--- license: mit tags: - chemistry - molecule - drug --- # GPT2 Zinc 87m This is a GPT2 style autoregressive language model trained on ~480m SMILES strings from the [ZINC database](https://zinc.docking.org/). The model has ~87m parameters and was trained for 175000 iterations with a batch size of 3072 to a validation loss of ~.615. This model is useful for generating druglike molecules or generating embeddings from SMILES strings ## How to use ```python from transformers import GPT2TokenizerFast, GPT2LMHeadModel tokenizer = GPT2TokenizerFast.from_pretrained("entropy/gpt2_zinc_87m", max_len=256) model = GPT2LMHeadModel.from_pretrained('entropy/gpt2_zinc_87m') ``` To generate molecules: ```python inputs = torch.tensor([[tokenizer.bos_token_id]]) gen = model.generate( inputs, do_sample=True, max_length=256, temperature=1., early_stopping=True, pad_token_id=tokenizer.pad_token_id, num_return_sequences=32 ) smiles = tokenizer.batch_decode(gen, skip_special_tokens=True) ``` To compute embeddings: ```python from transformers import DataCollatorWithPadding collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt') inputs = collator(tokenizer(smiles)) outputs = model(**inputs, output_hidden_states=True) full_embeddings = outputs[-1][-1] mask = inputs['attention_mask'] embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)) ``` ### WARNING This model was trained with `bos` and `eos` tokens around SMILES inputs. The `GPT2TokenizerFast` tokenizer DOES NOT ADD special tokens, even when `add_special_tokens=True`. Huggingface says this is [intended behavior](https://github.com/huggingface/transformers/issues/3311#issuecomment-693719190). It may be necessary to manually add these tokens ```python inputs = collator(tokenizer([tokenizer.bos_token+i+tokenizer.eos_token for i in smiles])) ``` ## Model Performance To test generation performance, 1m compounds were generated at various temperature values. Generated compounds were checked for uniqueness and structural validity. * `percent_unique` denotes `n_unique_smiles/n_total_smiles` * `percent_valid` denotes `n_valid_smiles/n_unique_smiles` * `percent_unique_and_valid` denotes `n_valid_smiles/n_total_smiles` | temperature | percent_unique | percent_valid | percent_unique_and_valid | |--------------:|-----------------:|----------------:|---------------------------:| | 0.5 | 0.928074 | 1 | 0.928074 | | 0.75 | 0.998468 | 0.999967 | 0.998436 | | 1 | 0.999659 | 0.999164 | 0.998823 | | 1.25 | 0.999514 | 0.99351 | 0.993027 | | 1.5 | 0.998749 | 0.970223 | 0.96901 | Property histograms computed over 1m generated compounds: ![property histograms](https://github.com/kheyer/gpt2_zinc_87m/blob/main/generated_properties.png)