--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 56fde327-537c-4d7d-8a47-5553a75fd430 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_resume_from_checkpoints: false base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null dataset_processes: datasets: - data_files: - df4145ffec439e54_train_data.json ds_type: json format: custom path: /workspace/input_data/df4145ffec439e54_train_data.json type: field_instruction: text field_output: text_ja format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: false hub_model_id: error577/56fde327-537c-4d7d-8a47-5553a75fd430 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 512 mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.5 wandb_entity: null wandb_mode: online wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# 56fde327-537c-4d7d-8a47-5553a75fd430 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 6.9448 | 0.0116 | 1 | 6.9446 | | 6.6809 | 1.7442 | 150 | 6.6820 | | 6.6655 | 3.4884 | 300 | 6.6633 | | 6.6563 | 5.2326 | 450 | 6.6522 | | 6.649 | 6.9767 | 600 | 6.6462 | | 6.6442 | 8.7209 | 750 | 6.6431 | | 6.6415 | 10.4651 | 900 | 6.6377 | | 6.6357 | 12.2093 | 1050 | 6.6346 | | 6.6334 | 13.9535 | 1200 | 6.6311 | | 6.6309 | 15.6977 | 1350 | 6.6292 | | 6.6386 | 17.4419 | 1500 | 6.6275 | | 6.6273 | 19.1860 | 1650 | 6.6248 | | 6.627 | 20.9302 | 1800 | 6.6227 | | 6.6243 | 22.6744 | 1950 | 6.6207 | | 6.6252 | 24.4186 | 2100 | 6.6195 | | 6.6204 | 26.1628 | 2250 | 6.6187 | | 6.6222 | 27.9070 | 2400 | 6.6182 | | 6.6231 | 29.6512 | 2550 | 6.6176 | | 6.6196 | 31.3953 | 2700 | 6.6171 | | 6.6161 | 33.1395 | 2850 | 6.6168 | | 6.6213 | 34.8837 | 3000 | 6.6165 | | 6.6209 | 36.6279 | 3150 | 6.6162 | | 6.6176 | 38.3721 | 3300 | 6.6160 | | 6.6219 | 40.1163 | 3450 | 6.6158 | | 6.619 | 41.8605 | 3600 | 6.6157 | | 6.6143 | 43.6047 | 3750 | 6.6156 | | 6.6199 | 45.3488 | 3900 | 6.6156 | | 6.6195 | 47.0930 | 4050 | 6.6156 | | 6.6185 | 48.8372 | 4200 | 6.6156 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1