epsil commited on
Commit
4d8a0b2
1 Parent(s): 345b253

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1968.90 +/- 16.24
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2DBulletEnv-v0
20
+ type: Walker2DBulletEnv-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **Walker2DBulletEnv-v0**
24
+ This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f422d6649e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f422d664a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f422d664b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f422d664b90>", "_build": "<function ActorCriticPolicy._build at 0x7f422d664c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f422d664cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f422d664d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f422d664dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f422d664e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f422d664ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f422d664f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f422d6b28a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 872368, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657883983.193648, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAt4kVvQAAAABpIZg1SQYgPwAAAACFFh2/AAAAAP2iJT27bl4/AIsmPeM4Sr9rX6C+NPsuP6roYr+RBKc9YjPSv5ylAb7nji8/9Y0qP4R9mj49Nbu/XJMuP1r6FL8AAAAAaSGYNcfqMj8AAAAA1VtDPwAAAADhkcW/q5JEv1MI5D8/Y3m/aaunvx13Vz/p7529CbydvzFVNL/5ii8+Q0ysP4hxVz8KTKC9PTW7v1yTLj8dv6G+AAAAAGkhmDWGs+Y/AAAAAMpMnz8AAAAAp6jWvPMGc79p25s/q+SvvgsEGL9pkY7Aj6QkQCVNUT9Oz6c9JUwjv/RBEj9OREw/3JyovQkJLz9cky4/n+7ZvwAAAABpIZg1OGuYPwAAAAC+gDK+AAAAACGJ7b+B5F0/WSdZPawLo7+YVIK+UM4YPtjST75uIPm/P9AnPqYj5b5gPM++sMHtPSq6ib8JCS8/XJMuPzwkab4AAAAAaSGYNVKAoj4AAAAAsENuPwAAAAC/kDo/tG5dP4+vgT1p5uO+/G8IP9naXD/hvIa91toHP1r47j9/mqC/We2DvzYizz5ii9g+CQkvP22zu7+dqNO+AAAAAGkhmDXgtnc/AAAAAJilRD4AAAAA1AK0vr4SSb98DZY/vIwdvzHhnL9mMGO/WY6uPhZhUT8/7aQ9THg5v45C3Tx0uUw/meW9vT01u79cky4/GWyKPgAAAABpIZg1gpeNPgAAAADFC5w+AAAAADl/xr34aV0/kbSCPfgfA7++xuU/xAFEP2sQR7+uAJu/f1C/PZQ9gj+LRIq/Ixy6vUX4BMA9Nbu/bbO7v2EV574AAAAAaSGYNQZW7D4AAAAA0T2GPwAAAAC4dYC+Wriiv5AHpj+bHa8+69Dkv0TqVD+f636+ivdRP8HRiD12qzy/Y+jWPkKbTD8j4be9PTW7v1yTLj82lxK/AAAAAGkhmDWlXWs/AAAAAH+/uD8AAAAAuTugvkZN1j6ZO5e/YvAXv4s9lT8aWV8/LTS5vb8xH78PUMs+3xFxv3y0+L4UdE6+sguXvwkJLz9ts7u/57rOPwAAAABpIZg104b0vwAAAABDLc+9AAAAABu1ZD/HNoM9IiSDv7tRxz9VkvM9eBg1PybZKUDvenA/AkWoPZhakD+vMeW/1kiRv6MFpL8JCS8/bbO7v5qfM74AAAAAaSGYNZ1VVD8AAAAAo6qOPwAAAABMR4I/E95WPzrt9j9eMqC/h/qFvy+mWj+q9hW+juRXPwDEf733wdC+4zpXP29zVj8Gjo89PTW7v1yTLj9ayi2+AAAAAGkhmDX1fqs/AAAAAEW3aL8AAAAA/xybvvn75r+oeBzAvViRP8VZFEBAUoI+IMHQvwEUVj/ATwK9fQeXvzsvgj66L0w/WOCkvQkJLz9ts7u/M8QQvwAAAABpIZg1CzbdPwAAAADuaGU/AAAAAK4Ptr5RWg3AcLecP+lYCz/ZWEK/h297wBYy0r9upnY/xH+qPTtzWL/skYw+g2NPP3UBHb4JCS8/XJMuP7rBn78AAAAAaSGYNcwwID8AAAAATU84vwAAAAAkRxXAKUpEwFcSir+o5FM/GooCP5xPgz6603i/bklRP8b8pz1PKyjALDCmPxsmQz+qQ/S+CQkvP22zu78Jf9a9AAAAAGkhmDUD9X8/AAAAAIsMmj8AAAAAuxYSP9A+hj9NRo6+L9fyvtOQNT+VKQs/8eYOPg0m8z1EEKM/WkeBv6pfL795J7y/AlFmPgkJLz9ts7u/NcdjPwAAAABpIZg1gC2NvgAAAAA/T1U+AAAAAKKeSb/4fMW/wNCsPSuquj8fifI9/lcxP5O3ML8nblE/9VOdPc/EEL+jVNA+bmbrv40nqr4JCS8/bbO7v5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAigng/AAAAADrihD8AAAAARq7svQAAAABI+3A/AAAAAJ+BcT8AAAAAyw/hPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP9BzPwAAAACKdIQ/AAAAAPfnhzwAAAAANY96PwAAAAC7GIA/AAAAAFGU0z0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGOtdT8AAAAAdbSCPwAAAACZrQ29AAAAAGXYhT8AAAAAIHZ6PwAAAACRB689AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3vYY/AAAAAKGZcz8AAAAA1s79vQAAAAD2OoM/AAAAAL98hz8AAAAA2wkMvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAa+GHPwAAAAClE28/AAAAACqbEjwAAAAA+AR9PwAAAACdAoQ/AAAAAGt7wz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEcMeT8AAAAAW3B/PwAAAADeFym9AAAAAJ/bez8AAAAAtciIPwAAAACw27u9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDmeGw/AAAAAKvMdz8AAAAAYoSRPQAAAABQxII/AAAAAMNHcz8AAAAAB/uvvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdJtvPwAAAACNlYY/AAAAAMPfcj0AAAAAuGF5PwAAAAAjo4A/AAAAAJ+es70AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFlxcj8AAAAAZN9vPwAAAAD/FZ49AAAAAJa4hD8AAAAA/PtuPwAAAAA10ks9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDEfX4/AAAAAJkpfT8AAAAAF7gbPQAAAAAayIE/AAAAAIiSfz8AAAAAii1LPAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHi2DPwAAAADiT3E/AAAAAPRm8j0AAAAAsThuPwAAAAAvRYM/AAAAAMfxqT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPTAgj8AAAAAdxyHPwAAAAC5Cro9AAAAAM77gD8AAAAAlsFuPwAAAADED7Y9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICYEIY/AAAAALFDcD8AAAAAuZADPAAAAAD+4HI/AAAAAHxpdz8AAAAAByzUvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACADwRuPwAAAAAR54c/AAAAAKz53T0AAAAAdNSGPwAAAAALeYI/AAAAADSz470AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBi9dj8AAAAAgV56PwAAAAAPRpg9AAAAAFTVgT8AAAAA5bOGPwAAAACr/kk9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAw924/AAAAALOLgD8AAAAAzi3fPQAAAADfIYU/AAAAAFuufz8AAAAAFR9SPAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": 0.565824, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGcxij1wo9eMAWyUS3uMAXSUR0CaP/Jw84gidX2UKGgGR0B3Cwaya/h3aAdL0mgIR0CaQWGjKxLTdX2UKGgGR0CaOGmw7kn1aAdN6ANoCEdAmkWoqXnhbXV9lChoBkdAmlAYHX2/SGgHTegDaAhHQJpHvfpD/l11fZQoaAZHQIgImhRIjGFoB03HAWgIR0CaSQcAzYVZdX2UKGgGR0CIE8No8IRiaAdNxAFoCEdAmklo+fRNRHV9lChoBkdAmbDT2OAAhmgHTegDaAhHQJpJn7FbVz91fZQoaAZHQJigEjjaPCFoB027A2gIR0CaSgo0Q9RrdX2UKGgGR0CbQBGVRk3CaAdN6ANoCEdAmkualYU343V9lChoBkdAjRdPBSDRMWgHTS8CaAhHQJpQVJI1+Ap1fZQoaAZHQIVLj6JqIrRoB02QAWgIR0CaUGduHerNdX2UKGgGR0BhtC+N96ToaAdLamgIR0CaUJsYVIqcdX2UKGgGR0CZ5CFo+OfeaAdN6ANoCEdAmnbjJ+2E03V9lChoBkdAmcPNF4LThGgHTegDaAhHQJp6QrqdH2B1fZQoaAZHQJsX5joZAIJoB03oA2gIR0Cae7IClrM1dX2UKGgGR0CGrBTxXnyNaAdNsAFoCEdAmn56r3j+73V9lChoBkdAg7jPkili0GgHTYIBaAhHQJqBflYEGJN1fZQoaAZHQISJurwOOKhoB02QAWgIR0CahLzyjHn2dX2UKGgGR0Cahlyn1nM/aAdN6ANoCEdAmobq1TisGXV9lChoBkdAaRnCuU2UCGgHS4RoCEdAmo37JfYzznV9lChoBkdAmq1eG47Rv2gHTegDaAhHQJqQ+2Yv38J1fZQoaAZHQItNQjB2wFFoB00QAmgIR0CalAKcd5prdX2UKGgGR0CCWFvphWo4aAdNdQFoCEdAmpR9M495hXV9lChoBkdAhfCUqhDgImgHTZgBaAhHQJq8ZA+pwS91fZQoaAZHQIKf77hvR7ZoB01dAWgIR0CavZldkauPdX2UKGgGR0CaVyUmlZX/aAdN6ANoCEdAmsMeF6AvtnV9lChoBkdAmQ1Assg+yWgHTcUDaAhHQJrGNnZkCmx1fZQoaAZHQH9tlp48loloB00vAWgIR0Cax+O/cnE3dX2UKGgGR0CYUN5VfeDWaAdNtgNoCEdAmsjk+gUUPHV9lChoBkdAmvi8UmD15GgHTegDaAhHQJrMmWZ7Xxx1fZQoaAZHQJNFeKUFB6doB03mAmgIR0Cazfjvd/KAdX2UKGgGR0CZfU1SwW30aAdN6ANoCEdAms6K9sabWnV9lChoBkdAlZoKnJkoW2gHTTcDaAhHQJrO5gKF7D51fZQoaAZHQH7X+10DEFZoB00zAWgIR0Ca00AS39aVdX2UKGgGR0CbKZ3EyckMaAdN6ANoCEdAmtNXFLnLaHV9lChoBkdAmne3El3QlmgHTegDaAhHQJrTomv4dp91fZQoaAZHQElVGHYYixFoB0syaAhHQJrW2PwNLDh1fZQoaAZHQIXptbcGkepoB02pAWgIR0Ca+x+wkgOjdX2UKGgGR0CBS4O/+Kj0aAdNTAFoCEdAmwFmUwBYFXV9lChoBkdAgMRp40Mw12gHTV0BaAhHQJsBnmr8zhx1fZQoaAZHQHJuYI8hcJNoB0u9aAhHQJsCBaY/mkp1fZQoaAZHQJoVnHOryUdoB03oA2gIR0CbBFj+717IdX2UKGgGR0Ca+4WxhUiqaAdN6ANoCEdAmxPdq59Vm3V9lChoBkdAmwkJZGKAKGgHTegDaAhHQJsWzgqEvkB1fZQoaAZHQJraePdVNpNoB03oA2gIR0CbGcet0V8DdX2UKGgGR0CAFbHWBjFyaAdNPQFoCEdAmxqFsDW9UXV9lChoBkdAksvh6Ww/xGgHTeACaAhHQJsbW42CNCJ1fZQoaAZHQFHMlMAWBSVoB0tHaAhHQJs85aaCtih1fZQoaAZHQJPCUIa99MNoB035AmgIR0CbQygflp49dX2UKGgGR0CUElZuAI6baAdNAANoCEdAm0Qy8SPEKnV9lChoBkdAmgVUE1VHWmgHTegDaAhHQJtI/1anrIJ1fZQoaAZHQHwMDImw7kpoB00EAWgIR0CbT2zN2TxHdX2UKGgGR0BwDINnXd0raAdLtmgIR0CbURXaakRBdX2UKGgGR0Ca6K3WFvhqaAdN6ANoCEdAm1Ke14Pf9HV9lChoBkdAmhqBy0a6z2gHTegDaAhHQJtU9gw482d1fZQoaAZHQFWIYQarFOxoB0tIaAhHQJtXvkmx+rl1fZQoaAZHQCjyB06o2n9oB0sNaAhHQJtYrDrJKap1fZQoaAZHQJruOUs4DLdoB03oA2gIR0CbWT0HyEtedX2UKGgGR0CbIg92X9iuaAdN6ANoCEdAm1zk8aGYbHV9lChoBkdAmynQb+98JGgHTegDaAhHQJt+0JF9a2Z1fZQoaAZHQJsUHCEYfnxoB03oA2gIR0CbhOZlFtsOdX2UKGgGR0CaferzoUzsaAdN6ANoCEdAm4UbK/20zHV9lChoBkdAmsjPcer+52gHTegDaAhHQJuFdELH+611fZQoaAZHQHnPYl2NedFoB0vvaAhHQJuIourZJ051fZQoaAZHQIFTm+23KCBoB01cAWgIR0Cbk+FzdUKidX2UKGgGR0CRqdidat9yaAdNnwJoCEdAm5boiC8OC3V9lChoBkdAmuHtQ9A5aWgHTegDaAhHQJuXDI8yN4t1fZQoaAZHQJqusY77sOZoB03oA2gIR0CbmgrzoUzsdX2UKGgGR0CQAJtrbg0kaAdNYwJoCEdAm5qxQrMC93V9lChoBkdAhREWIO6NEWgHTZIBaAhHQJubHHS4OMF1fZQoaAZHQJr82lenhsJoB03oA2gIR0CbnduMMqjKdX2UKGgGR0CAtc/wiJO4aAdNYQFoCEdAm55Otr9ETnV9lChoBkdAmsJTCLuQZGgHTegDaAhHQJueuBAfMfR1fZQoaAZHQFDllbeMyadoB0sxaAhHQJuhzFCLMs91fZQoaAZHQJojlxgiNbVoB029A2gIR0Cbwy8RL9MsdX2UKGgGR0CbUYYAKfFraAdN6ANoCEdAm9KX003wTnV9lChoBkdAkpHfViF0xWgHTasCaAhHQJvTIg6ltTF1fZQoaAZHQIiP79Q40dloB03eAWgIR0Cb1svB7/n4dX2UKGgGR0CaK24/NZ/1aAdN6ANoCEdAm9gmOEM9bHV9lChoBkdAmaDoJzDGcWgHTegDaAhHQJvb2EkB0ZF1fZQoaAZHQIo+9GEwnIBoB03kAWgIR0Cb4gWo3rD7dX2UKGgGR0BaHRM8HObBaAdLUmgIR0CcBgz7MxGldX2UKGgGR0BtgRs/IKc/aAdLr2gIR0CcBmQumJm/dX2UKGgGR0CalBZRbbDeaAdN6ANoCEdAnAfwvHtF8XV9lChoBkdAmknH7tRekmgHTegDaAhHQJwLb3h4t6J1fZQoaAZHQJO1y2sq8UVoB03pAmgIR0CcC5X/o7mudX2UKGgGR0CWbshllK9PaAdNSgNoCEdAnA7bO/tY0XV9lChoBkdAm2WWys0YTGgHTegDaAhHQJwWua8YhuB1fZQoaAZHQIdHFw1ivxJoB03OAWgIR0CcFvIdU83ddX2UKGgGR0CYW2wEhaC+aAdNqANoCEdAnBhmnfl6q3V9lChoBkdAmx6XN9ph4WgHTegDaAhHQJwd8KTjebd1fZQoaAZHQJu969+PRzBoB03oA2gIR0CcILpb2USqdX2UKGgGR0CAfdLqUu+RaAdNLwFoCEdAnCDs/6frbHV9lChoBkdAm9bFj3Ehq2gHTegDaAhHQJwhkJgLJCB1fZQoaAZHQJo2AipvP1NoB03oA2gIR0CcRoKnNxEOdX2UKGgGR0CDsK0TlDF7aAdNgwFoCEdAnEiJ+x4Y8HV9lChoBkdAlppshs67umgHTUkDaAhHQJxOtsP8Q7N1fZQoaAZHQGkLIf0VafVoB0uZaAhHQJxROq7yxzJ1fZQoaAZHQJspDPyCnP5oB03oA2gIR0CcVbS6lLvkdX2UKGgGR0CbgJNtIkJKaAdN6ANoCEdAnFZEeuFHrnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2120, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9289ebe3ee253e7ab28b3d8040ea9316cea973ee367f0ad88fecf55fb9847b5
3
+ size 1794903
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f422d6649e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f422d664a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f422d664b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f422d664b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f422d664c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f422d664cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f422d664d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f422d664dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f422d664e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f422d664ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f422d664f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f422d6b28a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
28
+ "net_arch": [
29
+ {
30
+ "pi": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "vf": [
35
+ 256,
36
+ 256
37
+ ]
38
+ }
39
+ ]
40
+ },
41
+ "observation_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 22
47
+ ],
48
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
49
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
50
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
51
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
52
+ "_np_random": null
53
+ },
54
+ "action_space": {
55
+ ":type:": "<class 'gym.spaces.box.Box'>",
56
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
57
+ "dtype": "float32",
58
+ "_shape": [
59
+ 6
60
+ ],
61
+ "low": "[-1. -1. -1. -1. -1. -1.]",
62
+ "high": "[1. 1. 1. 1. 1. 1.]",
63
+ "bounded_below": "[ True True True True True True]",
64
+ "bounded_above": "[ True True True True True True]",
65
+ "_np_random": null
66
+ },
67
+ "n_envs": 16,
68
+ "num_timesteps": 872368,
69
+ "_total_timesteps": 2000000,
70
+ "_num_timesteps_at_start": 0,
71
+ "seed": null,
72
+ "action_noise": null,
73
+ "start_time": 1657883983.193648,
74
+ "learning_rate": 3e-05,
75
+ "tensorboard_log": "./tensorboard",
76
+ "lr_schedule": {
77
+ ":type:": "<class 'function'>",
78
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
79
+ },
80
+ "_last_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAt4kVvQAAAABpIZg1SQYgPwAAAACFFh2/AAAAAP2iJT27bl4/AIsmPeM4Sr9rX6C+NPsuP6roYr+RBKc9YjPSv5ylAb7nji8/9Y0qP4R9mj49Nbu/XJMuP1r6FL8AAAAAaSGYNcfqMj8AAAAA1VtDPwAAAADhkcW/q5JEv1MI5D8/Y3m/aaunvx13Vz/p7529CbydvzFVNL/5ii8+Q0ysP4hxVz8KTKC9PTW7v1yTLj8dv6G+AAAAAGkhmDWGs+Y/AAAAAMpMnz8AAAAAp6jWvPMGc79p25s/q+SvvgsEGL9pkY7Aj6QkQCVNUT9Oz6c9JUwjv/RBEj9OREw/3JyovQkJLz9cky4/n+7ZvwAAAABpIZg1OGuYPwAAAAC+gDK+AAAAACGJ7b+B5F0/WSdZPawLo7+YVIK+UM4YPtjST75uIPm/P9AnPqYj5b5gPM++sMHtPSq6ib8JCS8/XJMuPzwkab4AAAAAaSGYNVKAoj4AAAAAsENuPwAAAAC/kDo/tG5dP4+vgT1p5uO+/G8IP9naXD/hvIa91toHP1r47j9/mqC/We2DvzYizz5ii9g+CQkvP22zu7+dqNO+AAAAAGkhmDXgtnc/AAAAAJilRD4AAAAA1AK0vr4SSb98DZY/vIwdvzHhnL9mMGO/WY6uPhZhUT8/7aQ9THg5v45C3Tx0uUw/meW9vT01u79cky4/GWyKPgAAAABpIZg1gpeNPgAAAADFC5w+AAAAADl/xr34aV0/kbSCPfgfA7++xuU/xAFEP2sQR7+uAJu/f1C/PZQ9gj+LRIq/Ixy6vUX4BMA9Nbu/bbO7v2EV574AAAAAaSGYNQZW7D4AAAAA0T2GPwAAAAC4dYC+Wriiv5AHpj+bHa8+69Dkv0TqVD+f636+ivdRP8HRiD12qzy/Y+jWPkKbTD8j4be9PTW7v1yTLj82lxK/AAAAAGkhmDWlXWs/AAAAAH+/uD8AAAAAuTugvkZN1j6ZO5e/YvAXv4s9lT8aWV8/LTS5vb8xH78PUMs+3xFxv3y0+L4UdE6+sguXvwkJLz9ts7u/57rOPwAAAABpIZg104b0vwAAAABDLc+9AAAAABu1ZD/HNoM9IiSDv7tRxz9VkvM9eBg1PybZKUDvenA/AkWoPZhakD+vMeW/1kiRv6MFpL8JCS8/bbO7v5qfM74AAAAAaSGYNZ1VVD8AAAAAo6qOPwAAAABMR4I/E95WPzrt9j9eMqC/h/qFvy+mWj+q9hW+juRXPwDEf733wdC+4zpXP29zVj8Gjo89PTW7v1yTLj9ayi2+AAAAAGkhmDX1fqs/AAAAAEW3aL8AAAAA/xybvvn75r+oeBzAvViRP8VZFEBAUoI+IMHQvwEUVj/ATwK9fQeXvzsvgj66L0w/WOCkvQkJLz9ts7u/M8QQvwAAAABpIZg1CzbdPwAAAADuaGU/AAAAAK4Ptr5RWg3AcLecP+lYCz/ZWEK/h297wBYy0r9upnY/xH+qPTtzWL/skYw+g2NPP3UBHb4JCS8/XJMuP7rBn78AAAAAaSGYNcwwID8AAAAATU84vwAAAAAkRxXAKUpEwFcSir+o5FM/GooCP5xPgz6603i/bklRP8b8pz1PKyjALDCmPxsmQz+qQ/S+CQkvP22zu78Jf9a9AAAAAGkhmDUD9X8/AAAAAIsMmj8AAAAAuxYSP9A+hj9NRo6+L9fyvtOQNT+VKQs/8eYOPg0m8z1EEKM/WkeBv6pfL795J7y/AlFmPgkJLz9ts7u/NcdjPwAAAABpIZg1gC2NvgAAAAA/T1U+AAAAAKKeSb/4fMW/wNCsPSuquj8fifI9/lcxP5O3ML8nblE/9VOdPc/EEL+jVNA+bmbrv40nqr4JCS8/bbO7v5R0lGIu"
83
+ },
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAigng/AAAAADrihD8AAAAARq7svQAAAABI+3A/AAAAAJ+BcT8AAAAAyw/hPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP9BzPwAAAACKdIQ/AAAAAPfnhzwAAAAANY96PwAAAAC7GIA/AAAAAFGU0z0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGOtdT8AAAAAdbSCPwAAAACZrQ29AAAAAGXYhT8AAAAAIHZ6PwAAAACRB689AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3vYY/AAAAAKGZcz8AAAAA1s79vQAAAAD2OoM/AAAAAL98hz8AAAAA2wkMvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAa+GHPwAAAAClE28/AAAAACqbEjwAAAAA+AR9PwAAAACdAoQ/AAAAAGt7wz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEcMeT8AAAAAW3B/PwAAAADeFym9AAAAAJ/bez8AAAAAtciIPwAAAACw27u9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDmeGw/AAAAAKvMdz8AAAAAYoSRPQAAAABQxII/AAAAAMNHcz8AAAAAB/uvvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdJtvPwAAAACNlYY/AAAAAMPfcj0AAAAAuGF5PwAAAAAjo4A/AAAAAJ+es70AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFlxcj8AAAAAZN9vPwAAAAD/FZ49AAAAAJa4hD8AAAAA/PtuPwAAAAA10ks9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDEfX4/AAAAAJkpfT8AAAAAF7gbPQAAAAAayIE/AAAAAIiSfz8AAAAAii1LPAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHi2DPwAAAADiT3E/AAAAAPRm8j0AAAAAsThuPwAAAAAvRYM/AAAAAMfxqT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPTAgj8AAAAAdxyHPwAAAAC5Cro9AAAAAM77gD8AAAAAlsFuPwAAAADED7Y9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICYEIY/AAAAALFDcD8AAAAAuZADPAAAAAD+4HI/AAAAAHxpdz8AAAAAByzUvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACADwRuPwAAAAAR54c/AAAAAKz53T0AAAAAdNSGPwAAAAALeYI/AAAAADSz470AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBi9dj8AAAAAgV56PwAAAAAPRpg9AAAAAFTVgT8AAAAA5bOGPwAAAACr/kk9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAw924/AAAAALOLgD8AAAAAzi3fPQAAAADfIYU/AAAAAFuufz8AAAAAFR9SPAAAAAAAAAAAAAAAAJR0lGIu"
91
+ },
92
+ "_episode_num": 0,
93
+ "use_sde": true,
94
+ "sde_sample_freq": 4,
95
+ "_current_progress_remaining": 0.565824,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gASVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGcxij1wo9eMAWyUS3uMAXSUR0CaP/Jw84gidX2UKGgGR0B3Cwaya/h3aAdL0mgIR0CaQWGjKxLTdX2UKGgGR0CaOGmw7kn1aAdN6ANoCEdAmkWoqXnhbXV9lChoBkdAmlAYHX2/SGgHTegDaAhHQJpHvfpD/l11fZQoaAZHQIgImhRIjGFoB03HAWgIR0CaSQcAzYVZdX2UKGgGR0CIE8No8IRiaAdNxAFoCEdAmklo+fRNRHV9lChoBkdAmbDT2OAAhmgHTegDaAhHQJpJn7FbVz91fZQoaAZHQJigEjjaPCFoB027A2gIR0CaSgo0Q9RrdX2UKGgGR0CbQBGVRk3CaAdN6ANoCEdAmkualYU343V9lChoBkdAjRdPBSDRMWgHTS8CaAhHQJpQVJI1+Ap1fZQoaAZHQIVLj6JqIrRoB02QAWgIR0CaUGduHerNdX2UKGgGR0BhtC+N96ToaAdLamgIR0CaUJsYVIqcdX2UKGgGR0CZ5CFo+OfeaAdN6ANoCEdAmnbjJ+2E03V9lChoBkdAmcPNF4LThGgHTegDaAhHQJp6QrqdH2B1fZQoaAZHQJsX5joZAIJoB03oA2gIR0Cae7IClrM1dX2UKGgGR0CGrBTxXnyNaAdNsAFoCEdAmn56r3j+73V9lChoBkdAg7jPkili0GgHTYIBaAhHQJqBflYEGJN1fZQoaAZHQISJurwOOKhoB02QAWgIR0CahLzyjHn2dX2UKGgGR0Cahlyn1nM/aAdN6ANoCEdAmobq1TisGXV9lChoBkdAaRnCuU2UCGgHS4RoCEdAmo37JfYzznV9lChoBkdAmq1eG47Rv2gHTegDaAhHQJqQ+2Yv38J1fZQoaAZHQItNQjB2wFFoB00QAmgIR0CalAKcd5prdX2UKGgGR0CCWFvphWo4aAdNdQFoCEdAmpR9M495hXV9lChoBkdAhfCUqhDgImgHTZgBaAhHQJq8ZA+pwS91fZQoaAZHQIKf77hvR7ZoB01dAWgIR0CavZldkauPdX2UKGgGR0CaVyUmlZX/aAdN6ANoCEdAmsMeF6AvtnV9lChoBkdAmQ1Assg+yWgHTcUDaAhHQJrGNnZkCmx1fZQoaAZHQH9tlp48loloB00vAWgIR0Cax+O/cnE3dX2UKGgGR0CYUN5VfeDWaAdNtgNoCEdAmsjk+gUUPHV9lChoBkdAmvi8UmD15GgHTegDaAhHQJrMmWZ7Xxx1fZQoaAZHQJNFeKUFB6doB03mAmgIR0Cazfjvd/KAdX2UKGgGR0CZfU1SwW30aAdN6ANoCEdAms6K9sabWnV9lChoBkdAlZoKnJkoW2gHTTcDaAhHQJrO5gKF7D51fZQoaAZHQH7X+10DEFZoB00zAWgIR0Ca00AS39aVdX2UKGgGR0CbKZ3EyckMaAdN6ANoCEdAmtNXFLnLaHV9lChoBkdAmne3El3QlmgHTegDaAhHQJrTomv4dp91fZQoaAZHQElVGHYYixFoB0syaAhHQJrW2PwNLDh1fZQoaAZHQIXptbcGkepoB02pAWgIR0Ca+x+wkgOjdX2UKGgGR0CBS4O/+Kj0aAdNTAFoCEdAmwFmUwBYFXV9lChoBkdAgMRp40Mw12gHTV0BaAhHQJsBnmr8zhx1fZQoaAZHQHJuYI8hcJNoB0u9aAhHQJsCBaY/mkp1fZQoaAZHQJoVnHOryUdoB03oA2gIR0CbBFj+717IdX2UKGgGR0Ca+4WxhUiqaAdN6ANoCEdAmxPdq59Vm3V9lChoBkdAmwkJZGKAKGgHTegDaAhHQJsWzgqEvkB1fZQoaAZHQJraePdVNpNoB03oA2gIR0CbGcet0V8DdX2UKGgGR0CAFbHWBjFyaAdNPQFoCEdAmxqFsDW9UXV9lChoBkdAksvh6Ww/xGgHTeACaAhHQJsbW42CNCJ1fZQoaAZHQFHMlMAWBSVoB0tHaAhHQJs85aaCtih1fZQoaAZHQJPCUIa99MNoB035AmgIR0CbQygflp49dX2UKGgGR0CUElZuAI6baAdNAANoCEdAm0Qy8SPEKnV9lChoBkdAmgVUE1VHWmgHTegDaAhHQJtI/1anrIJ1fZQoaAZHQHwMDImw7kpoB00EAWgIR0CbT2zN2TxHdX2UKGgGR0BwDINnXd0raAdLtmgIR0CbURXaakRBdX2UKGgGR0Ca6K3WFvhqaAdN6ANoCEdAm1Ke14Pf9HV9lChoBkdAmhqBy0a6z2gHTegDaAhHQJtU9gw482d1fZQoaAZHQFWIYQarFOxoB0tIaAhHQJtXvkmx+rl1fZQoaAZHQCjyB06o2n9oB0sNaAhHQJtYrDrJKap1fZQoaAZHQJruOUs4DLdoB03oA2gIR0CbWT0HyEtedX2UKGgGR0CbIg92X9iuaAdN6ANoCEdAm1zk8aGYbHV9lChoBkdAmynQb+98JGgHTegDaAhHQJt+0JF9a2Z1fZQoaAZHQJsUHCEYfnxoB03oA2gIR0CbhOZlFtsOdX2UKGgGR0CaferzoUzsaAdN6ANoCEdAm4UbK/20zHV9lChoBkdAmsjPcer+52gHTegDaAhHQJuFdELH+611fZQoaAZHQHnPYl2NedFoB0vvaAhHQJuIourZJ051fZQoaAZHQIFTm+23KCBoB01cAWgIR0Cbk+FzdUKidX2UKGgGR0CRqdidat9yaAdNnwJoCEdAm5boiC8OC3V9lChoBkdAmuHtQ9A5aWgHTegDaAhHQJuXDI8yN4t1fZQoaAZHQJqusY77sOZoB03oA2gIR0CbmgrzoUzsdX2UKGgGR0CQAJtrbg0kaAdNYwJoCEdAm5qxQrMC93V9lChoBkdAhREWIO6NEWgHTZIBaAhHQJubHHS4OMF1fZQoaAZHQJr82lenhsJoB03oA2gIR0CbnduMMqjKdX2UKGgGR0CAtc/wiJO4aAdNYQFoCEdAm55Otr9ETnV9lChoBkdAmsJTCLuQZGgHTegDaAhHQJueuBAfMfR1fZQoaAZHQFDllbeMyadoB0sxaAhHQJuhzFCLMs91fZQoaAZHQJojlxgiNbVoB029A2gIR0Cbwy8RL9MsdX2UKGgGR0CbUYYAKfFraAdN6ANoCEdAm9KX003wTnV9lChoBkdAkpHfViF0xWgHTasCaAhHQJvTIg6ltTF1fZQoaAZHQIiP79Q40dloB03eAWgIR0Cb1svB7/n4dX2UKGgGR0CaK24/NZ/1aAdN6ANoCEdAm9gmOEM9bHV9lChoBkdAmaDoJzDGcWgHTegDaAhHQJvb2EkB0ZF1fZQoaAZHQIo+9GEwnIBoB03kAWgIR0Cb4gWo3rD7dX2UKGgGR0BaHRM8HObBaAdLUmgIR0CcBgz7MxGldX2UKGgGR0BtgRs/IKc/aAdLr2gIR0CcBmQumJm/dX2UKGgGR0CalBZRbbDeaAdN6ANoCEdAnAfwvHtF8XV9lChoBkdAmknH7tRekmgHTegDaAhHQJwLb3h4t6J1fZQoaAZHQJO1y2sq8UVoB03pAmgIR0CcC5X/o7mudX2UKGgGR0CWbshllK9PaAdNSgNoCEdAnA7bO/tY0XV9lChoBkdAm2WWys0YTGgHTegDaAhHQJwWua8YhuB1fZQoaAZHQIdHFw1ivxJoB03OAWgIR0CcFvIdU83ddX2UKGgGR0CYW2wEhaC+aAdNqANoCEdAnBhmnfl6q3V9lChoBkdAmx6XN9ph4WgHTegDaAhHQJwd8KTjebd1fZQoaAZHQJu969+PRzBoB03oA2gIR0CcILpb2USqdX2UKGgGR0CAfdLqUu+RaAdNLwFoCEdAnCDs/6frbHV9lChoBkdAm9bFj3Ehq2gHTegDaAhHQJwhkJgLJCB1fZQoaAZHQJo2AipvP1NoB03oA2gIR0CcRoKnNxEOdX2UKGgGR0CDsK0TlDF7aAdNgwFoCEdAnEiJ+x4Y8HV9lChoBkdAlppshs67umgHTUkDaAhHQJxOtsP8Q7N1fZQoaAZHQGkLIf0VafVoB0uZaAhHQJxROq7yxzJ1fZQoaAZHQJspDPyCnP5oB03oA2gIR0CcVbS6lLvkdX2UKGgGR0CbgJNtIkJKaAdN6ANoCEdAnFZEeuFHrnVlLg=="
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 2120,
105
+ "n_steps": 512,
106
+ "gamma": 0.99,
107
+ "gae_lambda": 0.92,
108
+ "ent_coef": 0.0,
109
+ "vf_coef": 0.5,
110
+ "max_grad_norm": 0.5,
111
+ "batch_size": 128,
112
+ "n_epochs": 20,
113
+ "clip_range": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
116
+ },
117
+ "clip_range_vf": null,
118
+ "normalize_advantage": true,
119
+ "target_kl": null
120
+ }
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01d02183ca9e40f4ce7ee5680884a48e4d3377ec7c3d66e355281f4717fdd435
3
+ size 1183984
ppo-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3d7ee8d55ee54a042fce9ef42fec9e0c7b15faf706412ce05d434fd460b93d6
3
+ size 591102
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63b26eef6ba7081160faaf74755ad671597883f6bb4c3b5f9f69ac34a79ef413
3
+ size 1093824
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1968.8971182495357, "std_reward": 16.241104048388408, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-15T11:51:06.856466"}
vec_normalize.pkl ADDED
Binary file (3.6 kB). View file