|
| 945 |
+
64
|
| 946 |
+
],
|
| 947 |
+
"out_factors": [
|
| 948 |
+
32,
|
| 949 |
+
64
|
| 950 |
+
]
|
| 951 |
+
},
|
| 952 |
+
"model.layers.11.self_attn.k_proj": {
|
| 953 |
+
"in_features": 2048,
|
| 954 |
+
"out_features": 1024,
|
| 955 |
+
"in_factors": [
|
| 956 |
+
32,
|
| 957 |
+
64
|
| 958 |
+
],
|
| 959 |
+
"out_factors": [
|
| 960 |
+
32,
|
| 961 |
+
32
|
| 962 |
+
]
|
| 963 |
+
},
|
| 964 |
+
"model.layers.11.self_attn.v_proj": {
|
| 965 |
+
"in_features": 2048,
|
| 966 |
+
"out_features": 1024,
|
| 967 |
+
"in_factors": [
|
| 968 |
+
32,
|
| 969 |
+
64
|
| 970 |
+
],
|
| 971 |
+
"out_factors": [
|
| 972 |
+
32,
|
| 973 |
+
32
|
| 974 |
+
]
|
| 975 |
+
},
|
| 976 |
+
"model.layers.11.self_attn.o_proj": {
|
| 977 |
+
"in_features": 2048,
|
| 978 |
+
"out_features": 2048,
|
| 979 |
+
"in_factors": [
|
| 980 |
+
32,
|
| 981 |
+
64
|
| 982 |
+
],
|
| 983 |
+
"out_factors": [
|
| 984 |
+
32,
|
| 985 |
+
64
|
| 986 |
+
]
|
| 987 |
+
},
|
| 988 |
+
"model.layers.11.mlp.gate_proj": {
|
| 989 |
+
"in_features": 2048,
|
| 990 |
+
"out_features": 6144,
|
| 991 |
+
"in_factors": [
|
| 992 |
+
32,
|
| 993 |
+
64
|
| 994 |
+
],
|
| 995 |
+
"out_factors": [
|
| 996 |
+
64,
|
| 997 |
+
96
|
| 998 |
+
]
|
| 999 |
+
},
|
| 1000 |
+
"model.layers.11.mlp.up_proj": {
|
| 1001 |
+
"in_features": 2048,
|
| 1002 |
+
"out_features": 6144,
|
| 1003 |
+
"in_factors": [
|
| 1004 |
+
32,
|
| 1005 |
+
64
|
| 1006 |
+
],
|
| 1007 |
+
"out_factors": [
|
| 1008 |
+
64,
|
| 1009 |
+
96
|
| 1010 |
+
]
|
| 1011 |
+
},
|
| 1012 |
+
"model.layers.11.mlp.down_proj": {
|
| 1013 |
+
"in_features": 6144,
|
| 1014 |
+
"out_features": 2048,
|
| 1015 |
+
"in_factors": [
|
| 1016 |
+
64,
|
| 1017 |
+
96
|
| 1018 |
+
],
|
| 1019 |
+
"out_factors": [
|
| 1020 |
+
32,
|
| 1021 |
+
64
|
| 1022 |
+
]
|
| 1023 |
+
},
|
| 1024 |
+
"model.layers.12.self_attn.q_proj": {
|
| 1025 |
+
"in_features": 2048,
|
| 1026 |
+
"out_features": 2048,
|
| 1027 |
+
"in_factors": [
|
| 1028 |
+
32,
|
| 1029 |
+
64
|
| 1030 |
+
],
|
| 1031 |
+
"out_factors": [
|
| 1032 |
+
32,
|
| 1033 |
+
64
|
| 1034 |
+
]
|
| 1035 |
+
},
|
| 1036 |
+
"model.layers.12.self_attn.k_proj": {
|
| 1037 |
+
"in_features": 2048,
|
| 1038 |
+
"out_features": 1024,
|
| 1039 |
+
"in_factors": [
|
| 1040 |
+
32,
|
| 1041 |
+
64
|
| 1042 |
+
],
|
| 1043 |
+
"out_factors": [
|
| 1044 |
+
32,
|
| 1045 |
+
32
|
| 1046 |
+
]
|
| 1047 |
+
},
|
| 1048 |
+
"model.layers.12.self_attn.v_proj": {
|
| 1049 |
+
"in_features": 2048,
|
| 1050 |
+
"out_features": 1024,
|
| 1051 |
+
"in_factors": [
|
| 1052 |
+
32,
|
| 1053 |
+
64
|
| 1054 |
+
],
|
| 1055 |
+
"out_factors": [
|
| 1056 |
+
32,
|
| 1057 |
+
32
|
| 1058 |
+
]
|
| 1059 |
+
},
|
| 1060 |
+
"model.layers.12.self_attn.o_proj": {
|
| 1061 |
+
"in_features": 2048,
|
| 1062 |
+
"out_features": 2048,
|
| 1063 |
+
"in_factors": [
|
| 1064 |
+
32,
|
| 1065 |
+
64
|
| 1066 |
+
],
|
| 1067 |
+
"out_factors": [
|
| 1068 |
+
32,
|
| 1069 |
+
64
|
| 1070 |
+
]
|
| 1071 |
+
},
|
| 1072 |
+
"model.layers.12.mlp.gate_proj": {
|
| 1073 |
+
"in_features": 2048,
|
| 1074 |
+
"out_features": 6144,
|
| 1075 |
+
"in_factors": [
|
| 1076 |
+
32,
|
| 1077 |
+
64
|
| 1078 |
+
],
|
| 1079 |
+
"out_factors": [
|
| 1080 |
+
64,
|
| 1081 |
+
96
|
| 1082 |
+
]
|
| 1083 |
+
},
|
| 1084 |
+
"model.layers.12.mlp.up_proj": {
|
| 1085 |
+
"in_features": 2048,
|
| 1086 |
+
"out_features": 6144,
|
| 1087 |
+
"in_factors": [
|
| 1088 |
+
32,
|
| 1089 |
+
64
|
| 1090 |
+
],
|
| 1091 |
+
"out_factors": [
|
| 1092 |
+
64,
|
| 1093 |
+
96
|
| 1094 |
+
]
|
| 1095 |
+
},
|
| 1096 |
+
"model.layers.12.mlp.down_proj": {
|
| 1097 |
+
"in_features": 6144,
|
| 1098 |
+
"out_features": 2048,
|
| 1099 |
+
"in_factors": [
|
| 1100 |
+
64,
|
| 1101 |
+
96
|
| 1102 |
+
],
|
| 1103 |
+
"out_factors": [
|
| 1104 |
+
32,
|
| 1105 |
+
64
|
| 1106 |
+
]
|
| 1107 |
+
},
|
| 1108 |
+
"model.layers.13.self_attn.q_proj": {
|
| 1109 |
+
"in_features": 2048,
|
| 1110 |
+
"out_features": 2048,
|
| 1111 |
+
"in_factors": [
|
| 1112 |
+
32,
|
| 1113 |
+
64
|
| 1114 |
+
],
|
| 1115 |
+
"out_factors": [
|
| 1116 |
+
32,
|
| 1117 |
+
64
|
| 1118 |
+
]
|
| 1119 |
+
},
|
| 1120 |
+
"model.layers.13.self_attn.k_proj": {
|
| 1121 |
+
"in_features": 2048,
|
| 1122 |
+
"out_features": 1024,
|
| 1123 |
+
"in_factors": [
|
| 1124 |
+
32,
|
| 1125 |
+
64
|
| 1126 |
+
],
|
| 1127 |
+
"out_factors": [
|
| 1128 |
+
32,
|
| 1129 |
+
32
|
| 1130 |
+
]
|
| 1131 |
+
},
|
| 1132 |
+
"model.layers.13.self_attn.v_proj": {
|
| 1133 |
+
"in_features": 2048,
|
| 1134 |
+
"out_features": 1024,
|
| 1135 |
+
"in_factors": [
|
| 1136 |
+
32,
|
| 1137 |
+
64
|
| 1138 |
+
],
|
| 1139 |
+
"out_factors": [
|
| 1140 |
+
32,
|
| 1141 |
+
32
|
| 1142 |
+
]
|
| 1143 |
+
},
|
| 1144 |
+
"model.layers.13.self_attn.o_proj": {
|
| 1145 |
+
"in_features": 2048,
|
| 1146 |
+
"out_features": 2048,
|
| 1147 |
+
"in_factors": [
|
| 1148 |
+
32,
|
| 1149 |
+
64
|
| 1150 |
+
],
|
| 1151 |
+
"out_factors": [
|
| 1152 |
+
32,
|
| 1153 |
+
64
|
| 1154 |
+
]
|
| 1155 |
+
},
|
| 1156 |
+
"model.layers.13.mlp.gate_proj": {
|
| 1157 |
+
"in_features": 2048,
|
| 1158 |
+
"out_features": 6144,
|
| 1159 |
+
"in_factors": [
|
| 1160 |
+
32,
|
| 1161 |
+
64
|
| 1162 |
+
],
|
| 1163 |
+
"out_factors": [
|
| 1164 |
+
64,
|
| 1165 |
+
96
|
| 1166 |
+
]
|
| 1167 |
+
},
|
| 1168 |
+
"model.layers.13.mlp.up_proj": {
|
| 1169 |
+
"in_features": 2048,
|
| 1170 |
+
"out_features": 6144,
|
| 1171 |
+
"in_factors": [
|
| 1172 |
+
32,
|
| 1173 |
+
64
|
| 1174 |
+
],
|
| 1175 |
+
"out_factors": [
|
| 1176 |
+
64,
|
| 1177 |
+
96
|
| 1178 |
+
]
|
| 1179 |
+
},
|
| 1180 |
+
"model.layers.13.mlp.down_proj": {
|
| 1181 |
+
"in_features": 6144,
|
| 1182 |
+
"out_features": 2048,
|
| 1183 |
+
"in_factors": [
|
| 1184 |
+
64,
|
| 1185 |
+
96
|
| 1186 |
+
],
|
| 1187 |
+
"out_factors": [
|
| 1188 |
+
32,
|
| 1189 |
+
64
|
| 1190 |
+
]
|
| 1191 |
+
},
|
| 1192 |
+
"model.layers.14.self_attn.q_proj": {
|
| 1193 |
+
"in_features": 2048,
|
| 1194 |
+
"out_features": 2048,
|
| 1195 |
+
"in_factors": [
|
| 1196 |
+
32,
|
| 1197 |
+
64
|
| 1198 |
+
],
|
| 1199 |
+
"out_factors": [
|
| 1200 |
+
32,
|
| 1201 |
+
64
|
| 1202 |
+
]
|
| 1203 |
+
},
|
| 1204 |
+
"model.layers.14.self_attn.k_proj": {
|
| 1205 |
+
"in_features": 2048,
|
| 1206 |
+
"out_features": 1024,
|
| 1207 |
+
"in_factors": [
|
| 1208 |
+
32,
|
| 1209 |
+
64
|
| 1210 |
+
],
|
| 1211 |
+
"out_factors": [
|
| 1212 |
+
32,
|
| 1213 |
+
32
|
| 1214 |
+
]
|
| 1215 |
+
},
|
| 1216 |
+
"model.layers.14.self_attn.v_proj": {
|
| 1217 |
+
"in_features": 2048,
|
| 1218 |
+
"out_features": 1024,
|
| 1219 |
+
"in_factors": [
|
| 1220 |
+
32,
|
| 1221 |
+
64
|
| 1222 |
+
],
|
| 1223 |
+
"out_factors": [
|
| 1224 |
+
32,
|
| 1225 |
+
32
|
| 1226 |
+
]
|
| 1227 |
+
},
|
| 1228 |
+
"model.layers.14.self_attn.o_proj": {
|
| 1229 |
+
"in_features": 2048,
|
| 1230 |
+
"out_features": 2048,
|
| 1231 |
+
"in_factors": [
|
| 1232 |
+
32,
|
| 1233 |
+
64
|
| 1234 |
+
],
|
| 1235 |
+
"out_factors": [
|
| 1236 |
+
32,
|
| 1237 |
+
64
|
| 1238 |
+
]
|
| 1239 |
+
},
|
| 1240 |
+
"model.layers.14.mlp.gate_proj": {
|
| 1241 |
+
"in_features": 2048,
|
| 1242 |
+
"out_features": 6144,
|
| 1243 |
+
"in_factors": [
|
| 1244 |
+
32,
|
| 1245 |
+
64
|
| 1246 |
+
],
|
| 1247 |
+
"out_factors": [
|
| 1248 |
+
64,
|
| 1249 |
+
96
|
| 1250 |
+
]
|
| 1251 |
+
},
|
| 1252 |
+
"model.layers.14.mlp.up_proj": {
|
| 1253 |
+
"in_features": 2048,
|
| 1254 |
+
"out_features": 6144,
|
| 1255 |
+
"in_factors": [
|
| 1256 |
+
32,
|
| 1257 |
+
64
|
| 1258 |
+
],
|
| 1259 |
+
"out_factors": [
|
| 1260 |
+
64,
|
| 1261 |
+
96
|
| 1262 |
+
]
|
| 1263 |
+
},
|
| 1264 |
+
"model.layers.14.mlp.down_proj": {
|
| 1265 |
+
"in_features": 6144,
|
| 1266 |
+
"out_features": 2048,
|
| 1267 |
+
"in_factors": [
|
| 1268 |
+
64,
|
| 1269 |
+
96
|
| 1270 |
+
],
|
| 1271 |
+
"out_factors": [
|
| 1272 |
+
32,
|
| 1273 |
+
64
|
| 1274 |
+
]
|
| 1275 |
+
},
|
| 1276 |
+
"model.layers.15.self_attn.q_proj": {
|
| 1277 |
+
"in_features": 2048,
|
| 1278 |
+
"out_features": 2048,
|
| 1279 |
+
"in_factors": [
|
| 1280 |
+
32,
|
| 1281 |
+
64
|
| 1282 |
+
],
|
| 1283 |
+
"out_factors": [
|
| 1284 |
+
32,
|
| 1285 |
+
64
|
| 1286 |
+
]
|
| 1287 |
+
},
|
| 1288 |
+
"model.layers.15.self_attn.k_proj": {
|
| 1289 |
+
"in_features": 2048,
|
| 1290 |
+
"out_features": 1024,
|
| 1291 |
+
"in_factors": [
|
| 1292 |
+
32,
|
| 1293 |
+
64
|
| 1294 |
+
],
|
| 1295 |
+
"out_factors": [
|
| 1296 |
+
32,
|
| 1297 |
+
32
|
| 1298 |
+
]
|
| 1299 |
+
},
|
| 1300 |
+
"model.layers.15.self_attn.v_proj": {
|
| 1301 |
+
"in_features": 2048,
|
| 1302 |
+
"out_features": 1024,
|
| 1303 |
+
"in_factors": [
|
| 1304 |
+
32,
|
| 1305 |
+
64
|
| 1306 |
+
],
|
| 1307 |
+
"out_factors": [
|
| 1308 |
+
32,
|
| 1309 |
+
32
|
| 1310 |
+
]
|
| 1311 |
+
},
|
| 1312 |
+
"model.layers.15.self_attn.o_proj": {
|
| 1313 |
+
"in_features": 2048,
|
| 1314 |
+
"out_features": 2048,
|
| 1315 |
+
"in_factors": [
|
| 1316 |
+
32,
|
| 1317 |
+
64
|
| 1318 |
+
],
|
| 1319 |
+
"out_factors": [
|
| 1320 |
+
32,
|
| 1321 |
+
64
|
| 1322 |
+
]
|
| 1323 |
+
},
|
| 1324 |
+
"model.layers.15.mlp.gate_proj": {
|
| 1325 |
+
"in_features": 2048,
|
| 1326 |
+
"out_features": 6144,
|
| 1327 |
+
"in_factors": [
|
| 1328 |
+
32,
|
| 1329 |
+
64
|
| 1330 |
+
],
|
| 1331 |
+
"out_factors": [
|
| 1332 |
+
64,
|
| 1333 |
+
96
|
| 1334 |
+
]
|
| 1335 |
+
},
|
| 1336 |
+
"model.layers.15.mlp.up_proj": {
|
| 1337 |
+
"in_features": 2048,
|
| 1338 |
+
"out_features": 6144,
|
| 1339 |
+
"in_factors": [
|
| 1340 |
+
32,
|
| 1341 |
+
64
|
| 1342 |
+
],
|
| 1343 |
+
"out_factors": [
|
| 1344 |
+
64,
|
| 1345 |
+
96
|
| 1346 |
+
]
|
| 1347 |
+
},
|
| 1348 |
+
"model.layers.15.mlp.down_proj": {
|
| 1349 |
+
"in_features": 6144,
|
| 1350 |
+
"out_features": 2048,
|
| 1351 |
+
"in_factors": [
|
| 1352 |
+
64,
|
| 1353 |
+
96
|
| 1354 |
+
],
|
| 1355 |
+
"out_factors": [
|
| 1356 |
+
32,
|
| 1357 |
+
64
|
| 1358 |
+
]
|
| 1359 |
+
},
|
| 1360 |
+
"model.layers.16.self_attn.q_proj": {
|
| 1361 |
+
"in_features": 2048,
|
| 1362 |
+
"out_features": 2048,
|
| 1363 |
+
"in_factors": [
|
| 1364 |
+
32,
|
| 1365 |
+
64
|
| 1366 |
+
],
|
| 1367 |
+
"out_factors": [
|
| 1368 |
+
32,
|
| 1369 |
+
64
|
| 1370 |
+
]
|
| 1371 |
+
},
|
| 1372 |
+
"model.layers.16.self_attn.k_proj": {
|
| 1373 |
+
"in_features": 2048,
|
| 1374 |
+
"out_features": 1024,
|
| 1375 |
+
"in_factors": [
|
| 1376 |
+
32,
|
| 1377 |
+
64
|
| 1378 |
+
],
|
| 1379 |
+
"out_factors": [
|
| 1380 |
+
32,
|
| 1381 |
+
32
|
| 1382 |
+
]
|
| 1383 |
+
},
|
| 1384 |
+
"model.layers.16.self_attn.v_proj": {
|
| 1385 |
+
"in_features": 2048,
|
| 1386 |
+
"out_features": 1024,
|
| 1387 |
+
"in_factors": [
|
| 1388 |
+
32,
|
| 1389 |
+
64
|
| 1390 |
+
],
|
| 1391 |
+
"out_factors": [
|
| 1392 |
+
32,
|
| 1393 |
+
32
|
| 1394 |
+
]
|
| 1395 |
+
},
|
| 1396 |
+
"model.layers.16.self_attn.o_proj": {
|
| 1397 |
+
"in_features": 2048,
|
| 1398 |
+
"out_features": 2048,
|
| 1399 |
+
"in_factors": [
|
| 1400 |
+
32,
|
| 1401 |
+
64
|
| 1402 |
+
],
|
| 1403 |
+
"out_factors": [
|
| 1404 |
+
32,
|
| 1405 |
+
64
|
| 1406 |
+
]
|
| 1407 |
+
},
|
| 1408 |
+
"model.layers.16.mlp.gate_proj": {
|
| 1409 |
+
"in_features": 2048,
|
| 1410 |
+
"out_features": 6144,
|
| 1411 |
+
"in_factors": [
|
| 1412 |
+
32,
|
| 1413 |
+
64
|
| 1414 |
+
],
|
| 1415 |
+
"out_factors": [
|
| 1416 |
+
64,
|
| 1417 |
+
96
|
| 1418 |
+
]
|
| 1419 |
+
},
|
| 1420 |
+
"model.layers.16.mlp.up_proj": {
|
| 1421 |
+
"in_features": 2048,
|
| 1422 |
+
"out_features": 6144,
|
| 1423 |
+
"in_factors": [
|
| 1424 |
+
32,
|
| 1425 |
+
64
|
| 1426 |
+
],
|
| 1427 |
+
"out_factors": [
|
| 1428 |
+
64,
|
| 1429 |
+
96
|
| 1430 |
+
]
|
| 1431 |
+
},
|
| 1432 |
+
"model.layers.16.mlp.down_proj": {
|
| 1433 |
+
"in_features": 6144,
|
| 1434 |
+
"out_features": 2048,
|
| 1435 |
+
"in_factors": [
|
| 1436 |
+
64,
|
| 1437 |
+
96
|
| 1438 |
+
],
|
| 1439 |
+
"out_factors": [
|
| 1440 |
+
32,
|
| 1441 |
+
64
|
| 1442 |
+
]
|
| 1443 |
+
},
|
| 1444 |
+
"model.layers.17.self_attn.q_proj": {
|
| 1445 |
+
"in_features": 2048,
|
| 1446 |
+
"out_features": 2048,
|
| 1447 |
+
"in_factors": [
|
| 1448 |
+
32,
|
| 1449 |
+
64
|
| 1450 |
+
],
|
| 1451 |
+
"out_factors": [
|
| 1452 |
+
32,
|
| 1453 |
+
64
|
| 1454 |
+
]
|
| 1455 |
+
},
|
| 1456 |
+
"model.layers.17.self_attn.k_proj": {
|
| 1457 |
+
"in_features": 2048,
|
| 1458 |
+
"out_features": 1024,
|
| 1459 |
+
"in_factors": [
|
| 1460 |
+
32,
|
| 1461 |
+
64
|
| 1462 |
+
],
|
| 1463 |
+
"out_factors": [
|
| 1464 |
+
32,
|
| 1465 |
+
32
|
| 1466 |
+
]
|
| 1467 |
+
},
|
| 1468 |
+
"model.layers.17.self_attn.v_proj": {
|
| 1469 |
+
"in_features": 2048,
|
| 1470 |
+
"out_features": 1024,
|
| 1471 |
+
"in_factors": [
|
| 1472 |
+
32,
|
| 1473 |
+
64
|
| 1474 |
+
],
|
| 1475 |
+
"out_factors": [
|
| 1476 |
+
32,
|
| 1477 |
+
32
|
| 1478 |
+
]
|
| 1479 |
+
},
|
| 1480 |
+
"model.layers.17.self_attn.o_proj": {
|
| 1481 |
+
"in_features": 2048,
|
| 1482 |
+
"out_features": 2048,
|
| 1483 |
+
"in_factors": [
|
| 1484 |
+
32,
|
| 1485 |
+
64
|
| 1486 |
+
],
|
| 1487 |
+
"out_factors": [
|
| 1488 |
+
32,
|
| 1489 |
+
64
|
| 1490 |
+
]
|
| 1491 |
+
},
|
| 1492 |
+
"model.layers.17.mlp.gate_proj": {
|
| 1493 |
+
"in_features": 2048,
|
| 1494 |
+
"out_features": 6144,
|
| 1495 |
+
"in_factors": [
|
| 1496 |
+
32,
|
| 1497 |
+
64
|
| 1498 |
+
],
|
| 1499 |
+
"out_factors": [
|
| 1500 |
+
64,
|
| 1501 |
+
96
|
| 1502 |
+
]
|
| 1503 |
+
},
|
| 1504 |
+
"model.layers.17.mlp.up_proj": {
|
| 1505 |
+
"in_features": 2048,
|
| 1506 |
+
"out_features": 6144,
|
| 1507 |
+
"in_factors": [
|
| 1508 |
+
32,
|
| 1509 |
+
64
|
| 1510 |
+
],
|
| 1511 |
+
"out_factors": [
|
| 1512 |
+
64,
|
| 1513 |
+
96
|
| 1514 |
+
]
|
| 1515 |
+
},
|
| 1516 |
+
"model.layers.17.mlp.down_proj": {
|
| 1517 |
+
"in_features": 6144,
|
| 1518 |
+
"out_features": 2048,
|
| 1519 |
+
"in_factors": [
|
| 1520 |
+
64,
|
| 1521 |
+
96
|
| 1522 |
+
],
|
| 1523 |
+
"out_factors": [
|
| 1524 |
+
32,
|
| 1525 |
+
64
|
| 1526 |
+
]
|
| 1527 |
+
},
|
| 1528 |
+
"model.layers.18.self_attn.q_proj": {
|
| 1529 |
+
"in_features": 2048,
|
| 1530 |
+
"out_features": 2048,
|
| 1531 |
+
"in_factors": [
|
| 1532 |
+
32,
|
| 1533 |
+
64
|
| 1534 |
+
],
|
| 1535 |
+
"out_factors": [
|
| 1536 |
+
32,
|
| 1537 |
+
64
|
| 1538 |
+
]
|
| 1539 |
+
},
|
| 1540 |
+
"model.layers.18.self_attn.k_proj": {
|
| 1541 |
+
"in_features": 2048,
|
| 1542 |
+
"out_features": 1024,
|
| 1543 |
+
"in_factors": [
|
| 1544 |
+
32,
|
| 1545 |
+
64
|
| 1546 |
+
],
|
| 1547 |
+
"out_factors": [
|
| 1548 |
+
32,
|
| 1549 |
+
32
|
| 1550 |
+
]
|
| 1551 |
+
},
|
| 1552 |
+
"model.layers.18.self_attn.v_proj": {
|
| 1553 |
+
"in_features": 2048,
|
| 1554 |
+
"out_features": 1024,
|
| 1555 |
+
"in_factors": [
|
| 1556 |
+
32,
|
| 1557 |
+
64
|
| 1558 |
+
],
|
| 1559 |
+
"out_factors": [
|
| 1560 |
+
32,
|
| 1561 |
+
32
|
| 1562 |
+
]
|
| 1563 |
+
},
|
| 1564 |
+
"model.layers.18.self_attn.o_proj": {
|
| 1565 |
+
"in_features": 2048,
|
| 1566 |
+
"out_features": 2048,
|
| 1567 |
+
"in_factors": [
|
| 1568 |
+
32,
|
| 1569 |
+
64
|
| 1570 |
+
],
|
| 1571 |
+
"out_factors": [
|
| 1572 |
+
32,
|
| 1573 |
+
64
|
| 1574 |
+
]
|
| 1575 |
+
},
|
| 1576 |
+
"model.layers.18.mlp.gate_proj": {
|
| 1577 |
+
"in_features": 2048,
|
| 1578 |
+
"out_features": 6144,
|
| 1579 |
+
"in_factors": [
|
| 1580 |
+
32,
|
| 1581 |
+
64
|
| 1582 |
+
],
|
| 1583 |
+
"out_factors": [
|
| 1584 |
+
64,
|
| 1585 |
+
96
|
| 1586 |
+
]
|
| 1587 |
+
},
|
| 1588 |
+
"model.layers.18.mlp.up_proj": {
|
| 1589 |
+
"in_features": 2048,
|
| 1590 |
+
"out_features": 6144,
|
| 1591 |
+
"in_factors": [
|
| 1592 |
+
32,
|
| 1593 |
+
64
|
| 1594 |
+
],
|
| 1595 |
+
"out_factors": [
|
| 1596 |
+
64,
|
| 1597 |
+
96
|
| 1598 |
+
]
|
| 1599 |
+
},
|
| 1600 |
+
"model.layers.18.mlp.down_proj": {
|
| 1601 |
+
"in_features": 6144,
|
| 1602 |
+
"out_features": 2048,
|
| 1603 |
+
"in_factors": [
|
| 1604 |
+
64,
|
| 1605 |
+
96
|
| 1606 |
+
],
|
| 1607 |
+
"out_factors": [
|
| 1608 |
+
32,
|
| 1609 |
+
64
|
| 1610 |
+
]
|
| 1611 |
+
},
|
| 1612 |
+
"model.layers.19.self_attn.q_proj": {
|
| 1613 |
+
"in_features": 2048,
|
| 1614 |
+
"out_features": 2048,
|
| 1615 |
+
"in_factors": [
|
| 1616 |
+
32,
|
| 1617 |
+
64
|
| 1618 |
+
],
|
| 1619 |
+
"out_factors": [
|
| 1620 |
+
32,
|
| 1621 |
+
64
|
| 1622 |
+
]
|
| 1623 |
+
},
|
| 1624 |
+
"model.layers.19.self_attn.k_proj": {
|
| 1625 |
+
"in_features": 2048,
|
| 1626 |
+
"out_features": 1024,
|
| 1627 |
+
"in_factors": [
|
| 1628 |
+
32,
|
| 1629 |
+
64
|
| 1630 |
+
],
|
| 1631 |
+
"out_factors": [
|
| 1632 |
+
32,
|
| 1633 |
+
32
|
| 1634 |
+
]
|
| 1635 |
+
},
|
| 1636 |
+
"model.layers.19.self_attn.v_proj": {
|
| 1637 |
+
"in_features": 2048,
|
| 1638 |
+
"out_features": 1024,
|
| 1639 |
+
"in_factors": [
|
| 1640 |
+
32,
|
| 1641 |
+
64
|
| 1642 |
+
],
|
| 1643 |
+
"out_factors": [
|
| 1644 |
+
32,
|
| 1645 |
+
32
|
| 1646 |
+
]
|
| 1647 |
+
},
|
| 1648 |
+
"model.layers.19.self_attn.o_proj": {
|
| 1649 |
+
"in_features": 2048,
|
| 1650 |
+
"out_features": 2048,
|
| 1651 |
+
"in_factors": [
|
| 1652 |
+
32,
|
| 1653 |
+
64
|
| 1654 |
+
],
|
| 1655 |
+
"out_factors": [
|
| 1656 |
+
32,
|
| 1657 |
+
64
|
| 1658 |
+
]
|
| 1659 |
+
},
|
| 1660 |
+
"model.layers.19.mlp.gate_proj": {
|
| 1661 |
+
"in_features": 2048,
|
| 1662 |
+
"out_features": 6144,
|
| 1663 |
+
"in_factors": [
|
| 1664 |
+
32,
|
| 1665 |
+
64
|
| 1666 |
+
],
|
| 1667 |
+
"out_factors": [
|
| 1668 |
+
64,
|
| 1669 |
+
96
|
| 1670 |
+
]
|
| 1671 |
+
},
|
| 1672 |
+
"model.layers.19.mlp.up_proj": {
|
| 1673 |
+
"in_features": 2048,
|
| 1674 |
+
"out_features": 6144,
|
| 1675 |
+
"in_factors": [
|
| 1676 |
+
32,
|
| 1677 |
+
64
|
| 1678 |
+
],
|
| 1679 |
+
"out_factors": [
|
| 1680 |
+
64,
|
| 1681 |
+
96
|
| 1682 |
+
]
|
| 1683 |
+
},
|
| 1684 |
+
"model.layers.19.mlp.down_proj": {
|
| 1685 |
+
"in_features": 6144,
|
| 1686 |
+
"out_features": 2048,
|
| 1687 |
+
"in_factors": [
|
| 1688 |
+
64,
|
| 1689 |
+
96
|
| 1690 |
+
],
|
| 1691 |
+
"out_factors": [
|
| 1692 |
+
32,
|
| 1693 |
+
64
|
| 1694 |
+
]
|
| 1695 |
+
},
|
| 1696 |
+
"model.layers.20.self_attn.q_proj": {
|
| 1697 |
+
"in_features": 2048,
|
| 1698 |
+
"out_features": 2048,
|
| 1699 |
+
"in_factors": [
|
| 1700 |
+
32,
|
| 1701 |
+
64
|
| 1702 |
+
],
|
| 1703 |
+
"out_factors": [
|
| 1704 |
+
32,
|
| 1705 |
+
64
|
| 1706 |
+
]
|
| 1707 |
+
},
|
| 1708 |
+
"model.layers.20.self_attn.k_proj": {
|
| 1709 |
+
"in_features": 2048,
|
| 1710 |
+
"out_features": 1024,
|
| 1711 |
+
"in_factors": [
|
| 1712 |
+
32,
|
| 1713 |
+
64
|
| 1714 |
+
],
|
| 1715 |
+
"out_factors": [
|
| 1716 |
+
32,
|
| 1717 |
+
32
|
| 1718 |
+
]
|
| 1719 |
+
},
|
| 1720 |
+
"model.layers.20.self_attn.v_proj": {
|
| 1721 |
+
"in_features": 2048,
|
| 1722 |
+
"out_features": 1024,
|
| 1723 |
+
"in_factors": [
|
| 1724 |
+
32,
|
| 1725 |
+
64
|
| 1726 |
+
],
|
| 1727 |
+
"out_factors": [
|
| 1728 |
+
32,
|
| 1729 |
+
32
|
| 1730 |
+
]
|
| 1731 |
+
},
|
| 1732 |
+
"model.layers.20.self_attn.o_proj": {
|
| 1733 |
+
"in_features": 2048,
|
| 1734 |
+
"out_features": 2048,
|
| 1735 |
+
"in_factors": [
|
| 1736 |
+
32,
|
| 1737 |
+
64
|
| 1738 |
+
],
|
| 1739 |
+
"out_factors": [
|
| 1740 |
+
32,
|
| 1741 |
+
64
|
| 1742 |
+
]
|
| 1743 |
+
},
|
| 1744 |
+
"model.layers.20.mlp.gate_proj": {
|
| 1745 |
+
"in_features": 2048,
|
| 1746 |
+
"out_features": 6144,
|
| 1747 |
+
"in_factors": [
|
| 1748 |
+
32,
|
| 1749 |
+
64
|
| 1750 |
+
],
|
| 1751 |
+
"out_factors": [
|
| 1752 |
+
64,
|
| 1753 |
+
96
|
| 1754 |
+
]
|
| 1755 |
+
},
|
| 1756 |
+
"model.layers.20.mlp.up_proj": {
|
| 1757 |
+
"in_features": 2048,
|
| 1758 |
+
"out_features": 6144,
|
| 1759 |
+
"in_factors": [
|
| 1760 |
+
32,
|
| 1761 |
+
64
|
| 1762 |
+
],
|
| 1763 |
+
"out_factors": [
|
| 1764 |
+
64,
|
| 1765 |
+
96
|
| 1766 |
+
]
|
| 1767 |
+
},
|
| 1768 |
+
"model.layers.20.mlp.down_proj": {
|
| 1769 |
+
"in_features": 6144,
|
| 1770 |
+
"out_features": 2048,
|
| 1771 |
+
"in_factors": [
|
| 1772 |
+
64,
|
| 1773 |
+
96
|
| 1774 |
+
],
|
| 1775 |
+
"out_factors": [
|
| 1776 |
+
32,
|
| 1777 |
+
64
|
| 1778 |
+
]
|
| 1779 |
+
},
|
| 1780 |
+
"model.layers.21.self_attn.q_proj": {
|
| 1781 |
+
"in_features": 2048,
|
| 1782 |
+
"out_features": 2048,
|
| 1783 |
+
"in_factors": [
|
| 1784 |
+
32,
|
| 1785 |
+
64
|
| 1786 |
+
],
|
| 1787 |
+
"out_factors": [
|
| 1788 |
+
32,
|
| 1789 |
+
64
|
| 1790 |
+
]
|
| 1791 |
+
},
|
| 1792 |
+
"model.layers.21.self_attn.k_proj": {
|
| 1793 |
+
"in_features": 2048,
|
| 1794 |
+
"out_features": 1024,
|
| 1795 |
+
"in_factors": [
|
| 1796 |
+
32,
|
| 1797 |
+
64
|
| 1798 |
+
],
|
| 1799 |
+
"out_factors": [
|
| 1800 |
+
32,
|
| 1801 |
+
32
|
| 1802 |
+
]
|
| 1803 |
+
},
|
| 1804 |
+
"model.layers.21.self_attn.v_proj": {
|
| 1805 |
+
"in_features": 2048,
|
| 1806 |
+
"out_features": 1024,
|
| 1807 |
+
"in_factors": [
|
| 1808 |
+
32,
|
| 1809 |
+
64
|
| 1810 |
+
],
|
| 1811 |
+
"out_factors": [
|
| 1812 |
+
32,
|
| 1813 |
+
32
|
| 1814 |
+
]
|
| 1815 |
+
},
|
| 1816 |
+
"model.layers.21.self_attn.o_proj": {
|
| 1817 |
+
"in_features": 2048,
|
| 1818 |
+
"out_features": 2048,
|
| 1819 |
+
"in_factors": [
|
| 1820 |
+
32,
|
| 1821 |
+
64
|
| 1822 |
+
],
|
| 1823 |
+
"out_factors": [
|
| 1824 |
+
32,
|
| 1825 |
+
64
|
| 1826 |
+
]
|
| 1827 |
+
},
|
| 1828 |
+
"model.layers.21.mlp.gate_proj": {
|
| 1829 |
+
"in_features": 2048,
|
| 1830 |
+
"out_features": 6144,
|
| 1831 |
+
"in_factors": [
|
| 1832 |
+
32,
|
| 1833 |
+
64
|
| 1834 |
+
],
|
| 1835 |
+
"out_factors": [
|
| 1836 |
+
64,
|
| 1837 |
+
96
|
| 1838 |
+
]
|
| 1839 |
+
},
|
| 1840 |
+
"model.layers.21.mlp.up_proj": {
|
| 1841 |
+
"in_features": 2048,
|
| 1842 |
+
"out_features": 6144,
|
| 1843 |
+
"in_factors": [
|
| 1844 |
+
32,
|
| 1845 |
+
64
|
| 1846 |
+
],
|
| 1847 |
+
"out_factors": [
|
| 1848 |
+
64,
|
| 1849 |
+
96
|
| 1850 |
+
]
|
| 1851 |
+
},
|
| 1852 |
+
"model.layers.21.mlp.down_proj": {
|
| 1853 |
+
"in_features": 6144,
|
| 1854 |
+
"out_features": 2048,
|
| 1855 |
+
"in_factors": [
|
| 1856 |
+
64,
|
| 1857 |
+
96
|
| 1858 |
+
],
|
| 1859 |
+
"out_factors": [
|
| 1860 |
+
32,
|
| 1861 |
+
64
|
| 1862 |
+
]
|
| 1863 |
+
},
|
| 1864 |
+
"model.layers.22.self_attn.q_proj": {
|
| 1865 |
+
"in_features": 2048,
|
| 1866 |
+
"out_features": 2048,
|
| 1867 |
+
"in_factors": [
|
| 1868 |
+
32,
|
| 1869 |
+
64
|
| 1870 |
+
],
|
| 1871 |
+
"out_factors": [
|
| 1872 |
+
32,
|
| 1873 |
+
64
|
| 1874 |
+
]
|
| 1875 |
+
},
|
| 1876 |
+
"model.layers.22.self_attn.k_proj": {
|
| 1877 |
+
"in_features": 2048,
|
| 1878 |
+
"out_features": 1024,
|
| 1879 |
+
"in_factors": [
|
| 1880 |
+
32,
|
| 1881 |
+
64
|
| 1882 |
+
],
|
| 1883 |
+
"out_factors": [
|
| 1884 |
+
32,
|
| 1885 |
+
32
|
| 1886 |
+
]
|
| 1887 |
+
},
|
| 1888 |
+
"model.layers.22.self_attn.v_proj": {
|
| 1889 |
+
"in_features": 2048,
|
| 1890 |
+
"out_features": 1024,
|
| 1891 |
+
"in_factors": [
|
| 1892 |
+
32,
|
| 1893 |
+
64
|
| 1894 |
+
],
|
| 1895 |
+
"out_factors": [
|
| 1896 |
+
32,
|
| 1897 |
+
32
|
| 1898 |
+
]
|
| 1899 |
+
},
|
| 1900 |
+
"model.layers.22.self_attn.o_proj": {
|
| 1901 |
+
"in_features": 2048,
|
| 1902 |
+
"out_features": 2048,
|
| 1903 |
+
"in_factors": [
|
| 1904 |
+
32,
|
| 1905 |
+
64
|
| 1906 |
+
],
|
| 1907 |
+
"out_factors": [
|
| 1908 |
+
32,
|
| 1909 |
+
64
|
| 1910 |
+
]
|
| 1911 |
+
},
|
| 1912 |
+
"model.layers.22.mlp.gate_proj": {
|
| 1913 |
+
"in_features": 2048,
|
| 1914 |
+
"out_features": 6144,
|
| 1915 |
+
"in_factors": [
|
| 1916 |
+
32,
|
| 1917 |
+
64
|
| 1918 |
+
],
|
| 1919 |
+
"out_factors": [
|
| 1920 |
+
64,
|
| 1921 |
+
96
|
| 1922 |
+
]
|
| 1923 |
+
},
|
| 1924 |
+
"model.layers.22.mlp.up_proj": {
|
| 1925 |
+
"in_features": 2048,
|
| 1926 |
+
"out_features": 6144,
|
| 1927 |
+
"in_factors": [
|
| 1928 |
+
32,
|
| 1929 |
+
64
|
| 1930 |
+
],
|
| 1931 |
+
"out_factors": [
|
| 1932 |
+
64,
|
| 1933 |
+
96
|
| 1934 |
+
]
|
| 1935 |
+
},
|
| 1936 |
+
"model.layers.22.mlp.down_proj": {
|
| 1937 |
+
"in_features": 6144,
|
| 1938 |
+
"out_features": 2048,
|
| 1939 |
+
"in_factors": [
|
| 1940 |
+
64,
|
| 1941 |
+
96
|
| 1942 |
+
],
|
| 1943 |
+
"out_factors": [
|
| 1944 |
+
32,
|
| 1945 |
+
64
|
| 1946 |
+
]
|
| 1947 |
+
},
|
| 1948 |
+
"model.layers.23.self_attn.q_proj": {
|
| 1949 |
+
"in_features": 2048,
|
| 1950 |
+
"out_features": 2048,
|
| 1951 |
+
"in_factors": [
|
| 1952 |
+
32,
|
| 1953 |
+
64
|
| 1954 |
+
],
|
| 1955 |
+
"out_factors": [
|
| 1956 |
+
32,
|
| 1957 |
+
64
|
| 1958 |
+
]
|
| 1959 |
+
},
|
| 1960 |
+
"model.layers.23.self_attn.k_proj": {
|
| 1961 |
+
"in_features": 2048,
|
| 1962 |
+
"out_features": 1024,
|
| 1963 |
+
"in_factors": [
|
| 1964 |
+
32,
|
| 1965 |
+
64
|
| 1966 |
+
],
|
| 1967 |
+
"out_factors": [
|
| 1968 |
+
32,
|
| 1969 |
+
32
|
| 1970 |
+
]
|
| 1971 |
+
},
|
| 1972 |
+
"model.layers.23.self_attn.v_proj": {
|
| 1973 |
+
"in_features": 2048,
|
| 1974 |
+
"out_features": 1024,
|
| 1975 |
+
"in_factors": [
|
| 1976 |
+
32,
|
| 1977 |
+
64
|
| 1978 |
+
],
|
| 1979 |
+
"out_factors": [
|
| 1980 |
+
32,
|
| 1981 |
+
32
|
| 1982 |
+
]
|
| 1983 |
+
},
|
| 1984 |
+
"model.layers.23.self_attn.o_proj": {
|
| 1985 |
+
"in_features": 2048,
|
| 1986 |
+
"out_features": 2048,
|
| 1987 |
+
"in_factors": [
|
| 1988 |
+
32,
|
| 1989 |
+
64
|
| 1990 |
+
],
|
| 1991 |
+
"out_factors": [
|
| 1992 |
+
32,
|
| 1993 |
+
64
|
| 1994 |
+
]
|
| 1995 |
+
},
|
| 1996 |
+
"model.layers.23.mlp.gate_proj": {
|
| 1997 |
+
"in_features": 2048,
|
| 1998 |
+
"out_features": 6144,
|
| 1999 |
+
"in_factors": [
|
| 2000 |
+
32,
|
| 2001 |
+
64
|
| 2002 |
+
],
|
| 2003 |
+
"out_factors": [
|
| 2004 |
+
64,
|
| 2005 |
+
96
|
| 2006 |
+
]
|
| 2007 |
+
},
|
| 2008 |
+
"model.layers.23.mlp.up_proj": {
|
| 2009 |
+
"in_features": 2048,
|
| 2010 |
+
"out_features": 6144,
|
| 2011 |
+
"in_factors": [
|
| 2012 |
+
32,
|
| 2013 |
+
64
|
| 2014 |
+
],
|
| 2015 |
+
"out_factors": [
|
| 2016 |
+
64,
|
| 2017 |
+
96
|
| 2018 |
+
]
|
| 2019 |
+
},
|
| 2020 |
+
"model.layers.23.mlp.down_proj": {
|
| 2021 |
+
"in_features": 6144,
|
| 2022 |
+
"out_features": 2048,
|
| 2023 |
+
"in_factors": [
|
| 2024 |
+
64,
|
| 2025 |
+
96
|
| 2026 |
+
],
|
| 2027 |
+
"out_factors": [
|
| 2028 |
+
32,
|
| 2029 |
+
64
|
| 2030 |
+
]
|
| 2031 |
+
},
|
| 2032 |
+
"model.layers.24.self_attn.q_proj": {
|
| 2033 |
+
"in_features": 2048,
|
| 2034 |
+
"out_features": 2048,
|
| 2035 |
+
"in_factors": [
|
| 2036 |
+
32,
|
| 2037 |
+
64
|
| 2038 |
+
],
|
| 2039 |
+
"out_factors": [
|
| 2040 |
+
32,
|
| 2041 |
+
64
|
| 2042 |
+
]
|
| 2043 |
+
},
|
| 2044 |
+
"model.layers.24.self_attn.k_proj": {
|
| 2045 |
+
"in_features": 2048,
|
| 2046 |
+
"out_features": 1024,
|
| 2047 |
+
"in_factors": [
|
| 2048 |
+
32,
|
| 2049 |
+
64
|
| 2050 |
+
],
|
| 2051 |
+
"out_factors": [
|
| 2052 |
+
32,
|
| 2053 |
+
32
|
| 2054 |
+
]
|
| 2055 |
+
},
|
| 2056 |
+
"model.layers.24.self_attn.v_proj": {
|
| 2057 |
+
"in_features": 2048,
|
| 2058 |
+
"out_features": 1024,
|
| 2059 |
+
"in_factors": [
|
| 2060 |
+
32,
|
| 2061 |
+
64
|
| 2062 |
+
],
|
| 2063 |
+
"out_factors": [
|
| 2064 |
+
32,
|
| 2065 |
+
32
|
| 2066 |
+
]
|
| 2067 |
+
},
|
| 2068 |
+
"model.layers.24.self_attn.o_proj": {
|
| 2069 |
+
"in_features": 2048,
|
| 2070 |
+
"out_features": 2048,
|
| 2071 |
+
"in_factors": [
|
| 2072 |
+
32,
|
| 2073 |
+
64
|
| 2074 |
+
],
|
| 2075 |
+
"out_factors": [
|
| 2076 |
+
32,
|
| 2077 |
+
64
|
| 2078 |
+
]
|
| 2079 |
+
},
|
| 2080 |
+
"model.layers.24.mlp.gate_proj": {
|
| 2081 |
+
"in_features": 2048,
|
| 2082 |
+
"out_features": 6144,
|
| 2083 |
+
"in_factors": [
|
| 2084 |
+
32,
|
| 2085 |
+
64
|
| 2086 |
+
],
|
| 2087 |
+
"out_factors": [
|
| 2088 |
+
64,
|
| 2089 |
+
96
|
| 2090 |
+
]
|
| 2091 |
+
},
|
| 2092 |
+
"model.layers.24.mlp.up_proj": {
|
| 2093 |
+
"in_features": 2048,
|
| 2094 |
+
"out_features": 6144,
|
| 2095 |
+
"in_factors": [
|
| 2096 |
+
32,
|
| 2097 |
+
64
|
| 2098 |
+
],
|
| 2099 |
+
"out_factors": [
|
| 2100 |
+
64,
|
| 2101 |
+
96
|
| 2102 |
+
]
|
| 2103 |
+
},
|
| 2104 |
+
"model.layers.24.mlp.down_proj": {
|
| 2105 |
+
"in_features": 6144,
|
| 2106 |
+
"out_features": 2048,
|
| 2107 |
+
"in_factors": [
|
| 2108 |
+
64,
|
| 2109 |
+
96
|
| 2110 |
+
],
|
| 2111 |
+
"out_factors": [
|
| 2112 |
+
32,
|
| 2113 |
+
64
|
| 2114 |
+
]
|
| 2115 |
+
},
|
| 2116 |
+
"model.layers.25.self_attn.q_proj": {
|
| 2117 |
+
"in_features": 2048,
|
| 2118 |
+
"out_features": 2048,
|
| 2119 |
+
"in_factors": [
|
| 2120 |
+
32,
|
| 2121 |
+
64
|
| 2122 |
+
],
|
| 2123 |
+
"out_factors": [
|
| 2124 |
+
32,
|
| 2125 |
+
64
|
| 2126 |
+
]
|
| 2127 |
+
},
|
| 2128 |
+
"model.layers.25.self_attn.k_proj": {
|
| 2129 |
+
"in_features": 2048,
|
| 2130 |
+
"out_features": 1024,
|
| 2131 |
+
"in_factors": [
|
| 2132 |
+
32,
|
| 2133 |
+
64
|
| 2134 |
+
],
|
| 2135 |
+
"out_factors": [
|
| 2136 |
+
32,
|
| 2137 |
+
32
|
| 2138 |
+
]
|
| 2139 |
+
},
|
| 2140 |
+
"model.layers.25.self_attn.v_proj": {
|
| 2141 |
+
"in_features": 2048,
|
| 2142 |
+
"out_features": 1024,
|
| 2143 |
+
"in_factors": [
|
| 2144 |
+
32,
|
| 2145 |
+
64
|
| 2146 |
+
],
|
| 2147 |
+
"out_factors": [
|
| 2148 |
+
32,
|
| 2149 |
+
32
|
| 2150 |
+
]
|
| 2151 |
+
},
|
| 2152 |
+
"model.layers.25.self_attn.o_proj": {
|
| 2153 |
+
"in_features": 2048,
|
| 2154 |
+
"out_features": 2048,
|
| 2155 |
+
"in_factors": [
|
| 2156 |
+
32,
|
| 2157 |
+
64
|
| 2158 |
+
],
|
| 2159 |
+
"out_factors": [
|
| 2160 |
+
32,
|
| 2161 |
+
64
|
| 2162 |
+
]
|
| 2163 |
+
},
|
| 2164 |
+
"model.layers.25.mlp.gate_proj": {
|
| 2165 |
+
"in_features": 2048,
|
| 2166 |
+
"out_features": 6144,
|
| 2167 |
+
"in_factors": [
|
| 2168 |
+
32,
|
| 2169 |
+
64
|
| 2170 |
+
],
|
| 2171 |
+
"out_factors": [
|
| 2172 |
+
64,
|
| 2173 |
+
96
|
| 2174 |
+
]
|
| 2175 |
+
},
|
| 2176 |
+
"model.layers.25.mlp.up_proj": {
|
| 2177 |
+
"in_features": 2048,
|
| 2178 |
+
"out_features": 6144,
|
| 2179 |
+
"in_factors": [
|
| 2180 |
+
32,
|
| 2181 |
+
64
|
| 2182 |
+
],
|
| 2183 |
+
"out_factors": [
|
| 2184 |
+
64,
|
| 2185 |
+
96
|
| 2186 |
+
]
|
| 2187 |
+
},
|
| 2188 |
+
"model.layers.25.mlp.down_proj": {
|
| 2189 |
+
"in_features": 6144,
|
| 2190 |
+
"out_features": 2048,
|
| 2191 |
+
"in_factors": [
|
| 2192 |
+
64,
|
| 2193 |
+
96
|
| 2194 |
+
],
|
| 2195 |
+
"out_factors": [
|
| 2196 |
+
32,
|
| 2197 |
+
64
|
| 2198 |
+
]
|
| 2199 |
+
},
|
| 2200 |
+
"model.layers.26.self_attn.q_proj": {
|
| 2201 |
+
"in_features": 2048,
|
| 2202 |
+
"out_features": 2048,
|
| 2203 |
+
"in_factors": [
|
| 2204 |
+
32,
|
| 2205 |
+
64
|
| 2206 |
+
],
|
| 2207 |
+
"out_factors": [
|
| 2208 |
+
32,
|
| 2209 |
+
64
|
| 2210 |
+
]
|
| 2211 |
+
},
|
| 2212 |
+
"model.layers.26.self_attn.k_proj": {
|
| 2213 |
+
"in_features": 2048,
|
| 2214 |
+
"out_features": 1024,
|
| 2215 |
+
"in_factors": [
|
| 2216 |
+
32,
|
| 2217 |
+
64
|
| 2218 |
+
],
|
| 2219 |
+
"out_factors": [
|
| 2220 |
+
32,
|
| 2221 |
+
32
|
| 2222 |
+
]
|
| 2223 |
+
},
|
| 2224 |
+
"model.layers.26.self_attn.v_proj": {
|
| 2225 |
+
"in_features": 2048,
|
| 2226 |
+
"out_features": 1024,
|
| 2227 |
+
"in_factors": [
|
| 2228 |
+
32,
|
| 2229 |
+
64
|
| 2230 |
+
],
|
| 2231 |
+
"out_factors": [
|
| 2232 |
+
32,
|
| 2233 |
+
32
|
| 2234 |
+
]
|
| 2235 |
+
},
|
| 2236 |
+
"model.layers.26.self_attn.o_proj": {
|
| 2237 |
+
"in_features": 2048,
|
| 2238 |
+
"out_features": 2048,
|
| 2239 |
+
"in_factors": [
|
| 2240 |
+
32,
|
| 2241 |
+
64
|
| 2242 |
+
],
|
| 2243 |
+
"out_factors": [
|
| 2244 |
+
32,
|
| 2245 |
+
64
|
| 2246 |
+
]
|
| 2247 |
+
},
|
| 2248 |
+
"model.layers.26.mlp.gate_proj": {
|
| 2249 |
+
"in_features": 2048,
|
| 2250 |
+
"out_features": 6144,
|
| 2251 |
+
"in_factors": [
|
| 2252 |
+
32,
|
| 2253 |
+
64
|
| 2254 |
+
],
|
| 2255 |
+
"out_factors": [
|
| 2256 |
+
64,
|
| 2257 |
+
96
|
| 2258 |
+
]
|
| 2259 |
+
},
|
| 2260 |
+
"model.layers.26.mlp.up_proj": {
|
| 2261 |
+
"in_features": 2048,
|
| 2262 |
+
"out_features": 6144,
|
| 2263 |
+
"in_factors": [
|
| 2264 |
+
32,
|
| 2265 |
+
64
|
| 2266 |
+
],
|
| 2267 |
+
"out_factors": [
|
| 2268 |
+
64,
|
| 2269 |
+
96
|
| 2270 |
+
]
|
| 2271 |
+
},
|
| 2272 |
+
"model.layers.26.mlp.down_proj": {
|
| 2273 |
+
"in_features": 6144,
|
| 2274 |
+
"out_features": 2048,
|
| 2275 |
+
"in_factors": [
|
| 2276 |
+
64,
|
| 2277 |
+
96
|
| 2278 |
+
],
|
| 2279 |
+
"out_factors": [
|
| 2280 |
+
32,
|
| 2281 |
+
64
|
| 2282 |
+
]
|
| 2283 |
+
},
|
| 2284 |
+
"model.layers.27.self_attn.q_proj": {
|
| 2285 |
+
"in_features": 2048,
|
| 2286 |
+
"out_features": 2048,
|
| 2287 |
+
"in_factors": [
|
| 2288 |
+
32,
|
| 2289 |
+
64
|
| 2290 |
+
],
|
| 2291 |
+
"out_factors": [
|
| 2292 |
+
32,
|
| 2293 |
+
64
|
| 2294 |
+
]
|
| 2295 |
+
},
|
| 2296 |
+
"model.layers.27.self_attn.k_proj": {
|
| 2297 |
+
"in_features": 2048,
|
| 2298 |
+
"out_features": 1024,
|
| 2299 |
+
"in_factors": [
|
| 2300 |
+
32,
|
| 2301 |
+
64
|
| 2302 |
+
],
|
| 2303 |
+
"out_factors": [
|
| 2304 |
+
32,
|
| 2305 |
+
32
|
| 2306 |
+
]
|
| 2307 |
+
},
|
| 2308 |
+
"model.layers.27.self_attn.v_proj": {
|
| 2309 |
+
"in_features": 2048,
|
| 2310 |
+
"out_features": 1024,
|
| 2311 |
+
"in_factors": [
|
| 2312 |
+
32,
|
| 2313 |
+
64
|
| 2314 |
+
],
|
| 2315 |
+
"out_factors": [
|
| 2316 |
+
32,
|
| 2317 |
+
32
|
| 2318 |
+
]
|
| 2319 |
+
},
|
| 2320 |
+
"model.layers.27.self_attn.o_proj": {
|
| 2321 |
+
"in_features": 2048,
|
| 2322 |
+
"out_features": 2048,
|
| 2323 |
+
"in_factors": [
|
| 2324 |
+
32,
|
| 2325 |
+
64
|
| 2326 |
+
],
|
| 2327 |
+
"out_factors": [
|
| 2328 |
+
32,
|
| 2329 |
+
64
|
| 2330 |
+
]
|
| 2331 |
+
},
|
| 2332 |
+
"model.layers.27.mlp.gate_proj": {
|
| 2333 |
+
"in_features": 2048,
|
| 2334 |
+
"out_features": 6144,
|
| 2335 |
+
"in_factors": [
|
| 2336 |
+
32,
|
| 2337 |
+
64
|
| 2338 |
+
],
|
| 2339 |
+
"out_factors": [
|
| 2340 |
+
64,
|
| 2341 |
+
96
|
| 2342 |
+
]
|
| 2343 |
+
},
|
| 2344 |
+
"model.layers.27.mlp.up_proj": {
|
| 2345 |
+
"in_features": 2048,
|
| 2346 |
+
"out_features": 6144,
|
| 2347 |
+
"in_factors": [
|
| 2348 |
+
32,
|
| 2349 |
+
64
|
| 2350 |
+
],
|
| 2351 |
+
"out_factors": [
|
| 2352 |
+
64,
|
| 2353 |
+
96
|
| 2354 |
+
]
|
| 2355 |
+
},
|
| 2356 |
+
"model.layers.27.mlp.down_proj": {
|
| 2357 |
+
"in_features": 6144,
|
| 2358 |
+
"out_features": 2048,
|
| 2359 |
+
"in_factors": [
|
| 2360 |
+
64,
|
| 2361 |
+
96
|
| 2362 |
+
],
|
| 2363 |
+
"out_factors": [
|
| 2364 |
+
32,
|
| 2365 |
+
64
|
| 2366 |
+
]
|
| 2367 |
+
}
|
| 2368 |
+
},
|
| 2369 |
+
"best_epoch": 2,
|
| 2370 |
+
"early_stopped": false,
|
| 2371 |
+
"best_val_loss": 0.12033694753423334
|
| 2372 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afe925c3e0de1216e7362dbeff59cc876498c754045f4d3bd4cca567b28c11a6
|
| 3 |
+
size 6887279983
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a224a732c0c9a3eadea504a5629233b88761c3105d1f1b4a60161847a0709c32
|
| 3 |
+
size 11422753
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
| 231 |
+
"clean_up_tokenization_spaces": false,
|
| 232 |
+
"eos_token": "<|im_end|>",
|
| 233 |
+
"errors": "replace",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 131072,
|
| 236 |
+
"pad_token": "<|endoftext|>",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|