--- library_name: mlx license: apache-2.0 language: - en pipeline_tag: text-generation tags: - safetensors - onnx - transformers.js - mlx - mlx-my-repo base_model: HuggingFaceTB/SmolLM2-135M-Instruct-Q8-mlx --- # ethicalabs/BlossomTuneMLX-SmolLM2-135M-Instruct-Q8-NLP This model [ethicalabs/BlossomTuneMLX-SmolLM2-135M-Instruct-Q8-NLP](https://huggingface.co/ethicalabs/BlossomTuneMLX-SmolLM2-135M-Instruct-Q8-NLP) was converted to MLX format from [HuggingFaceTB/SmolLM2-135M-Instruct-Q8-mlx](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct-Q8-mlx) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ethicalabs/BlossomTuneMLX-SmolLM2-135M-Instruct-Q8-NLP") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ``` ## Fine-tuning This model has been fine-tuned with [BlossomTuneLLM-MLX](https://github.com/ethicalabs-ai/BlossomTuneLLM-MLX) ``` INFO : aggregate_fit: received 10 results and 0 failures INFO : Communication cost: 6.23 MB this round / 124.51 MB total Server: Saving global adapter for round 10... Fetching 8 files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 8367.69it/s] Global adapter and config saved to results/huggingfacetb-smollm2-135m-instruct-q8-mlx/server/2025-09-02_23-16-23/adapter_10 INFO : fit progress: (10, 0.0, {}, 239.02917212501052) INFO : configure_evaluate: no clients selected, skipping evaluation INFO : INFO : [SUMMARY] INFO : Run finished 10 round(s) in 239.03s INFO : History (loss, centralized): INFO : round 0: 0.0 INFO : round 1: 0.0 INFO : round 2: 0.0 INFO : round 3: 0.0 INFO : round 4: 0.0 INFO : round 5: 0.0 INFO : round 6: 0.0 INFO : round 7: 0.0 INFO : round 8: 0.0 INFO : round 9: 0.0 INFO : round 10: 0.0 INFO : History (metrics, distributed, fit): INFO : {'train_loss': [(1, 2.2529776644706727), INFO : (2, 1.6681898140907288), INFO : (3, 1.5494979882240296), INFO : (4, 1.4766268157958984), INFO : (5, 1.4757164913415908), INFO : (6, 1.387213920354843), INFO : (7, 1.4945470476150513), INFO : (8, 1.464623532295227), INFO : (9, 1.4590632796287537), INFO : (10, 1.4046799695491792)], INFO : 'val_loss': [(1, 2.0296000242233276), INFO : (2, 1.6557256400585174), INFO : (3, 1.5062924563884734), INFO : (4, 1.4948512375354768), INFO : (5, 1.4645283639431), INFO : (6, 1.4505432009696961), INFO : (7, 1.4502118945121765), INFO : (8, 1.4655221998691559), INFO : (9, 1.4796700835227967), INFO : (10, 1.429529356956482)]} ```