#!/usr/bin/env python3 """ Chart Generator for FRED ML Creates comprehensive economic visualizations and stores them in S3 """ import io import json import os from datetime import datetime from typing import Dict, List, Optional, Tuple import boto3 import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import seaborn as sns from plotly.subplots import make_subplots from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # Use hardcoded defaults to avoid import issues DEFAULT_REGION = 'us-east-1' # Set style for matplotlib plt.style.use('seaborn-v0_8') sns.set_palette("husl") class ChartGenerator: """Generate comprehensive economic visualizations""" def __init__(self, s3_bucket: str = 'fredmlv1', aws_region: str = None): self.s3_bucket = s3_bucket if aws_region is None: aws_region = DEFAULT_REGION self.s3_client = boto3.client('s3', region_name=aws_region) self.chart_paths = [] def create_time_series_chart(self, df: pd.DataFrame, title: str = "Economic Indicators") -> str: """Create time series chart and upload to S3""" try: fig, ax = plt.subplots(figsize=(15, 8)) for column in df.columns: if column != 'Date': ax.plot(df.index, df[column], label=column, linewidth=2) ax.set_title(title, fontsize=16, fontweight='bold') ax.set_xlabel('Date', fontsize=12) ax.set_ylabel('Value', fontsize=12) ax.legend(fontsize=10) ax.grid(True, alpha=0.3) plt.xticks(rotation=45) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/time_series_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating time series chart: {e}") return None def create_correlation_heatmap(self, df: pd.DataFrame) -> str: """Create correlation heatmap and upload to S3""" try: corr_matrix = df.corr() fig, ax = plt.subplots(figsize=(12, 10)) sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0, square=True, linewidths=0.5, cbar_kws={"shrink": .8}) plt.title('Economic Indicators Correlation Matrix', fontsize=16, fontweight='bold') plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/correlation_heatmap_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating correlation heatmap: {e}") return None def create_distribution_charts(self, df: pd.DataFrame) -> List[str]: """Create distribution charts for each indicator""" chart_keys = [] try: for column in df.columns: if column != 'Date': fig, ax = plt.subplots(figsize=(10, 6)) # Histogram with KDE sns.histplot(df[column].dropna(), kde=True, ax=ax) ax.set_title(f'Distribution of {column}', fontsize=14, fontweight='bold') ax.set_xlabel(column, fontsize=12) ax.set_ylabel('Frequency', fontsize=12) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/distribution_{column}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() chart_keys.append(chart_key) self.chart_paths.append(chart_key) return chart_keys except Exception as e: print(f"Error creating distribution charts: {e}") return [] def create_pca_visualization(self, df: pd.DataFrame, n_components: int = 2) -> str: """Create PCA visualization and upload to S3""" try: # Prepare data df_clean = df.dropna() scaler = StandardScaler() scaled_data = scaler.fit_transform(df_clean) # Perform PCA pca = PCA(n_components=n_components) pca_result = pca.fit_transform(scaled_data) # Create visualization fig, ax = plt.subplots(figsize=(12, 8)) if n_components == 2: scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], alpha=0.6) ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12) ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12) else: # For 3D or more, show first two components scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], alpha=0.6) ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12) ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12) ax.set_title('PCA Visualization of Economic Indicators', fontsize=16, fontweight='bold') ax.grid(True, alpha=0.3) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/pca_visualization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating PCA visualization: {e}") return None def create_forecast_chart(self, historical_data: pd.Series, forecast_data: List[float], title: str = "Economic Forecast") -> str: """Create forecast chart and upload to S3""" try: fig, ax = plt.subplots(figsize=(15, 8)) # Plot historical data ax.plot(historical_data.index, historical_data.values, label='Historical', linewidth=2, color='blue') # Plot forecast forecast_index = pd.date_range( start=historical_data.index[-1] + pd.DateOffset(months=1), periods=len(forecast_data), freq='M' ) ax.plot(forecast_index, forecast_data, label='Forecast', linewidth=2, color='red', linestyle='--') ax.set_title(title, fontsize=16, fontweight='bold') ax.set_xlabel('Date', fontsize=12) ax.set_ylabel('Value', fontsize=12) ax.legend(fontsize=12) ax.grid(True, alpha=0.3) plt.xticks(rotation=45) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/forecast_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating forecast chart: {e}") return None def create_regression_diagnostics(self, y_true: List[float], y_pred: List[float], residuals: List[float]) -> str: """Create regression diagnostics chart and upload to S3""" try: fig, axes = plt.subplots(2, 2, figsize=(15, 12)) # Actual vs Predicted axes[0, 0].scatter(y_true, y_pred, alpha=0.6) axes[0, 0].plot([min(y_true), max(y_true)], [min(y_true), max(y_true)], 'r--', lw=2) axes[0, 0].set_xlabel('Actual Values') axes[0, 0].set_ylabel('Predicted Values') axes[0, 0].set_title('Actual vs Predicted') axes[0, 0].grid(True, alpha=0.3) # Residuals vs Predicted axes[0, 1].scatter(y_pred, residuals, alpha=0.6) axes[0, 1].axhline(y=0, color='r', linestyle='--') axes[0, 1].set_xlabel('Predicted Values') axes[0, 1].set_ylabel('Residuals') axes[0, 1].set_title('Residuals vs Predicted') axes[0, 1].grid(True, alpha=0.3) # Residuals histogram axes[1, 0].hist(residuals, bins=20, alpha=0.7, edgecolor='black') axes[1, 0].set_xlabel('Residuals') axes[1, 0].set_ylabel('Frequency') axes[1, 0].set_title('Residuals Distribution') axes[1, 0].grid(True, alpha=0.3) # Q-Q plot from scipy import stats stats.probplot(residuals, dist="norm", plot=axes[1, 1]) axes[1, 1].set_title('Q-Q Plot of Residuals') axes[1, 1].grid(True, alpha=0.3) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/regression_diagnostics_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating regression diagnostics: {e}") return None def create_clustering_chart(self, df: pd.DataFrame, n_clusters: int = 3) -> str: """Create clustering visualization and upload to S3""" try: from sklearn.cluster import KMeans # Prepare data df_clean = df.dropna() scaler = StandardScaler() scaled_data = scaler.fit_transform(df_clean) # Perform clustering kmeans = KMeans(n_clusters=n_clusters, random_state=42) clusters = kmeans.fit_predict(scaled_data) # PCA for visualization pca = PCA(n_components=2) pca_result = pca.fit_transform(scaled_data) # Create visualization fig, ax = plt.subplots(figsize=(12, 8)) scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], c=clusters, cmap='viridis', alpha=0.6) # Add cluster centers centers_pca = pca.transform(kmeans.cluster_centers_) ax.scatter(centers_pca[:, 0], centers_pca[:, 1], c='red', marker='x', s=200, linewidths=3, label='Cluster Centers') ax.set_title(f'K-Means Clustering (k={n_clusters})', fontsize=16, fontweight='bold') ax.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.1%} variance)', fontsize=12) ax.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.1%} variance)', fontsize=12) ax.legend() ax.grid(True, alpha=0.3) plt.tight_layout() # Save to bytes img_buffer = io.BytesIO() plt.savefig(img_buffer, format='png', dpi=300, bbox_inches='tight') img_buffer.seek(0) # Upload to S3 chart_key = f"visualizations/clustering_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" self.s3_client.put_object( Bucket=self.s3_bucket, Key=chart_key, Body=img_buffer.getvalue(), ContentType='image/png' ) plt.close() self.chart_paths.append(chart_key) return chart_key except Exception as e: print(f"Error creating clustering chart: {e}") return None def generate_comprehensive_visualizations(self, df: pd.DataFrame, analysis_type: str = "comprehensive") -> Dict[str, str]: """Generate comprehensive visualizations based on analysis type""" visualizations = {} try: # Always create time series and correlation charts visualizations['time_series'] = self.create_time_series_chart(df) visualizations['correlation'] = self.create_correlation_heatmap(df) visualizations['distributions'] = self.create_distribution_charts(df) if analysis_type in ["comprehensive", "statistical"]: # Add PCA visualization visualizations['pca'] = self.create_pca_visualization(df) # Add clustering visualizations['clustering'] = self.create_clustering_chart(df) if analysis_type in ["comprehensive", "forecasting"]: # Add forecast visualization (using sample data) sample_series = df.iloc[:, 0] if not df.empty else pd.Series([1, 2, 3, 4, 5]) sample_forecast = [sample_series.iloc[-1] * 1.02, sample_series.iloc[-1] * 1.04] visualizations['forecast'] = self.create_forecast_chart(sample_series, sample_forecast) # Store visualization metadata metadata = { 'analysis_type': analysis_type, 'timestamp': datetime.now().isoformat(), 'charts_generated': list(visualizations.keys()), 's3_bucket': self.s3_bucket } # Upload metadata metadata_key = f"visualizations/metadata_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" self.s3_client.put_object( Bucket=self.s3_bucket, Key=metadata_key, Body=json.dumps(metadata, indent=2), ContentType='application/json' ) return visualizations except Exception as e: print(f"Error generating comprehensive visualizations: {e}") return {} def get_chart_url(self, chart_key: str) -> str: """Get public URL for a chart""" try: return f"https://{self.s3_bucket}.s3.amazonaws.com/{chart_key}" except Exception as e: print(f"Error generating chart URL: {e}") return None def list_available_charts(self) -> List[Dict]: """List all available charts in S3""" try: response = self.s3_client.list_objects_v2( Bucket=self.s3_bucket, Prefix='visualizations/' ) charts = [] if 'Contents' in response: for obj in response['Contents']: if obj['Key'].endswith('.png'): charts.append({ 'key': obj['Key'], 'last_modified': obj['LastModified'], 'size': obj['Size'], 'url': self.get_chart_url(obj['Key']) }) return sorted(charts, key=lambda x: x['last_modified'], reverse=True) except Exception as e: print(f"Error listing charts: {e}") return []