FREDML / debug_forecasting.py
Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2122497
#!/usr/bin/env python3
"""
Debug script to test forecasting and identify why forecasts are flat
"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
import pandas as pd
import numpy as np
from core.fred_client import FREDDataCollectorV2
from analysis.economic_forecasting import EconomicForecaster
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def debug_forecasting():
"""Debug the forecasting process"""
# Initialize FRED data collector
api_key = os.getenv('FRED_API_KEY')
if not api_key:
logger.error("FRED_API_KEY not found in environment")
return
collector = FREDDataCollectorV2(api_key)
# Fetch data
indicators = ['GDPC1', 'INDPRO', 'RSAFS']
data_dict = collector.get_economic_data(indicators, start_date='2020-01-01', end_date='2024-12-31')
df = collector.create_dataframe(data_dict)
if df.empty:
logger.error("No data fetched")
return
logger.info(f"Fetched data shape: {df.shape}")
logger.info(f"Data columns: {df.columns.tolist()}")
logger.info(f"Data index: {df.index[:5]} to {df.index[-5:]}")
# Initialize forecaster
forecaster = EconomicForecaster(df)
# Test each indicator
for indicator in indicators:
logger.info(f"\n{'='*50}")
logger.info(f"Testing {indicator}")
logger.info(f"{'='*50}")
# Get raw data
raw_series = forecaster.prepare_data(indicator, for_arima=True)
growth_series = forecaster.prepare_data(indicator, for_arima=False)
logger.info(f"Raw series shape: {raw_series.shape}")
logger.info(f"Raw series head: {raw_series.head()}")
logger.info(f"Raw series tail: {raw_series.tail()}")
logger.info(f"Raw series stats: mean={raw_series.mean():.2f}, std={raw_series.std():.2f}")
logger.info(f"Raw series range: {raw_series.min():.2f} to {raw_series.max():.2f}")
logger.info(f"Growth series shape: {growth_series.shape}")
logger.info(f"Growth series head: {growth_series.head()}")
logger.info(f"Growth series stats: mean={growth_series.mean():.4f}, std={growth_series.std():.4f}")
# Test ARIMA fitting
try:
model = forecaster.fit_arima_model(raw_series)
logger.info(f"ARIMA model fitted successfully: {model}")
# Fix the order access
try:
order = model.model.order
except:
try:
order = model.model_orders
except:
order = "Unknown"
logger.info(f"ARIMA order: {order}")
logger.info(f"ARIMA AIC: {model.aic}")
# Test forecasting
forecast_result = forecaster.forecast_series(raw_series, model_type='arima')
forecast = forecast_result['forecast']
confidence_intervals = forecast_result['confidence_intervals']
logger.info(f"Forecast values: {forecast.values}")
logger.info(f"Forecast shape: {forecast.shape}")
logger.info(f"Confidence intervals shape: {confidence_intervals.shape}")
logger.info(f"Confidence intervals head: {confidence_intervals.head()}")
# Check if forecast is flat
if len(forecast) > 1:
forecast_diff = np.diff(forecast.values)
logger.info(f"Forecast differences: {forecast_diff}")
logger.info(f"Forecast is flat: {np.allclose(forecast_diff, 0, atol=1e-6)}")
except Exception as e:
logger.error(f"Error testing {indicator}: {e}")
import traceback
logger.error(traceback.format_exc())
if __name__ == "__main__":
debug_forecasting()