--- library_name: transformers license: mit base_model: BAAI/bge-small-en-v1.5 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0881 - Precision: 0.8860 - Recall: 0.9197 - F1: 0.9026 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0671 | 1.0 | 1250 | 0.0929 | 0.8681 | 0.9150 | 0.8909 | 0.9774 | | 0.0428 | 2.0 | 2500 | 0.0871 | 0.8909 | 0.9177 | 0.9041 | 0.9800 | | 0.0373 | 3.0 | 3750 | 0.0881 | 0.8860 | 0.9197 | 0.9026 | 0.9801 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1