FREDML / test_arima.py
Edwin Salguero
Enhanced FRED ML with improved Reports & Insights page, fixed alignment analysis, and comprehensive analytics improvements
2122497
#!/usr/bin/env python3
"""
Test script to debug ARIMA model and see why it's producing flat forecasts
"""
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
import pandas as pd
import numpy as np
from core.fred_client import FREDDataCollectorV2
from analysis.economic_forecasting import EconomicForecaster
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_arima_forecasting():
"""Test ARIMA forecasting specifically"""
# Initialize FRED data collector
api_key = os.getenv('FRED_API_KEY')
if not api_key:
logger.error("FRED_API_KEY not found in environment")
return
collector = FREDDataCollectorV2(api_key)
# Fetch data
indicators = ['GDPC1', 'INDPRO', 'RSAFS']
data = collector.get_economic_data(indicators)
df = collector.create_dataframe(data)
# Create forecaster
forecaster = EconomicForecaster(df)
# Test GDPC1 specifically
indicator = 'GDPC1'
logger.info(f"\n=== Testing {indicator} ===")
# Get raw data for ARIMA
raw_series = forecaster.prepare_data(indicator, for_arima=True)
logger.info(f"Raw series shape: {raw_series.shape}")
logger.info(f"Raw series head: {raw_series.head()}")
logger.info(f"Raw series tail: {raw_series.tail()}")
logger.info(f"Raw series stats: mean={raw_series.mean():.2f}, std={raw_series.std():.2f}")
logger.info(f"Raw series range: {raw_series.min():.2f} to {raw_series.max():.2f}")
# Test ARIMA fitting
try:
model = forecaster.fit_arima_model(raw_series)
logger.info(f"ARIMA model fitted successfully: {model}")
# Test forecasting
forecast_result = forecaster.forecast_series(raw_series, model_type='arima')
forecast = forecast_result['forecast']
confidence_intervals = forecast_result['confidence_intervals']
logger.info(f"Forecast values: {forecast.tolist()}")
logger.info(f"Forecast differences: {[forecast.iloc[i] - forecast.iloc[i-1] for i in range(1, len(forecast))]}")
logger.info(f"Forecast is flat: {len(set(forecast)) == 1}")
# Check if forecast is flat
if len(set(forecast)) == 1:
logger.warning("FORECAST IS FLAT!")
# Try to understand why
logger.info(f"Model AIC: {model.aic}")
logger.info(f"Model parameters: {model.params}")
# Check if the series has enough variation
series_std = raw_series.std()
series_range = raw_series.max() - raw_series.min()
logger.info(f"Series std: {series_std}")
logger.info(f"Series range: {series_range}")
if series_std < 1e-6:
logger.error("Series has almost no variation!")
elif series_range < 1e-6:
logger.error("Series has almost no range!")
else:
logger.info("Series has variation, but ARIMA is still producing flat forecast")
else:
logger.info("Forecast is NOT flat - working correctly!")
except Exception as e:
logger.error(f"ARIMA test failed: {e}")
if __name__ == "__main__":
test_arima_forecasting()