etxereal commited on
Commit
77c0902
·
verified ·
1 Parent(s): a2f237b
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.94 +/- 36.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ef5e0d1090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ef5e0d1120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ef5e0d11b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ef5e0d1240>", "_build": "<function ActorCriticPolicy._build at 0x79ef5e0d12d0>", "forward": "<function ActorCriticPolicy.forward at 0x79ef5e0d1360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ef5e0d13f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ef5e0d1480>", "_predict": "<function ActorCriticPolicy._predict at 0x79ef5e0d1510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ef5e0d15a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ef5e0d1630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ef5e0d16c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ef5ded8a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716572476296900023, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAApbrsyc650s/FOc9KxTS+6OQ7tqjuuAAAgD8AAIA/IGs7vpTWEz4lqo0+mpvJvqYKljz9Kps9AAAAAAAAAAAAaYu8KUwxuskKxbo8ZY+1nmi9u8OC6TkAAIA/AACAPzNjsj0KM5E/ttfpPnPuVr+8JPk96zUNPgAAAAAAAAAAgCsTva5Jr7rg/Lk9D/BLPAk8xLroUzQ9AACAPwAAgD8zgwG74iAyPv76oL1kiqi+9H8iPV5rR70AAAAAAAAAAPOhOL6oAZi8K0Cru5BbKbrocA0+wj4IOwAAgD8AAIA/k0y2Ps/7ij8gudM+sZwrvwiAqD6Y9cg9AAAAAAAAAADtSGk+dr/NPvJFmb171L2+jtoyPuNM6LwAAAAAAAAAADM2ej3DpAy8KXuLvPfJFz05n2k900v2vQAAgD8AAIA/M2PNOwqkBrs6Jvq9cYuKPFmIprzIeW89AACAPwAAgD9mFi++jk6UvOxgxLoF/G65iioCPgjALjoAAIA/AACAPzOwcj3IFsc9cGlRvj7cmL7l9GE7JlsNvQAAAAAAAAAATcwZPXtdnj0dZL28n1ORvpZgkbzmyiA9AAAAAAAAAAAzyHo9VnquPl4iBb7uiOu+PUPmOoUPV70AAAAAAAAAAIDpir2PVk26dgOYOrUL1TBB7sO6apHNMwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGC/Bouf29OMAWyUTegDjAF0lEdAqKxPH93r2XV9lChoBkdAcIqIlMRHw2gHS7doCEdAqKxzFqBVdXV9lChoBkdAcfyphWo3rGgHS7ZoCEdAqKyR2GIsRXV9lChoBkdAZNoCHRCx/2gHTegDaAhHQKismzgMtsh1fZQoaAZHQHM2dvOyE+RoB0v6aAhHQKisno6jnFJ1fZQoaAZHQHCXGxY7q6hoB0uhaAhHQKis0G/vfCR1fZQoaAZHQFPudi2DxsloB0ubaAhHQKis6IRh+fB1fZQoaAZHQHOfVDSgGr1oB0veaAhHQKis7FdcB2h1fZQoaAZHQHDBaNdZ7oloB0vPaAhHQKitxytmthd1fZQoaAZHQHJxfWQOnVJoB0vOaAhHQKiuAecQRPJ1fZQoaAZHQHGsHUYsNDtoB0uoaAhHQKiuA5e7cwh1fZQoaAZHQHHX+PFNtZVoB0vOaAhHQKiuHFz+3ph1fZQoaAZHQHCE28M/hVFoB0vFaAhHQKiuKA3DNyJ1fZQoaAZHQHJYlnZkCmxoB0uaaAhHQKiuU5sj3VV1fZQoaAZHQHBO1VPva11oB0uxaAhHQKiuvTm4iHJ1fZQoaAZHQHK1msNlRP5oB0vDaAhHQKiu9Zwn6VN1fZQoaAZHQHJmcrqdH2BoB0vhaAhHQKivCq8UVSJ1fZQoaAZHQHNXEMoc7yRoB0vAaAhHQKivIDklu3t1fZQoaAZHQHLYV9Brvb5oB0u8aAhHQKivL0gbIcR1fZQoaAZHQHKo5OrQw9JoB0veaAhHQKivO5AhStN1fZQoaAZHQHHRWIO6NERoB0vIaAhHQKivTwo9cKR1fZQoaAZHQHAXvJmukk9oB0u6aAhHQKiv/KqXF991fZQoaAZHQHQHw2606YFoB0vNaAhHQKiwfUJfICF1fZQoaAZHQHIVT1bqyGBoB0vaaAhHQKiwqUVSGah1fZQoaAZHQHHDStaIN3JoB0vbaAhHQKiwxa7mMfl1fZQoaAZHQHNDExmCiAVoB0vfaAhHQKiw3XqZ+hJ1fZQoaAZHQGbeZYxL0z1oB03oA2gIR0CosRzIeYD1dX2UKGgGR0BwEtW/8EV4aAdLqmgIR0CosR4+B6KMdX2UKGgGR0BxpR2dNFjNaAdLpGgIR0CosSJqIrOJdX2UKGgGR0Bx/CPLgXMyaAdL2mgIR0CosV7TtsvadX2UKGgGR0Bw3ZQAMlTnaAdLsGgIR0CosXKNIbwSdX2UKGgGR0ByO1He7+UAaAdLwGgIR0CosY0i6g/UdX2UKGgGR0BxwL4xk/bCaAdLjmgIR0CosbZ+6RQrdX2UKGgGR0ByHR5LRKHxaAdL1GgIR0CosbqkEcKgdX2UKGgGR0BzQd26kIomaAdL7mgIR0Cosc2LxZuAdX2UKGgGR0Bwl44//vORaAdLtmgIR0CosxeqJdjYdX2UKGgGR0Bzhs6EJ0GNaAdL4mgIR0Cos0a2fChwdX2UKGgGR0ByMccvM8oyaAdL2mgIR0Cos1nSv1UVdX2UKGgGR0BuD2dRR/EwaAdLtGgIR0Cos1nvUjLTdX2UKGgGR0BymKpfhMrVaAdL2GgIR0Cos2/CyhSMdX2UKGgGR0Bwx/Em6XjVaAdLwGgIR0Cos4MT37DVdX2UKGgGR0BwflFRYRukaAdLtGgIR0Cos53FtKqXdX2UKGgGR0ByELqPfbblaAdL3mgIR0Cos9cwpON6dX2UKGgGR0BlkISUTtb+aAdN6ANoCEdAqLQUHfMwDnV9lChoBkdAckT4/u9eyGgHS9VoCEdAqLQt/2Cd0HV9lChoBkdAcaHL+PzWgGgHS79oCEdAqLQv+MqBmXV9lChoBkdAcZ32Rq46O2gHS8xoCEdAqLRAfEGZ/nV9lChoBkdAcqAAI6bONmgHS9ZoCEdAqLRWn4wh4nV9lChoBkdAcyF3lS0jT2gHS/ZoCEdAqLRv8/D+BHV9lChoBkdAZSs0ALiMpGgHTegDaAhHQKi0l7oB7u51fZQoaAZHQHAT/n4fwJBoB0upaAhHQKi1KLMs6JZ1fZQoaAZHQG/fAVoHs1NoB0u4aAhHQKi1LHSWqtJ1fZQoaAZHQHD2uRT0g8toB0vUaAhHQKi1v/4Irvt1fZQoaAZHQHDpFVHWjGloB0vNaAhHQKi1v+aScLB1fZQoaAZHQHLlHJ5mh/RoB0vAaAhHQKi1x0Cih391fZQoaAZHQHJh7Xg9/z9oB0vgaAhHQKi14xD9fkZ1fZQoaAZHQHFf0th/iHZoB0vpaAhHQKi2IcXFcY91fZQoaAZHQHGsv+85CF9oB0vPaAhHQKi2KZtNzsB1fZQoaAZHQHEXrRBu4w1oB0u4aAhHQKi2aiHIp6R1fZQoaAZHQHIDUUj9n9NoB0vUaAhHQKi2ebPQfIV1fZQoaAZHQHGsoYBNmDloB0vLaAhHQKi2e7Ackt51fZQoaAZHQHMFjPKMefZoB0v3aAhHQKi2+2BJ7LN1fZQoaAZHQHHE3zpX6qNoB0vXaAhHQKi3E2WpqAV1fZQoaAZHQHLXv/FR51NoB0v9aAhHQKi3WfXf6451fZQoaAZHQHQVdTcZccFoB0vJaAhHQKi3iw/xDst1fZQoaAZHQHJEplrdnChoB0vdaAhHQKi3yeK8+Rp1fZQoaAZHQG7BXHaN+9doB0uzaAhHQKi32ny/bj91fZQoaAZHQHGIyS3b215oB0u1aAhHQKi34UfPomp1fZQoaAZHQHCmcPnSv1VoB0uuaAhHQKi378eCCjF1fZQoaAZHQHKNJdGAkLRoB0vLaAhHQKi4JiOvMbF1fZQoaAZHQHCdqgh8pkRoB0u3aAhHQKi4T9Oymhx1fZQoaAZHQHLFwg5imVJoB0vdaAhHQKi5IfXf6451fZQoaAZHQHLbIlUp/gBoB0vvaAhHQKi5UaP0Zm91fZQoaAZHQHIVmW6bvw5oB0vxaAhHQKi5Y3dbgTB1fZQoaAZHQHBBGkSElE9oB0veaAhHQKi5s1yeZoh1fZQoaAZHQHHYVCHARChoB0uVaAhHQKi5slFc6eZ1fZQoaAZHQHHHgl8gIQhoB0vbaAhHQKi5wtq59Vp1fZQoaAZHQHE0jj3mFJxoB0vJaAhHQKi50DEm6Xl1fZQoaAZHQHFFEg4ffXRoB0vAaAhHQKi55fxc3VF1fZQoaAZHQG8ddy925hBoB0uxaAhHQKi6Dt52Qnx1fZQoaAZHQHEBHCsOoYNoB0u9aAhHQKi6HU3n6mB1fZQoaAZHQGOlKCpWFOBoB03oA2gIR0CoukwSrYGudX2UKGgGR0BxsTOyE+PjaAdLwmgIR0Cous8tPHktdX2UKGgGR0By8xaTwDvFaAdL32gIR0CouxbB42S/dX2UKGgGR0By5rgWJrLyaAdL/WgIR0Cou0htUGVzdX2UKGgGR0BwRWPcSGrTaAdLnWgIR0CovGbFbVz7dX2UKGgGR0Bys8cCHRCyaAdL3mgIR0CovH9B8hLXdX2UKGgGR0BztEdBBzFNaAdLwmgIR0CovM9jG1hLdX2UKGgGR0BwqMlyBClaaAdLyGgIR0CovOlvybx3dX2UKGgGR0ByoEU34sVdaAdLqmgIR0CovPwA+6iCdX2UKGgGR0Bz1Bev6j33aAdL52gIR0CovQReLNwBdX2UKGgGR0BzNMXZXdTHaAdL22gIR0CovWMe4kNXdX2UKGgGR0BxAfm/336AaAdLz2gIR0CovY1dxAB1dX2UKGgGR0BzO27UXpGGaAdL62gIR0CovZo1+AmRdX2UKGgGR0BwCQGC7K7qaAdLrGgIR0CoveLsjVx0dX2UKGgGR0Bv4xAjY7JXaAdLrGgIR0CoviUcn3L3dX2UKGgGR0BzILHuJDVpaAdL5GgIR0CovjuwX668dX2UKGgGR0Byz6jh1klNaAdLp2gIR0Covj9PUKAsdX2UKGgGR0Bt/VI3BHkMaAdNVwJoCEdAqL62pn6EanV9lChoBkdAcQ9uwHJLd2gHS65oCEdAqL9rHbRF7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0233ac51bd4b72a372de8818b7fceadced28fd71cd81d6804e5c8a1fd5d42fe
3
+ size 147963
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79ef5e0d1090>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ef5e0d1120>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ef5e0d11b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ef5e0d1240>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79ef5e0d12d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79ef5e0d1360>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ef5e0d13f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ef5e0d1480>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79ef5e0d1510>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ef5e0d15a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ef5e0d1630>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ef5e0d16c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79ef5ded8a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1716572476296900023,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAApbrsyc650s/FOc9KxTS+6OQ7tqjuuAAAgD8AAIA/IGs7vpTWEz4lqo0+mpvJvqYKljz9Kps9AAAAAAAAAAAAaYu8KUwxuskKxbo8ZY+1nmi9u8OC6TkAAIA/AACAPzNjsj0KM5E/ttfpPnPuVr+8JPk96zUNPgAAAAAAAAAAgCsTva5Jr7rg/Lk9D/BLPAk8xLroUzQ9AACAPwAAgD8zgwG74iAyPv76oL1kiqi+9H8iPV5rR70AAAAAAAAAAPOhOL6oAZi8K0Cru5BbKbrocA0+wj4IOwAAgD8AAIA/k0y2Ps/7ij8gudM+sZwrvwiAqD6Y9cg9AAAAAAAAAADtSGk+dr/NPvJFmb171L2+jtoyPuNM6LwAAAAAAAAAADM2ej3DpAy8KXuLvPfJFz05n2k900v2vQAAgD8AAIA/M2PNOwqkBrs6Jvq9cYuKPFmIprzIeW89AACAPwAAgD9mFi++jk6UvOxgxLoF/G65iioCPgjALjoAAIA/AACAPzOwcj3IFsc9cGlRvj7cmL7l9GE7JlsNvQAAAAAAAAAATcwZPXtdnj0dZL28n1ORvpZgkbzmyiA9AAAAAAAAAAAzyHo9VnquPl4iBb7uiOu+PUPmOoUPV70AAAAAAAAAAIDpir2PVk26dgOYOrUL1TBB7sO6apHNMwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGC/Bouf29OMAWyUTegDjAF0lEdAqKxPH93r2XV9lChoBkdAcIqIlMRHw2gHS7doCEdAqKxzFqBVdXV9lChoBkdAcfyphWo3rGgHS7ZoCEdAqKyR2GIsRXV9lChoBkdAZNoCHRCx/2gHTegDaAhHQKismzgMtsh1fZQoaAZHQHM2dvOyE+RoB0v6aAhHQKisno6jnFJ1fZQoaAZHQHCXGxY7q6hoB0uhaAhHQKis0G/vfCR1fZQoaAZHQFPudi2DxsloB0ubaAhHQKis6IRh+fB1fZQoaAZHQHOfVDSgGr1oB0veaAhHQKis7FdcB2h1fZQoaAZHQHDBaNdZ7oloB0vPaAhHQKitxytmthd1fZQoaAZHQHJxfWQOnVJoB0vOaAhHQKiuAecQRPJ1fZQoaAZHQHGsHUYsNDtoB0uoaAhHQKiuA5e7cwh1fZQoaAZHQHHX+PFNtZVoB0vOaAhHQKiuHFz+3ph1fZQoaAZHQHCE28M/hVFoB0vFaAhHQKiuKA3DNyJ1fZQoaAZHQHJYlnZkCmxoB0uaaAhHQKiuU5sj3VV1fZQoaAZHQHBO1VPva11oB0uxaAhHQKiuvTm4iHJ1fZQoaAZHQHK1msNlRP5oB0vDaAhHQKiu9Zwn6VN1fZQoaAZHQHJmcrqdH2BoB0vhaAhHQKivCq8UVSJ1fZQoaAZHQHNXEMoc7yRoB0vAaAhHQKivIDklu3t1fZQoaAZHQHLYV9Brvb5oB0u8aAhHQKivL0gbIcR1fZQoaAZHQHKo5OrQw9JoB0veaAhHQKivO5AhStN1fZQoaAZHQHHRWIO6NERoB0vIaAhHQKivTwo9cKR1fZQoaAZHQHAXvJmukk9oB0u6aAhHQKiv/KqXF991fZQoaAZHQHQHw2606YFoB0vNaAhHQKiwfUJfICF1fZQoaAZHQHIVT1bqyGBoB0vaaAhHQKiwqUVSGah1fZQoaAZHQHHDStaIN3JoB0vbaAhHQKiwxa7mMfl1fZQoaAZHQHNDExmCiAVoB0vfaAhHQKiw3XqZ+hJ1fZQoaAZHQGbeZYxL0z1oB03oA2gIR0CosRzIeYD1dX2UKGgGR0BwEtW/8EV4aAdLqmgIR0CosR4+B6KMdX2UKGgGR0BxpR2dNFjNaAdLpGgIR0CosSJqIrOJdX2UKGgGR0Bx/CPLgXMyaAdL2mgIR0CosV7TtsvadX2UKGgGR0Bw3ZQAMlTnaAdLsGgIR0CosXKNIbwSdX2UKGgGR0ByO1He7+UAaAdLwGgIR0CosY0i6g/UdX2UKGgGR0BxwL4xk/bCaAdLjmgIR0CosbZ+6RQrdX2UKGgGR0ByHR5LRKHxaAdL1GgIR0CosbqkEcKgdX2UKGgGR0BzQd26kIomaAdL7mgIR0Cosc2LxZuAdX2UKGgGR0Bwl44//vORaAdLtmgIR0CosxeqJdjYdX2UKGgGR0Bzhs6EJ0GNaAdL4mgIR0Cos0a2fChwdX2UKGgGR0ByMccvM8oyaAdL2mgIR0Cos1nSv1UVdX2UKGgGR0BuD2dRR/EwaAdLtGgIR0Cos1nvUjLTdX2UKGgGR0BymKpfhMrVaAdL2GgIR0Cos2/CyhSMdX2UKGgGR0Bwx/Em6XjVaAdLwGgIR0Cos4MT37DVdX2UKGgGR0BwflFRYRukaAdLtGgIR0Cos53FtKqXdX2UKGgGR0ByELqPfbblaAdL3mgIR0Cos9cwpON6dX2UKGgGR0BlkISUTtb+aAdN6ANoCEdAqLQUHfMwDnV9lChoBkdAckT4/u9eyGgHS9VoCEdAqLQt/2Cd0HV9lChoBkdAcaHL+PzWgGgHS79oCEdAqLQv+MqBmXV9lChoBkdAcZ32Rq46O2gHS8xoCEdAqLRAfEGZ/nV9lChoBkdAcqAAI6bONmgHS9ZoCEdAqLRWn4wh4nV9lChoBkdAcyF3lS0jT2gHS/ZoCEdAqLRv8/D+BHV9lChoBkdAZSs0ALiMpGgHTegDaAhHQKi0l7oB7u51fZQoaAZHQHAT/n4fwJBoB0upaAhHQKi1KLMs6JZ1fZQoaAZHQG/fAVoHs1NoB0u4aAhHQKi1LHSWqtJ1fZQoaAZHQHD2uRT0g8toB0vUaAhHQKi1v/4Irvt1fZQoaAZHQHDpFVHWjGloB0vNaAhHQKi1v+aScLB1fZQoaAZHQHLlHJ5mh/RoB0vAaAhHQKi1x0Cih391fZQoaAZHQHJh7Xg9/z9oB0vgaAhHQKi14xD9fkZ1fZQoaAZHQHFf0th/iHZoB0vpaAhHQKi2IcXFcY91fZQoaAZHQHGsv+85CF9oB0vPaAhHQKi2KZtNzsB1fZQoaAZHQHEXrRBu4w1oB0u4aAhHQKi2aiHIp6R1fZQoaAZHQHIDUUj9n9NoB0vUaAhHQKi2ebPQfIV1fZQoaAZHQHGsoYBNmDloB0vLaAhHQKi2e7Ackt51fZQoaAZHQHMFjPKMefZoB0v3aAhHQKi2+2BJ7LN1fZQoaAZHQHHE3zpX6qNoB0vXaAhHQKi3E2WpqAV1fZQoaAZHQHLXv/FR51NoB0v9aAhHQKi3WfXf6451fZQoaAZHQHQVdTcZccFoB0vJaAhHQKi3iw/xDst1fZQoaAZHQHJEplrdnChoB0vdaAhHQKi3yeK8+Rp1fZQoaAZHQG7BXHaN+9doB0uzaAhHQKi32ny/bj91fZQoaAZHQHGIyS3b215oB0u1aAhHQKi34UfPomp1fZQoaAZHQHCmcPnSv1VoB0uuaAhHQKi378eCCjF1fZQoaAZHQHKNJdGAkLRoB0vLaAhHQKi4JiOvMbF1fZQoaAZHQHCdqgh8pkRoB0u3aAhHQKi4T9Oymhx1fZQoaAZHQHLFwg5imVJoB0vdaAhHQKi5IfXf6451fZQoaAZHQHLbIlUp/gBoB0vvaAhHQKi5UaP0Zm91fZQoaAZHQHIVmW6bvw5oB0vxaAhHQKi5Y3dbgTB1fZQoaAZHQHBBGkSElE9oB0veaAhHQKi5s1yeZoh1fZQoaAZHQHHYVCHARChoB0uVaAhHQKi5slFc6eZ1fZQoaAZHQHHHgl8gIQhoB0vbaAhHQKi5wtq59Vp1fZQoaAZHQHE0jj3mFJxoB0vJaAhHQKi50DEm6Xl1fZQoaAZHQHFFEg4ffXRoB0vAaAhHQKi55fxc3VF1fZQoaAZHQG8ddy925hBoB0uxaAhHQKi6Dt52Qnx1fZQoaAZHQHEBHCsOoYNoB0u9aAhHQKi6HU3n6mB1fZQoaAZHQGOlKCpWFOBoB03oA2gIR0CoukwSrYGudX2UKGgGR0BxsTOyE+PjaAdLwmgIR0Cous8tPHktdX2UKGgGR0By8xaTwDvFaAdL32gIR0CouxbB42S/dX2UKGgGR0By5rgWJrLyaAdL/WgIR0Cou0htUGVzdX2UKGgGR0BwRWPcSGrTaAdLnWgIR0CovGbFbVz7dX2UKGgGR0Bys8cCHRCyaAdL3mgIR0CovH9B8hLXdX2UKGgGR0BztEdBBzFNaAdLwmgIR0CovM9jG1hLdX2UKGgGR0BwqMlyBClaaAdLyGgIR0CovOlvybx3dX2UKGgGR0ByoEU34sVdaAdLqmgIR0CovPwA+6iCdX2UKGgGR0Bz1Bev6j33aAdL52gIR0CovQReLNwBdX2UKGgGR0BzNMXZXdTHaAdL22gIR0CovWMe4kNXdX2UKGgGR0BxAfm/336AaAdLz2gIR0CovY1dxAB1dX2UKGgGR0BzO27UXpGGaAdL62gIR0CovZo1+AmRdX2UKGgGR0BwCQGC7K7qaAdLrGgIR0CoveLsjVx0dX2UKGgGR0Bv4xAjY7JXaAdLrGgIR0CoviUcn3L3dX2UKGgGR0BzILHuJDVpaAdL5GgIR0CovjuwX668dX2UKGgGR0Byz6jh1klNaAdLp2gIR0Covj9PUKAsdX2UKGgGR0Bt/VI3BHkMaAdNVwJoCEdAqL62pn6EanV9lChoBkdAcQ9uwHJLd2gHS65oCEdAqL9rHbRF7XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 350,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425333b27e1968e84539e6bdf259bd741d23a7255aa332eb99083c850568b461
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2e7aa30d4df0c9c9a0f21ffb2c16554369f1563467e9e7473d49811a2607418
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (180 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.94382729999995, "std_reward": 36.39546256344773, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-24T18:18:02.062930"}