#!/usr/bin/env python3 """ FRED ML Simple Demo Shows system capabilities without requiring real credentials """ import os import sys import json import time import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import seaborn as sns from datetime import datetime, timedelta def demo_data_processing(): """Demo data processing capabilities""" print("šŸ“Š Data Processing Demo") print("=" * 40) # Create sample economic data np.random.seed(42) dates = pd.date_range('2020-01-01', '2024-01-01', freq='M') # Simulate economic indicators data = { 'GDP': np.random.normal(100, 5, len(dates)) + np.cumsum(np.random.normal(0, 0.5, len(dates))), 'UNRATE': np.random.normal(5, 1, len(dates)), 'CPIAUCSL': np.random.normal(200, 10, len(dates)) + np.cumsum(np.random.normal(0, 1, len(dates))), 'FEDFUNDS': np.random.normal(2, 0.5, len(dates)), 'DGS10': np.random.normal(3, 0.3, len(dates)) } df = pd.DataFrame(data, index=dates) print(f"āœ… Generated {len(df)} data points for {len(df.columns)} indicators") print(f"šŸ“ˆ Date range: {df.index.min()} to {df.index.max()}") # Basic statistics print("\nšŸ“Š Summary Statistics:") print(df.describe().round(2)) # Correlation analysis print("\nšŸ”— Correlation Matrix:") correlation = df.corr() print(correlation.round(3)) return df def demo_visualization(df): """Demo visualization capabilities""" print("\nšŸŽØ Visualization Demo") print("=" * 40) # 1. Time series plot print("šŸ“ˆ Creating time series visualization...") fig1 = go.Figure() for col in df.columns: fig1.add_trace(go.Scatter( x=df.index, y=df[col], name=col, mode='lines' )) fig1.update_layout( title="Economic Indicators Over Time", xaxis_title="Date", yaxis_title="Value", height=500 ) # Save the plot fig1.write_html("demo_time_series.html") print("āœ… Time series plot saved as demo_time_series.html") # 2. Correlation heatmap print("šŸ”„ Creating correlation heatmap...") correlation = df.corr() fig2 = px.imshow( correlation, text_auto=True, aspect="auto", color_continuous_scale="RdBu", title="Correlation Matrix Heatmap" ) fig2.write_html("demo_correlation.html") print("āœ… Correlation heatmap saved as demo_correlation.html") # 3. Distribution plots print("šŸ“Š Creating distribution plots...") fig3 = make_subplots( rows=2, cols=3, subplot_titles=df.columns, specs=[[{"secondary_y": False}, {"secondary_y": False}, {"secondary_y": False}], [{"secondary_y": False}, {"secondary_y": False}, {"secondary_y": False}]] ) for i, col in enumerate(df.columns): row = (i // 3) + 1 col_num = (i % 3) + 1 fig3.add_trace( go.Histogram(x=df[col], name=col), row=row, col=col_num ) fig3.update_layout(height=600, title_text="Distribution of Economic Indicators") fig3.write_html("demo_distributions.html") print("āœ… Distribution plots saved as demo_distributions.html") return True def demo_analysis(df): """Demo analysis capabilities""" print("\nšŸ” Analysis Demo") print("=" * 40) # Trend analysis print("šŸ“ˆ Trend Analysis:") trends = {} for col in df.columns: # Simple linear trend x = np.arange(len(df)) y = df[col].values slope, intercept = np.polyfit(x, y, 1) trends[col] = { 'slope': slope, 'trend_direction': 'Increasing' if slope > 0 else 'Decreasing', 'trend_strength': abs(slope) } for indicator, trend in trends.items(): print(f" {indicator}: {trend['trend_direction']} (slope: {trend['slope']:.4f})") # Volatility analysis print("\nšŸ“Š Volatility Analysis:") volatility = df.pct_change().std() * np.sqrt(252) # Annualized for indicator, vol in volatility.items(): print(f" {indicator}: {vol:.2%} annualized volatility") # Correlation analysis print("\nšŸ”— Correlation Analysis:") correlation = df.corr() for i, col1 in enumerate(df.columns): for j, col2 in enumerate(df.columns): if i < j: # Avoid duplicates corr = correlation.loc[col1, col2] strength = 'Strong' if abs(corr) > 0.7 else 'Moderate' if abs(corr) > 0.3 else 'Weak' print(f" {col1} vs {col2}: {corr:.3f} ({strength})") return trends, volatility def demo_system_architecture(): """Demo system architecture""" print("\nšŸ—ļø System Architecture Demo") print("=" * 40) architecture = { "Frontend": { "Technology": "Streamlit", "Features": ["Interactive dashboard", "Real-time visualization", "User-friendly interface"], "Status": "āœ… Ready" }, "Backend": { "Technology": "AWS Lambda", "Features": ["Serverless processing", "Event-driven", "Auto-scaling"], "Status": "āœ… Ready" }, "Storage": { "Technology": "AWS S3", "Features": ["Scalable storage", "Lifecycle policies", "Versioning"], "Status": "āœ… Ready" }, "Scheduling": { "Technology": "EventBridge", "Features": ["Automated triggers", "Quarterly analysis", "CloudWatch monitoring"], "Status": "āœ… Ready" }, "Data Source": { "Technology": "FRED API", "Features": ["Economic indicators", "Real-time data", "Historical analysis"], "Status": "āœ… Ready" } } for component, details in architecture.items(): print(f"\n{component}:") print(f" Technology: {details['Technology']}") print(f" Features: {', '.join(details['Features'])}") print(f" Status: {details['Status']}") def demo_workflow(): """Demo complete workflow""" print("\nšŸ”„ Complete Workflow Demo") print("=" * 40) steps = [ ("Data Retrieval", "Fetching economic data from FRED API"), ("Data Processing", "Cleaning and preparing data for analysis"), ("Statistical Analysis", "Calculating correlations and trends"), ("Visualization", "Creating charts and graphs"), ("Report Generation", "Compiling results into reports"), ("Cloud Storage", "Uploading results to S3"), ("Scheduling", "Setting up automated quarterly analysis") ] for i, (step, description) in enumerate(steps, 1): print(f"{i}. {step}: {description}") time.sleep(0.5) # Simulate processing time print("\nāœ… Complete workflow demonstrated!") def main(): """Main demo function""" print("šŸš€ FRED ML System Demo") print("=" * 50) print("This demo shows the capabilities of the FRED ML system") print("without requiring real AWS credentials or FRED API key.") print() # Demo system architecture demo_system_architecture() # Demo data processing df = demo_data_processing() # Demo analysis trends, volatility = demo_analysis(df) # Demo visualization demo_visualization(df) # Demo complete workflow demo_workflow() print("\n" + "=" * 50) print("šŸŽ‰ Demo completed successfully!") print("\nšŸ“ Generated files:") print(" - demo_time_series.html") print(" - demo_correlation.html") print(" - demo_distributions.html") print("\nšŸŽÆ Next steps:") print("1. Set up real AWS credentials and FRED API key") print("2. Run: python scripts/test_dev.py") print("3. Launch: streamlit run frontend/app.py") print("4. Deploy to production using CI/CD pipeline") if __name__ == '__main__': main()