Text-to-Speech
Vietnamese
vietnamese
female
male
voice-cloning
File size: 22,447 Bytes
a2c3ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import os
import torch
import torchaudio
import numpy as np
from pathlib import Path
from typing import Optional, Union, List, Tuple, Dict

from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from importlib.resources import files
from pydub import AudioSegment, silence

from f5_tts.model import CFM
from f5_tts.model.utils import (
    get_tokenizer,
    convert_char_to_pinyin,
)
from f5_tts.infer.utils_infer import (
    chunk_text,
    load_vocoder,
    transcribe,
    initialize_asr_pipeline,
)


class F5TTSWrapper:
    """
    A wrapper class for F5-TTS that preprocesses reference audio once 
    and allows for repeated TTS generation.
    """
    
    def __init__(
        self, 
        model_name: str = "F5TTS_v1_Base", 
        ckpt_path: Optional[str] = None,
        vocab_file: Optional[str] = None,
        vocoder_name: str = "vocos",
        use_local_vocoder: bool = False,
        vocoder_path: Optional[str] = None,
        device: Optional[str] = None,
        hf_cache_dir: Optional[str] = None,
        target_sample_rate: int = 24000,
        n_mel_channels: int = 100,
        hop_length: int = 256,
        win_length: int = 1024,
        n_fft: int = 1024,
        ode_method: str = "euler",
        use_ema: bool = True,
    ):
        """
        Initialize the F5-TTS wrapper with model configuration.
        
        Args:
            model_name: Name of the F5-TTS model variant (e.g., "F5TTS_v1_Base")
            ckpt_path: Path to the model checkpoint file. If None, will use default path.
            vocab_file: Path to the vocab file. If None, will use default.
            vocoder_name: Name of the vocoder to use ("vocos" or "bigvgan")
            use_local_vocoder: Whether to use a local vocoder or download from HF
            vocoder_path: Path to the local vocoder. Only used if use_local_vocoder is True.
            device: Device to run the model on. If None, will automatically determine.
            hf_cache_dir: Directory to cache HuggingFace models
            target_sample_rate: Target sample rate for audio
            n_mel_channels: Number of mel channels
            hop_length: Hop length for the mel spectrogram
            win_length: Window length for the mel spectrogram
            n_fft: FFT size for the mel spectrogram
            ode_method: ODE method for sampling ("euler" or "midpoint")
            use_ema: Whether to use EMA weights from the checkpoint
        """
        # Set device
        if device is None:
            self.device = (
                "cuda" if torch.cuda.is_available()
                else "xpu" if torch.xpu.is_available()
                else "mps" if torch.backends.mps.is_available()
                else "cpu"
            )
        else:
            self.device = device
            
        # Audio processing parameters
        self.target_sample_rate = target_sample_rate
        self.n_mel_channels = n_mel_channels
        self.hop_length = hop_length
        self.win_length = win_length
        self.n_fft = n_fft
        self.mel_spec_type = vocoder_name
        
        # Sampling parameters
        self.ode_method = ode_method
        
        # Initialize ASR for transcription if needed
        initialize_asr_pipeline(device=self.device)
        
        # Load model configuration
        if ckpt_path is None:
            repo_name = "F5-TTS"
            ckpt_step = 1250000
            ckpt_type = "safetensors"
            
            # Adjust for previous models
            if model_name == "F5TTS_Base":
                if vocoder_name == "vocos":
                    ckpt_step = 1200000
                elif vocoder_name == "bigvgan":
                    model_name = "F5TTS_Base_bigvgan"
                    ckpt_type = "pt"
            elif model_name == "E2TTS_Base":
                repo_name = "E2-TTS"
                ckpt_step = 1200000
                
            ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{model_name}/model_{ckpt_step}.{ckpt_type}"))
        
        # Load model configuration
        config_path = str(files("f5_tts").joinpath(f"configs/{model_name}.yaml"))
        model_cfg = OmegaConf.load(config_path)
        model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
        model_arc = model_cfg.model.arch
        
        # Load tokenizer
        if vocab_file is None:
            vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
        tokenizer_type = "custom"
        self.vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer_type)
        
        # Create model
        self.model = CFM(
            transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
            mel_spec_kwargs=dict(
                n_fft=n_fft,
                hop_length=hop_length,
                win_length=win_length,
                n_mel_channels=n_mel_channels,
                target_sample_rate=target_sample_rate,
                mel_spec_type=vocoder_name,
            ),
            odeint_kwargs=dict(
                method=ode_method,
            ),
            vocab_char_map=self.vocab_char_map,
        ).to(self.device)
        
        # Load checkpoint
        dtype = torch.float32 if vocoder_name == "bigvgan" else None
        self._load_checkpoint(self.model, ckpt_path, dtype=dtype, use_ema=use_ema)
        
        # Load vocoder
        if vocoder_path is None:
            if vocoder_name == "vocos":
                vocoder_path = "../checkpoints/vocos-mel-24khz"
            elif vocoder_name == "bigvgan":
                vocoder_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
        
        self.vocoder = load_vocoder(
            vocoder_name=vocoder_name,
            is_local=use_local_vocoder,
            local_path=vocoder_path,
            device=self.device,
            hf_cache_dir=hf_cache_dir
        )
        
        # Storage for reference data
        self.ref_audio_processed = None
        self.ref_text = None
        self.ref_audio_len = None
        
        # Default inference parameters
        self.target_rms = 0.1
        self.cross_fade_duration = 0.15
        self.nfe_step = 32
        self.cfg_strength = 2.0
        self.sway_sampling_coef = -1.0
        self.speed = 1.0
        self.fix_duration = None

    def _load_checkpoint(self, model, ckpt_path, dtype=None, use_ema=True):
        """
        Load model checkpoint with proper handling of different checkpoint formats.
        
        Args:
            model: The model to load weights into
            ckpt_path: Path to the checkpoint file
            dtype: Data type for model weights
            use_ema: Whether to use EMA weights from the checkpoint
        
        Returns:
            Loaded model
        """
        if dtype is None:
            dtype = (
                torch.float16
                if "cuda" in self.device
                and torch.cuda.get_device_properties(self.device).major >= 7
                and not torch.cuda.get_device_name().endswith("[ZLUDA]")
                else torch.float32
            )
        model = model.to(dtype)

        ckpt_type = ckpt_path.split(".")[-1]
        if ckpt_type == "safetensors":
            from safetensors.torch import load_file
            checkpoint = load_file(ckpt_path, device=self.device)
        else:
            checkpoint = torch.load(ckpt_path, map_location=self.device, weights_only=True)

        if use_ema:
            if ckpt_type == "safetensors":
                checkpoint = {"ema_model_state_dict": checkpoint}
            checkpoint["model_state_dict"] = {
                k.replace("ema_model.", ""): v
                for k, v in checkpoint["ema_model_state_dict"].items()
                if k not in ["initted", "step"]
            }

            # patch for backward compatibility
            for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
                if key in checkpoint["model_state_dict"]:
                    del checkpoint["model_state_dict"][key]

            model.load_state_dict(checkpoint["model_state_dict"])
        else:
            if ckpt_type == "safetensors":
                checkpoint = {"model_state_dict": checkpoint}
            model.load_state_dict(checkpoint["model_state_dict"])

        del checkpoint
        torch.cuda.empty_cache()

        return model.to(self.device)
    
    def preprocess_reference(self, ref_audio_path: str, ref_text: str = "", clip_short: bool = True):
        """
        Preprocess the reference audio and text, storing them for later use.
        
        Args:
            ref_audio_path: Path to the reference audio file
            ref_text: Text transcript of reference audio. If empty, will auto-transcribe.
            clip_short: Whether to clip long audio to shorter segments
            
        Returns:
            Tuple of processed audio and text
        """
        print("Converting audio...")
        # Load audio file
        aseg = AudioSegment.from_file(ref_audio_path)
        
        if clip_short:
            # 1. try to find long silence for clipping
            non_silent_segs = silence.split_on_silence(
                aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
            )
            non_silent_wave = AudioSegment.silent(duration=0)
            for non_silent_seg in non_silent_segs:
                if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
                    print("Audio is over 12s, clipping short. (1)")
                    break
                non_silent_wave += non_silent_seg
                
            # 2. try to find short silence for clipping if 1. failed
            if len(non_silent_wave) > 12000:
                non_silent_segs = silence.split_on_silence(
                    aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
                )
                non_silent_wave = AudioSegment.silent(duration=0)
                for non_silent_seg in non_silent_segs:
                    if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
                        print("Audio is over 12s, clipping short. (2)")
                        break
                    non_silent_wave += non_silent_seg
                    
            aseg = non_silent_wave
                
            # 3. if no proper silence found for clipping
            if len(aseg) > 12000:
                aseg = aseg[:12000]
                print("Audio is over 12s, clipping short. (3)")
            
        # Remove silence edges
        aseg = self._remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
        
        # Export to temporary file and load as tensor
        import tempfile
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
            aseg.export(tmp_file.name, format="wav")
            processed_audio_path = tmp_file.name
            
        # Transcribe if needed
        if not ref_text.strip():
            print("No reference text provided, transcribing reference audio...")
            ref_text = transcribe(processed_audio_path)
        else:
            print("Using custom reference text...")
            
        # Ensure ref_text ends with proper punctuation
        if not ref_text.endswith(". ") and not ref_text.endswith("。"):
            if ref_text.endswith("."):
                ref_text += " "
            else:
                ref_text += ". "
                
        print("\nReference text:", ref_text)
        
        # Load and process audio
        audio, sr = torchaudio.load(processed_audio_path)
        if audio.shape[0] > 1:  # Convert stereo to mono
            audio = torch.mean(audio, dim=0, keepdim=True)
            
        # Normalize volume
        rms = torch.sqrt(torch.mean(torch.square(audio)))
        if rms < self.target_rms:
            audio = audio * self.target_rms / rms
            
        # Resample if needed
        if sr != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
            audio = resampler(audio)
            
        # Move to device
        audio = audio.to(self.device)
        
        # Store reference data
        self.ref_audio_processed = audio
        self.ref_text = ref_text
        self.ref_audio_len = audio.shape[-1] // self.hop_length
        
        # Remove temporary file
        os.unlink(processed_audio_path)
        
        return audio, ref_text
    
    def _remove_silence_edges(self, audio, silence_threshold=-42):
        """
        Remove silence from the start and end of audio.

        Args:
            audio: AudioSegment to process
            silence_threshold: dB threshold to consider as silence

        Returns:
            Processed AudioSegment
        """
        # Remove silence from the start
        non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold)
        audio = audio[non_silent_start_idx:]

        # Remove silence from the end
        non_silent_end_duration = audio.duration_seconds
        for ms in reversed(audio):
            if ms.dBFS > silence_threshold:
                break
            non_silent_end_duration -= 0.001
        trimmed_audio = audio[: int(non_silent_end_duration * 1000)]

        return trimmed_audio
    
    def generate(
        self, 
        text: str,
        output_path: Optional[str] = None,
        nfe_step: Optional[int] = None,
        cfg_strength: Optional[float] = None,
        sway_sampling_coef: Optional[float] = None,
        speed: Optional[float] = None,
        fix_duration: Optional[float] = None,
        cross_fade_duration: Optional[float] = None,
        return_numpy: bool = False,
        return_spectrogram: bool = False,
    ) -> Union[str, Tuple[np.ndarray, int], Tuple[np.ndarray, int, np.ndarray]]:
        """
        Generate speech for the given text using the stored reference audio.
        
        Args:
            text: Text to synthesize
            output_path: Path to save the generated audio. If None, won't save.
            nfe_step: Number of function evaluation steps
            cfg_strength: Classifier-free guidance strength
            sway_sampling_coef: Sway sampling coefficient
            speed: Speed of generated audio
            fix_duration: Fixed duration in seconds
            cross_fade_duration: Duration of cross-fade between segments
            return_numpy: If True, returns the audio as a numpy array
            return_spectrogram: If True, also returns the spectrogram
            
        Returns:
            If output_path provided: path to output file
            If return_numpy=True: tuple of (audio_array, sample_rate)
            If return_spectrogram=True: tuple of (audio_array, sample_rate, spectrogram)
        """
        if self.ref_audio_processed is None or self.ref_text is None:
            raise ValueError("Reference audio not preprocessed. Call preprocess_reference() first.")
            
        # Use default values if not specified
        nfe_step = nfe_step if nfe_step is not None else self.nfe_step
        cfg_strength = cfg_strength if cfg_strength is not None else self.cfg_strength
        sway_sampling_coef = sway_sampling_coef if sway_sampling_coef is not None else self.sway_sampling_coef
        speed = speed if speed is not None else self.speed
        fix_duration = fix_duration if fix_duration is not None else self.fix_duration
        cross_fade_duration = cross_fade_duration if cross_fade_duration is not None else self.cross_fade_duration
        
        # Split the input text into batches
        audio_len = self.ref_audio_processed.shape[-1] / self.target_sample_rate
        max_chars = int(len(self.ref_text.encode("utf-8")) / audio_len * (22 - audio_len))
        text_batches = chunk_text(text, max_chars=max_chars)
        
        for i, text_batch in enumerate(text_batches):
            print(f"Text batch {i}: {text_batch}")
        print("\n")
        
        # Generate audio for each batch
        generated_waves = []
        spectrograms = []
        
        for text_batch in text_batches:
            # Adjust speed for very short texts
            local_speed = speed
            if len(text_batch.encode("utf-8")) < 10:
                local_speed = 0.3
                
            # Prepare the text
            text_list = [self.ref_text + text_batch]
            final_text_list = convert_char_to_pinyin(text_list)
            
            # Calculate duration
            if fix_duration is not None:
                duration = int(fix_duration * self.target_sample_rate / self.hop_length)
            else:
                # Calculate duration based on text length
                ref_text_len = len(self.ref_text.encode("utf-8"))
                gen_text_len = len(text_batch.encode("utf-8"))
                duration = self.ref_audio_len + int(self.ref_audio_len / ref_text_len * gen_text_len / local_speed)
                
            # Generate audio
            with torch.inference_mode():
                generated, _ = self.model.sample(
                    cond=self.ref_audio_processed,
                    text=final_text_list,
                    duration=duration,
                    steps=nfe_step,
                    cfg_strength=cfg_strength,
                    sway_sampling_coef=sway_sampling_coef,
                )
                
                # Process the generated mel spectrogram
                generated = generated.to(torch.float32)
                generated = generated[:, self.ref_audio_len:, :]
                generated = generated.permute(0, 2, 1)
                
                # Convert to audio
                if self.mel_spec_type == "vocos":
                    generated_wave = self.vocoder.decode(generated)
                elif self.mel_spec_type == "bigvgan":
                    generated_wave = self.vocoder(generated)
                    
                # Normalize volume if needed
                rms = torch.sqrt(torch.mean(torch.square(self.ref_audio_processed)))
                if rms < self.target_rms:
                    generated_wave = generated_wave * rms / self.target_rms
                    
                # Convert to numpy and append to list
                generated_wave = generated_wave.squeeze().cpu().numpy()
                generated_waves.append(generated_wave)
                
                # Store spectrogram if needed
                if return_spectrogram or output_path is not None:
                    spectrograms.append(generated.squeeze().cpu().numpy())
        
        # Combine all segments
        if generated_waves:
            if cross_fade_duration <= 0:
                # Simply concatenate
                final_wave = np.concatenate(generated_waves)
            else:
                # Cross-fade between segments
                final_wave = generated_waves[0]
                for i in range(1, len(generated_waves)):
                    prev_wave = final_wave
                    next_wave = generated_waves[i]
                    
                    # Calculate cross-fade samples
                    cross_fade_samples = int(cross_fade_duration * self.target_sample_rate)
                    cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
                    
                    if cross_fade_samples <= 0:
                        # No overlap possible, concatenate
                        final_wave = np.concatenate([prev_wave, next_wave])
                        continue
                        
                    # Create cross-fade
                    prev_overlap = prev_wave[-cross_fade_samples:]
                    next_overlap = next_wave[:cross_fade_samples]
                    
                    fade_out = np.linspace(1, 0, cross_fade_samples)
                    fade_in = np.linspace(0, 1, cross_fade_samples)
                    
                    cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
                    
                    final_wave = np.concatenate([
                        prev_wave[:-cross_fade_samples], 
                        cross_faded_overlap, 
                        next_wave[cross_fade_samples:]
                    ])
            
            # Combine spectrograms if needed
            if return_spectrogram or output_path is not None:
                combined_spectrogram = np.concatenate(spectrograms, axis=1)
                
            # Save to file if path provided
            if output_path is not None:
                output_dir = os.path.dirname(output_path)
                if output_dir and not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                
                # Save audio
                torchaudio.save(output_path, 
                                torch.tensor(final_wave).unsqueeze(0), 
                                self.target_sample_rate)
                
                # Save spectrogram if needed
                if return_spectrogram:
                    spectrogram_path = os.path.splitext(output_path)[0] + '_spec.png'
                    self._save_spectrogram(combined_spectrogram, spectrogram_path)
                
                if not return_numpy:
                    return output_path
            
            # Return as requested
            if return_spectrogram:
                return final_wave, self.target_sample_rate, combined_spectrogram
            else:
                return final_wave, self.target_sample_rate
            
        else:
            raise RuntimeError("No audio generated")
    
    def _save_spectrogram(self, spectrogram, path):
        """Save spectrogram as image"""
        import matplotlib.pyplot as plt
        plt.figure(figsize=(12, 4))
        plt.imshow(spectrogram, origin="lower", aspect="auto")
        plt.colorbar()
        plt.savefig(path)
        plt.close()
        
    def get_current_audio_length(self):
        """Get the length of the reference audio in seconds"""
        if self.ref_audio_processed is None:
            return 0
        return self.ref_audio_processed.shape[-1] / self.target_sample_rate