--- language: - en --- End-to-end Neural Diarization (EEND) trained on AMI-headset dataset. This example could be found at `egs2/ami/diar1`. ## Configurations: - Use ESPNet's default frontend to extract features. The sampling rate is 8000 Hz, with a frame length of 25 ms and a frame shift of 10 ms. The frontend extracts 23 log-scaled Mel-filterbanks. - Follow the frame concatenation and subsampling strategy described in paper [[2]]. Each frame is concatenated with the preceding and following 7 frames, followed by subsampling with a factor of 10. As a result, a 345-dimensional acoustic feature (23 × 15) is extracted for each 100 ms. - Training and testing are performed exclusively on data with 4 speakers. - Use 4 layer stacked Transformer encoder, each outputs 256-dimensional frame-wise embeddings. - The training process spans 500 epochs. - Detailed configurations are defined in `exp/diar/train_diar_diar_raw/config.yaml`. ## RESULTS ### Environments - date: `Thu Dec 19 22:03:53 EST 2024` - python version: `3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0]` - espnet version: `espnet 202409` - pytorch version: `pytorch 2.4.0` - Git hash: `c12b3d59ca4fd8847edf274e56a1716474d2a30e` - Commit date: `Thu Dec 19 21:58:26 2024 -0500` ### diar_train_diar_raw #### DER diarized_test |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|71.73| |result_th0.3_med1_collar0.0|74.62| |result_th0.4_med11_collar0.0|70.10| |result_th0.4_med1_collar0.0|71.98| |result_th0.5_med11_collar0.0|70.57| |result_th0.5_med1_collar0.0|72.44| |result_th0.6_med11_collar0.0|72.64| |result_th0.6_med1_collar0.0|74.63| |result_th0.7_med11_collar0.0|76.52| |result_th0.7_med1_collar0.0|78.41| ### diar_train_diar_raw #### DER diarized_dev |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|75.88| |result_th0.3_med1_collar0.0|78.21| |result_th0.4_med11_collar0.0|71.45| |result_th0.4_med1_collar0.0|73.32| |result_th0.5_med11_collar0.0|70.53| |result_th0.5_med1_collar0.0|72.34| |result_th0.6_med11_collar0.0|72.03| |result_th0.6_med1_collar0.0|73.96| |result_th0.7_med11_collar0.0|76.66| |result_th0.7_med1_collar0.0|78.33|