Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1745493270.eb5ae90ee160 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000913_3739648_reward_26.397.pth +3 -0
- checkpoint_p0/checkpoint_000000783_3207168.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +835 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1745493270.eb5ae90ee160
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:438affdcfa81bb791ca8b53de5220e11ff83ed1843c58349d6057f0494d5b77a
|
3 |
+
size 398932
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 9.09 +/- 4.45
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r ezrab/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000913_3739648_reward_26.397.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:140756452eb55b8c4aa6fa7fba9ec77db9a4800fff5f6b3e2e48a4640795cd9f
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000783_3207168.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1e3c46e2ada18c7a4d07470f6d6dbd09e329a9dc24483042f04842b06ff513e
|
3 |
+
size 34929541
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcfa30c2af43062fb1dbb47910ed05319636f6fbf20cc9784174b4a30f7316c2
|
3 |
+
size 34929477
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b871711f352dc9265ebba5485955992fc53cbf54e5aa24122f59c2191e40618e
|
3 |
+
size 17369696
|
sf_log.txt
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-04-24 11:14:34,762][00031] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2025-04-24 11:14:34,764][00031] Rollout worker 0 uses device cpu
|
3 |
+
[2025-04-24 11:14:34,764][00031] Rollout worker 1 uses device cpu
|
4 |
+
[2025-04-24 11:14:34,765][00031] Rollout worker 2 uses device cpu
|
5 |
+
[2025-04-24 11:14:34,766][00031] Rollout worker 3 uses device cpu
|
6 |
+
[2025-04-24 11:14:34,767][00031] Rollout worker 4 uses device cpu
|
7 |
+
[2025-04-24 11:14:34,767][00031] Rollout worker 5 uses device cpu
|
8 |
+
[2025-04-24 11:14:34,768][00031] Rollout worker 6 uses device cpu
|
9 |
+
[2025-04-24 11:14:34,769][00031] Rollout worker 7 uses device cpu
|
10 |
+
[2025-04-24 11:14:34,892][00031] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-04-24 11:14:34,893][00031] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-04-24 11:14:34,935][00031] Starting all processes...
|
13 |
+
[2025-04-24 11:14:34,936][00031] Starting process learner_proc0
|
14 |
+
[2025-04-24 11:14:35,031][00031] Starting all processes...
|
15 |
+
[2025-04-24 11:14:35,039][00031] Starting process inference_proc0-0
|
16 |
+
[2025-04-24 11:14:35,039][00031] Starting process rollout_proc0
|
17 |
+
[2025-04-24 11:14:35,040][00031] Starting process rollout_proc1
|
18 |
+
[2025-04-24 11:14:35,041][00031] Starting process rollout_proc2
|
19 |
+
[2025-04-24 11:14:35,041][00031] Starting process rollout_proc3
|
20 |
+
[2025-04-24 11:14:35,042][00031] Starting process rollout_proc4
|
21 |
+
[2025-04-24 11:14:35,042][00031] Starting process rollout_proc5
|
22 |
+
[2025-04-24 11:14:35,048][00031] Starting process rollout_proc6
|
23 |
+
[2025-04-24 11:14:35,049][00031] Starting process rollout_proc7
|
24 |
+
[2025-04-24 11:14:41,781][01244] Worker 7 uses CPU cores [3]
|
25 |
+
[2025-04-24 11:14:43,142][01240] Worker 3 uses CPU cores [3]
|
26 |
+
[2025-04-24 11:14:43,216][01238] Worker 2 uses CPU cores [2]
|
27 |
+
[2025-04-24 11:14:43,250][01223] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
28 |
+
[2025-04-24 11:14:43,251][01223] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
29 |
+
[2025-04-24 11:14:43,296][01223] Num visible devices: 1
|
30 |
+
[2025-04-24 11:14:43,307][01223] Starting seed is not provided
|
31 |
+
[2025-04-24 11:14:43,308][01223] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
32 |
+
[2025-04-24 11:14:43,308][01223] Initializing actor-critic model on device cuda:0
|
33 |
+
[2025-04-24 11:14:43,308][01223] RunningMeanStd input shape: (3, 72, 128)
|
34 |
+
[2025-04-24 11:14:43,312][01223] RunningMeanStd input shape: (1,)
|
35 |
+
[2025-04-24 11:14:43,361][01223] ConvEncoder: input_channels=3
|
36 |
+
[2025-04-24 11:14:43,494][01243] Worker 6 uses CPU cores [2]
|
37 |
+
[2025-04-24 11:14:43,607][01236] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
38 |
+
[2025-04-24 11:14:43,607][01236] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
39 |
+
[2025-04-24 11:14:43,658][01236] Num visible devices: 1
|
40 |
+
[2025-04-24 11:14:43,682][01237] Worker 0 uses CPU cores [0]
|
41 |
+
[2025-04-24 11:14:43,712][01241] Worker 4 uses CPU cores [0]
|
42 |
+
[2025-04-24 11:14:43,743][01223] Conv encoder output size: 512
|
43 |
+
[2025-04-24 11:14:43,743][01223] Policy head output size: 512
|
44 |
+
[2025-04-24 11:14:43,764][01242] Worker 5 uses CPU cores [1]
|
45 |
+
[2025-04-24 11:14:43,788][01239] Worker 1 uses CPU cores [1]
|
46 |
+
[2025-04-24 11:14:43,800][01223] Created Actor Critic model with architecture:
|
47 |
+
[2025-04-24 11:14:43,801][01223] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2025-04-24 11:14:44,053][01223] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-04-24 11:14:48,057][01223] No checkpoints found
|
90 |
+
[2025-04-24 11:14:48,057][01223] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-04-24 11:14:48,057][01223] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-04-24 11:14:48,060][01223] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-04-24 11:14:48,060][01223] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-04-24 11:14:48,175][01236] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-04-24 11:14:48,176][01236] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-04-24 11:14:48,187][01236] ConvEncoder: input_channels=3
|
97 |
+
[2025-04-24 11:14:48,296][01236] Conv encoder output size: 512
|
98 |
+
[2025-04-24 11:14:48,296][01236] Policy head output size: 512
|
99 |
+
[2025-04-24 11:14:48,352][00031] Inference worker 0-0 is ready!
|
100 |
+
[2025-04-24 11:14:48,353][00031] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-04-24 11:14:48,480][01238] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-04-24 11:14:48,480][01239] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-04-24 11:14:48,479][01240] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-04-24 11:14:48,480][01242] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-04-24 11:14:48,480][01241] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-04-24 11:14:48,479][01237] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-04-24 11:14:48,478][01243] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-04-24 11:14:48,483][01244] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-04-24 11:14:48,962][01244] Decorrelating experience for 0 frames...
|
110 |
+
[2025-04-24 11:14:49,024][01237] Decorrelating experience for 0 frames...
|
111 |
+
[2025-04-24 11:14:49,297][01243] Decorrelating experience for 0 frames...
|
112 |
+
[2025-04-24 11:14:49,300][01238] Decorrelating experience for 0 frames...
|
113 |
+
[2025-04-24 11:14:49,484][01240] Decorrelating experience for 0 frames...
|
114 |
+
[2025-04-24 11:14:49,486][01244] Decorrelating experience for 32 frames...
|
115 |
+
[2025-04-24 11:14:49,836][01240] Decorrelating experience for 32 frames...
|
116 |
+
[2025-04-24 11:14:49,957][01237] Decorrelating experience for 32 frames...
|
117 |
+
[2025-04-24 11:14:49,998][01243] Decorrelating experience for 32 frames...
|
118 |
+
[2025-04-24 11:14:50,007][01238] Decorrelating experience for 32 frames...
|
119 |
+
[2025-04-24 11:14:50,036][00031] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
120 |
+
[2025-04-24 11:14:50,325][01240] Decorrelating experience for 64 frames...
|
121 |
+
[2025-04-24 11:14:50,590][01244] Decorrelating experience for 64 frames...
|
122 |
+
[2025-04-24 11:14:50,891][01241] Decorrelating experience for 0 frames...
|
123 |
+
[2025-04-24 11:14:50,949][01240] Decorrelating experience for 96 frames...
|
124 |
+
[2025-04-24 11:14:51,026][01237] Decorrelating experience for 64 frames...
|
125 |
+
[2025-04-24 11:14:51,140][01243] Decorrelating experience for 64 frames...
|
126 |
+
[2025-04-24 11:14:51,143][01238] Decorrelating experience for 64 frames...
|
127 |
+
[2025-04-24 11:14:51,351][01242] Decorrelating experience for 0 frames...
|
128 |
+
[2025-04-24 11:14:51,355][01244] Decorrelating experience for 96 frames...
|
129 |
+
[2025-04-24 11:14:51,612][01241] Decorrelating experience for 32 frames...
|
130 |
+
[2025-04-24 11:14:51,944][01237] Decorrelating experience for 96 frames...
|
131 |
+
[2025-04-24 11:14:52,049][01243] Decorrelating experience for 96 frames...
|
132 |
+
[2025-04-24 11:14:52,416][01242] Decorrelating experience for 32 frames...
|
133 |
+
[2025-04-24 11:14:52,624][01241] Decorrelating experience for 64 frames...
|
134 |
+
[2025-04-24 11:14:53,036][01242] Decorrelating experience for 64 frames...
|
135 |
+
[2025-04-24 11:14:53,517][01238] Decorrelating experience for 96 frames...
|
136 |
+
[2025-04-24 11:14:53,571][01242] Decorrelating experience for 96 frames...
|
137 |
+
[2025-04-24 11:14:53,883][01241] Decorrelating experience for 96 frames...
|
138 |
+
[2025-04-24 11:14:54,406][01223] Signal inference workers to stop experience collection...
|
139 |
+
[2025-04-24 11:14:54,413][01236] InferenceWorker_p0-w0: stopping experience collection
|
140 |
+
[2025-04-24 11:14:54,881][00031] Heartbeat connected on Batcher_0
|
141 |
+
[2025-04-24 11:14:54,892][00031] Heartbeat connected on InferenceWorker_p0-w0
|
142 |
+
[2025-04-24 11:14:54,901][00031] Heartbeat connected on RolloutWorker_w0
|
143 |
+
[2025-04-24 11:14:54,910][00031] Heartbeat connected on RolloutWorker_w2
|
144 |
+
[2025-04-24 11:14:54,915][00031] Heartbeat connected on RolloutWorker_w3
|
145 |
+
[2025-04-24 11:14:54,920][00031] Heartbeat connected on RolloutWorker_w4
|
146 |
+
[2025-04-24 11:14:54,925][00031] Heartbeat connected on RolloutWorker_w5
|
147 |
+
[2025-04-24 11:14:54,930][00031] Heartbeat connected on RolloutWorker_w6
|
148 |
+
[2025-04-24 11:14:54,935][00031] Heartbeat connected on RolloutWorker_w7
|
149 |
+
[2025-04-24 11:14:55,036][00031] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 520.8. Samples: 2604. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
150 |
+
[2025-04-24 11:14:55,037][00031] Avg episode reward: [(0, '3.606')]
|
151 |
+
[2025-04-24 11:14:56,414][01223] Signal inference workers to resume experience collection...
|
152 |
+
[2025-04-24 11:14:56,415][01236] InferenceWorker_p0-w0: resuming experience collection
|
153 |
+
[2025-04-24 11:14:56,698][00031] Heartbeat connected on LearnerWorker_p0
|
154 |
+
[2025-04-24 11:14:59,977][01236] Updated weights for policy 0, policy_version 10 (0.0096)
|
155 |
+
[2025-04-24 11:15:00,036][00031] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4096.0). Total num frames: 40960. Throughput: 0: 458.6. Samples: 4586. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
156 |
+
[2025-04-24 11:15:00,037][00031] Avg episode reward: [(0, '4.281')]
|
157 |
+
[2025-04-24 11:15:04,358][01236] Updated weights for policy 0, policy_version 20 (0.0016)
|
158 |
+
[2025-04-24 11:15:05,036][00031] Fps is (10 sec: 8601.5, 60 sec: 5734.4, 300 sec: 5734.4). Total num frames: 86016. Throughput: 0: 1245.9. Samples: 18688. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
159 |
+
[2025-04-24 11:15:05,037][00031] Avg episode reward: [(0, '4.305')]
|
160 |
+
[2025-04-24 11:15:08,433][01236] Updated weights for policy 0, policy_version 30 (0.0015)
|
161 |
+
[2025-04-24 11:15:10,036][00031] Fps is (10 sec: 9420.8, 60 sec: 6758.4, 300 sec: 6758.4). Total num frames: 135168. Throughput: 0: 1674.2. Samples: 33484. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
162 |
+
[2025-04-24 11:15:10,037][00031] Avg episode reward: [(0, '4.341')]
|
163 |
+
[2025-04-24 11:15:10,048][01223] Saving new best policy, reward=4.341!
|
164 |
+
[2025-04-24 11:15:12,925][01236] Updated weights for policy 0, policy_version 40 (0.0014)
|
165 |
+
[2025-04-24 11:15:15,036][00031] Fps is (10 sec: 9420.9, 60 sec: 7209.0, 300 sec: 7209.0). Total num frames: 180224. Throughput: 0: 1617.0. Samples: 40426. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
166 |
+
[2025-04-24 11:15:15,037][00031] Avg episode reward: [(0, '4.340')]
|
167 |
+
[2025-04-24 11:15:17,596][01236] Updated weights for policy 0, policy_version 50 (0.0015)
|
168 |
+
[2025-04-24 11:15:20,036][00031] Fps is (10 sec: 9011.0, 60 sec: 7509.3, 300 sec: 7509.3). Total num frames: 225280. Throughput: 0: 1792.9. Samples: 53786. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
169 |
+
[2025-04-24 11:15:20,037][00031] Avg episode reward: [(0, '4.642')]
|
170 |
+
[2025-04-24 11:15:20,047][01223] Saving new best policy, reward=4.642!
|
171 |
+
[2025-04-24 11:15:21,863][01236] Updated weights for policy 0, policy_version 60 (0.0015)
|
172 |
+
[2025-04-24 11:15:25,036][00031] Fps is (10 sec: 9420.8, 60 sec: 7840.9, 300 sec: 7840.9). Total num frames: 274432. Throughput: 0: 1950.2. Samples: 68256. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
173 |
+
[2025-04-24 11:15:25,037][00031] Avg episode reward: [(0, '4.390')]
|
174 |
+
[2025-04-24 11:15:25,994][01236] Updated weights for policy 0, policy_version 70 (0.0014)
|
175 |
+
[2025-04-24 11:15:30,036][00031] Fps is (10 sec: 9830.6, 60 sec: 8089.6, 300 sec: 8089.6). Total num frames: 323584. Throughput: 0: 1892.8. Samples: 75710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
176 |
+
[2025-04-24 11:15:30,037][00031] Avg episode reward: [(0, '4.583')]
|
177 |
+
[2025-04-24 11:15:30,044][01236] Updated weights for policy 0, policy_version 80 (0.0017)
|
178 |
+
[2025-04-24 11:15:34,305][01236] Updated weights for policy 0, policy_version 90 (0.0014)
|
179 |
+
[2025-04-24 11:15:35,036][00031] Fps is (10 sec: 9830.4, 60 sec: 8283.0, 300 sec: 8283.0). Total num frames: 372736. Throughput: 0: 2009.9. Samples: 90446. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
180 |
+
[2025-04-24 11:15:35,038][00031] Avg episode reward: [(0, '4.367')]
|
181 |
+
[2025-04-24 11:15:38,477][01236] Updated weights for policy 0, policy_version 100 (0.0015)
|
182 |
+
[2025-04-24 11:15:40,036][00031] Fps is (10 sec: 9830.3, 60 sec: 8437.8, 300 sec: 8437.8). Total num frames: 421888. Throughput: 0: 2281.6. Samples: 105276. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
183 |
+
[2025-04-24 11:15:40,038][00031] Avg episode reward: [(0, '4.761')]
|
184 |
+
[2025-04-24 11:15:40,057][01223] Saving new best policy, reward=4.761!
|
185 |
+
[2025-04-24 11:15:42,713][01236] Updated weights for policy 0, policy_version 110 (0.0013)
|
186 |
+
[2025-04-24 11:15:45,036][00031] Fps is (10 sec: 9830.3, 60 sec: 8564.4, 300 sec: 8564.4). Total num frames: 471040. Throughput: 0: 2395.7. Samples: 112392. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
187 |
+
[2025-04-24 11:15:45,038][00031] Avg episode reward: [(0, '4.426')]
|
188 |
+
[2025-04-24 11:15:47,483][01236] Updated weights for policy 0, policy_version 120 (0.0013)
|
189 |
+
[2025-04-24 11:15:50,036][00031] Fps is (10 sec: 9420.9, 60 sec: 8601.6, 300 sec: 8601.6). Total num frames: 516096. Throughput: 0: 2375.8. Samples: 125598. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
190 |
+
[2025-04-24 11:15:50,037][00031] Avg episode reward: [(0, '4.289')]
|
191 |
+
[2025-04-24 11:15:51,700][01236] Updated weights for policy 0, policy_version 130 (0.0016)
|
192 |
+
[2025-04-24 11:15:55,036][00031] Fps is (10 sec: 9420.9, 60 sec: 9420.8, 300 sec: 8696.1). Total num frames: 565248. Throughput: 0: 2372.0. Samples: 140226. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
193 |
+
[2025-04-24 11:15:55,038][00031] Avg episode reward: [(0, '4.247')]
|
194 |
+
[2025-04-24 11:15:55,898][01236] Updated weights for policy 0, policy_version 140 (0.0014)
|
195 |
+
[2025-04-24 11:16:00,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9489.1, 300 sec: 8718.6). Total num frames: 610304. Throughput: 0: 2382.0. Samples: 147618. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
196 |
+
[2025-04-24 11:16:00,039][00031] Avg episode reward: [(0, '4.777')]
|
197 |
+
[2025-04-24 11:16:00,076][01223] Saving new best policy, reward=4.777!
|
198 |
+
[2025-04-24 11:16:00,078][01236] Updated weights for policy 0, policy_version 150 (0.0016)
|
199 |
+
[2025-04-24 11:16:04,302][01236] Updated weights for policy 0, policy_version 160 (0.0015)
|
200 |
+
[2025-04-24 11:16:05,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 8792.7). Total num frames: 659456. Throughput: 0: 2406.9. Samples: 162098. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
201 |
+
[2025-04-24 11:16:05,037][00031] Avg episode reward: [(0, '4.729')]
|
202 |
+
[2025-04-24 11:16:08,466][01236] Updated weights for policy 0, policy_version 170 (0.0016)
|
203 |
+
[2025-04-24 11:16:10,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9557.3, 300 sec: 8857.6). Total num frames: 708608. Throughput: 0: 2411.7. Samples: 176782. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
204 |
+
[2025-04-24 11:16:10,037][00031] Avg episode reward: [(0, '4.455')]
|
205 |
+
[2025-04-24 11:16:12,695][01236] Updated weights for policy 0, policy_version 180 (0.0013)
|
206 |
+
[2025-04-24 11:16:15,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 8914.8). Total num frames: 757760. Throughput: 0: 2408.8. Samples: 184104. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
207 |
+
[2025-04-24 11:16:15,037][00031] Avg episode reward: [(0, '4.411')]
|
208 |
+
[2025-04-24 11:16:16,835][01236] Updated weights for policy 0, policy_version 190 (0.0013)
|
209 |
+
[2025-04-24 11:16:20,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 8920.2). Total num frames: 802816. Throughput: 0: 2392.0. Samples: 198084. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
|
210 |
+
[2025-04-24 11:16:20,040][00031] Avg episode reward: [(0, '4.550')]
|
211 |
+
[2025-04-24 11:16:21,489][01236] Updated weights for policy 0, policy_version 200 (0.0014)
|
212 |
+
[2025-04-24 11:16:25,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 8968.1). Total num frames: 851968. Throughput: 0: 2374.2. Samples: 212116. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
213 |
+
[2025-04-24 11:16:25,037][00031] Avg episode reward: [(0, '4.593')]
|
214 |
+
[2025-04-24 11:16:25,855][01236] Updated weights for policy 0, policy_version 210 (0.0014)
|
215 |
+
[2025-04-24 11:16:29,970][01236] Updated weights for policy 0, policy_version 220 (0.0016)
|
216 |
+
[2025-04-24 11:16:30,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9011.2). Total num frames: 901120. Throughput: 0: 2381.2. Samples: 219544. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
217 |
+
[2025-04-24 11:16:30,037][00031] Avg episode reward: [(0, '4.448')]
|
218 |
+
[2025-04-24 11:16:30,044][01223] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000220_901120.pth...
|
219 |
+
[2025-04-24 11:16:34,224][01236] Updated weights for policy 0, policy_version 230 (0.0015)
|
220 |
+
[2025-04-24 11:16:35,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9011.2). Total num frames: 946176. Throughput: 0: 2408.4. Samples: 233976. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
221 |
+
[2025-04-24 11:16:35,038][00031] Avg episode reward: [(0, '4.831')]
|
222 |
+
[2025-04-24 11:16:35,049][01223] Saving new best policy, reward=4.831!
|
223 |
+
[2025-04-24 11:16:38,482][01236] Updated weights for policy 0, policy_version 240 (0.0016)
|
224 |
+
[2025-04-24 11:16:40,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9048.4). Total num frames: 995328. Throughput: 0: 2405.8. Samples: 248488. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
225 |
+
[2025-04-24 11:16:40,038][00031] Avg episode reward: [(0, '4.574')]
|
226 |
+
[2025-04-24 11:16:42,697][01236] Updated weights for policy 0, policy_version 250 (0.0015)
|
227 |
+
[2025-04-24 11:16:45,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9557.3, 300 sec: 9082.4). Total num frames: 1044480. Throughput: 0: 2402.0. Samples: 255708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
228 |
+
[2025-04-24 11:16:45,037][00031] Avg episode reward: [(0, '4.846')]
|
229 |
+
[2025-04-24 11:16:45,039][01223] Saving new best policy, reward=4.846!
|
230 |
+
[2025-04-24 11:16:46,856][01236] Updated weights for policy 0, policy_version 260 (0.0013)
|
231 |
+
[2025-04-24 11:16:50,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9113.6). Total num frames: 1093632. Throughput: 0: 2409.2. Samples: 270514. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
232 |
+
[2025-04-24 11:16:50,037][00031] Avg episode reward: [(0, '4.838')]
|
233 |
+
[2025-04-24 11:16:51,453][01236] Updated weights for policy 0, policy_version 270 (0.0014)
|
234 |
+
[2025-04-24 11:16:55,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9109.5). Total num frames: 1138688. Throughput: 0: 2377.1. Samples: 283750. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
235 |
+
[2025-04-24 11:16:55,037][00031] Avg episode reward: [(0, '5.109')]
|
236 |
+
[2025-04-24 11:16:55,039][01223] Saving new best policy, reward=5.109!
|
237 |
+
[2025-04-24 11:16:55,786][01236] Updated weights for policy 0, policy_version 280 (0.0015)
|
238 |
+
[2025-04-24 11:16:59,968][01236] Updated weights for policy 0, policy_version 290 (0.0016)
|
239 |
+
[2025-04-24 11:17:00,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 9137.2). Total num frames: 1187840. Throughput: 0: 2379.0. Samples: 291158. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
|
240 |
+
[2025-04-24 11:17:00,037][00031] Avg episode reward: [(0, '5.459')]
|
241 |
+
[2025-04-24 11:17:00,046][01223] Saving new best policy, reward=5.459!
|
242 |
+
[2025-04-24 11:17:04,249][01236] Updated weights for policy 0, policy_version 300 (0.0015)
|
243 |
+
[2025-04-24 11:17:05,036][00031] Fps is (10 sec: 9829.9, 60 sec: 9625.5, 300 sec: 9162.9). Total num frames: 1236992. Throughput: 0: 2391.1. Samples: 305684. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
244 |
+
[2025-04-24 11:17:05,037][00031] Avg episode reward: [(0, '4.949')]
|
245 |
+
[2025-04-24 11:17:08,363][01236] Updated weights for policy 0, policy_version 310 (0.0016)
|
246 |
+
[2025-04-24 11:17:10,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9186.7). Total num frames: 1286144. Throughput: 0: 2410.0. Samples: 320564. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
247 |
+
[2025-04-24 11:17:10,037][00031] Avg episode reward: [(0, '5.748')]
|
248 |
+
[2025-04-24 11:17:10,046][01223] Saving new best policy, reward=5.748!
|
249 |
+
[2025-04-24 11:17:12,515][01236] Updated weights for policy 0, policy_version 320 (0.0015)
|
250 |
+
[2025-04-24 11:17:15,036][00031] Fps is (10 sec: 9421.3, 60 sec: 9557.3, 300 sec: 9180.7). Total num frames: 1331200. Throughput: 0: 2404.3. Samples: 327736. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
251 |
+
[2025-04-24 11:17:15,037][00031] Avg episode reward: [(0, '5.493')]
|
252 |
+
[2025-04-24 11:17:16,654][01236] Updated weights for policy 0, policy_version 330 (0.0015)
|
253 |
+
[2025-04-24 11:17:20,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 9202.3). Total num frames: 1380352. Throughput: 0: 2412.3. Samples: 342530. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
254 |
+
[2025-04-24 11:17:20,037][00031] Avg episode reward: [(0, '5.467')]
|
255 |
+
[2025-04-24 11:17:20,898][01236] Updated weights for policy 0, policy_version 340 (0.0015)
|
256 |
+
[2025-04-24 11:17:25,036][00031] Fps is (10 sec: 9420.4, 60 sec: 9557.3, 300 sec: 9196.2). Total num frames: 1425408. Throughput: 0: 2388.3. Samples: 355964. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
257 |
+
[2025-04-24 11:17:25,039][00031] Avg episode reward: [(0, '6.098')]
|
258 |
+
[2025-04-24 11:17:25,040][01223] Saving new best policy, reward=6.098!
|
259 |
+
[2025-04-24 11:17:25,745][01236] Updated weights for policy 0, policy_version 350 (0.0012)
|
260 |
+
[2025-04-24 11:17:29,847][01236] Updated weights for policy 0, policy_version 360 (0.0014)
|
261 |
+
[2025-04-24 11:17:30,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9216.0). Total num frames: 1474560. Throughput: 0: 2383.1. Samples: 362948. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
262 |
+
[2025-04-24 11:17:30,037][00031] Avg episode reward: [(0, '6.238')]
|
263 |
+
[2025-04-24 11:17:30,047][01223] Saving new best policy, reward=6.238!
|
264 |
+
[2025-04-24 11:17:34,043][01236] Updated weights for policy 0, policy_version 370 (0.0014)
|
265 |
+
[2025-04-24 11:17:35,036][00031] Fps is (10 sec: 9830.9, 60 sec: 9625.6, 300 sec: 9234.6). Total num frames: 1523712. Throughput: 0: 2380.4. Samples: 377634. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
266 |
+
[2025-04-24 11:17:35,038][00031] Avg episode reward: [(0, '6.331')]
|
267 |
+
[2025-04-24 11:17:35,039][01223] Saving new best policy, reward=6.331!
|
268 |
+
[2025-04-24 11:17:38,233][01236] Updated weights for policy 0, policy_version 380 (0.0017)
|
269 |
+
[2025-04-24 11:17:40,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9252.1). Total num frames: 1572864. Throughput: 0: 2414.0. Samples: 392380. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
270 |
+
[2025-04-24 11:17:40,037][00031] Avg episode reward: [(0, '7.161')]
|
271 |
+
[2025-04-24 11:17:40,048][01223] Saving new best policy, reward=7.161!
|
272 |
+
[2025-04-24 11:17:42,489][01236] Updated weights for policy 0, policy_version 390 (0.0013)
|
273 |
+
[2025-04-24 11:17:45,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9268.7). Total num frames: 1622016. Throughput: 0: 2408.5. Samples: 399542. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
274 |
+
[2025-04-24 11:17:45,037][00031] Avg episode reward: [(0, '7.800')]
|
275 |
+
[2025-04-24 11:17:45,039][01223] Saving new best policy, reward=7.800!
|
276 |
+
[2025-04-24 11:17:46,697][01236] Updated weights for policy 0, policy_version 400 (0.0014)
|
277 |
+
[2025-04-24 11:17:50,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9261.5). Total num frames: 1667072. Throughput: 0: 2411.9. Samples: 414220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
278 |
+
[2025-04-24 11:17:50,037][00031] Avg episode reward: [(0, '7.745')]
|
279 |
+
[2025-04-24 11:17:50,826][01236] Updated weights for policy 0, policy_version 410 (0.0015)
|
280 |
+
[2025-04-24 11:17:54,951][01236] Updated weights for policy 0, policy_version 420 (0.0013)
|
281 |
+
[2025-04-24 11:17:55,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9299.0). Total num frames: 1720320. Throughput: 0: 2411.9. Samples: 429098. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
282 |
+
[2025-04-24 11:17:55,037][00031] Avg episode reward: [(0, '7.834')]
|
283 |
+
[2025-04-24 11:17:55,039][01223] Saving new best policy, reward=7.834!
|
284 |
+
[2025-04-24 11:17:59,777][01236] Updated weights for policy 0, policy_version 430 (0.0015)
|
285 |
+
[2025-04-24 11:18:00,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9269.9). Total num frames: 1761280. Throughput: 0: 2381.0. Samples: 434882. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
286 |
+
[2025-04-24 11:18:00,037][00031] Avg episode reward: [(0, '8.294')]
|
287 |
+
[2025-04-24 11:18:00,047][01223] Saving new best policy, reward=8.294!
|
288 |
+
[2025-04-24 11:18:04,100][01236] Updated weights for policy 0, policy_version 440 (0.0015)
|
289 |
+
[2025-04-24 11:18:05,036][00031] Fps is (10 sec: 9011.2, 60 sec: 9557.4, 300 sec: 9284.3). Total num frames: 1810432. Throughput: 0: 2374.3. Samples: 449374. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
290 |
+
[2025-04-24 11:18:05,037][00031] Avg episode reward: [(0, '8.266')]
|
291 |
+
[2025-04-24 11:18:08,228][01236] Updated weights for policy 0, policy_version 450 (0.0016)
|
292 |
+
[2025-04-24 11:18:10,036][00031] Fps is (10 sec: 9830.3, 60 sec: 9557.3, 300 sec: 9297.9). Total num frames: 1859584. Throughput: 0: 2405.9. Samples: 464230. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
293 |
+
[2025-04-24 11:18:10,038][00031] Avg episode reward: [(0, '8.283')]
|
294 |
+
[2025-04-24 11:18:12,461][01236] Updated weights for policy 0, policy_version 460 (0.0014)
|
295 |
+
[2025-04-24 11:18:15,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9310.9). Total num frames: 1908736. Throughput: 0: 2411.0. Samples: 471442. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
296 |
+
[2025-04-24 11:18:15,037][00031] Avg episode reward: [(0, '8.972')]
|
297 |
+
[2025-04-24 11:18:15,039][01223] Saving new best policy, reward=8.972!
|
298 |
+
[2025-04-24 11:18:16,676][01236] Updated weights for policy 0, policy_version 470 (0.0016)
|
299 |
+
[2025-04-24 11:18:20,036][00031] Fps is (10 sec: 9830.5, 60 sec: 9625.6, 300 sec: 9323.3). Total num frames: 1957888. Throughput: 0: 2409.0. Samples: 486040. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
300 |
+
[2025-04-24 11:18:20,037][00031] Avg episode reward: [(0, '9.329')]
|
301 |
+
[2025-04-24 11:18:20,048][01223] Saving new best policy, reward=9.329!
|
302 |
+
[2025-04-24 11:18:20,906][01236] Updated weights for policy 0, policy_version 480 (0.0015)
|
303 |
+
[2025-04-24 11:18:25,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.7, 300 sec: 9316.0). Total num frames: 2002944. Throughput: 0: 2404.4. Samples: 500576. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
304 |
+
[2025-04-24 11:18:25,038][00031] Avg episode reward: [(0, '9.135')]
|
305 |
+
[2025-04-24 11:18:25,072][01236] Updated weights for policy 0, policy_version 490 (0.0014)
|
306 |
+
[2025-04-24 11:18:29,782][01236] Updated weights for policy 0, policy_version 500 (0.0014)
|
307 |
+
[2025-04-24 11:18:30,038][00031] Fps is (10 sec: 9009.6, 60 sec: 9557.0, 300 sec: 9309.0). Total num frames: 2048000. Throughput: 0: 2409.6. Samples: 507980. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
308 |
+
[2025-04-24 11:18:30,039][00031] Avg episode reward: [(0, '10.339')]
|
309 |
+
[2025-04-24 11:18:30,048][01223] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000500_2048000.pth...
|
310 |
+
[2025-04-24 11:18:30,136][01223] Saving new best policy, reward=10.339!
|
311 |
+
[2025-04-24 11:18:34,129][01236] Updated weights for policy 0, policy_version 510 (0.0012)
|
312 |
+
[2025-04-24 11:18:35,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9557.3, 300 sec: 9320.7). Total num frames: 2097152. Throughput: 0: 2371.7. Samples: 520948. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
313 |
+
[2025-04-24 11:18:35,037][00031] Avg episode reward: [(0, '10.323')]
|
314 |
+
[2025-04-24 11:18:38,241][01236] Updated weights for policy 0, policy_version 520 (0.0016)
|
315 |
+
[2025-04-24 11:18:40,036][00031] Fps is (10 sec: 9832.2, 60 sec: 9557.3, 300 sec: 9331.8). Total num frames: 2146304. Throughput: 0: 2372.6. Samples: 535864. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
316 |
+
[2025-04-24 11:18:40,037][00031] Avg episode reward: [(0, '11.560')]
|
317 |
+
[2025-04-24 11:18:40,048][01223] Saving new best policy, reward=11.560!
|
318 |
+
[2025-04-24 11:18:42,462][01236] Updated weights for policy 0, policy_version 530 (0.0015)
|
319 |
+
[2025-04-24 11:18:45,036][00031] Fps is (10 sec: 9830.2, 60 sec: 9557.3, 300 sec: 9342.4). Total num frames: 2195456. Throughput: 0: 2403.9. Samples: 543058. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
320 |
+
[2025-04-24 11:18:45,038][00031] Avg episode reward: [(0, '11.406')]
|
321 |
+
[2025-04-24 11:18:46,577][01236] Updated weights for policy 0, policy_version 540 (0.0014)
|
322 |
+
[2025-04-24 11:18:50,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9352.5). Total num frames: 2244608. Throughput: 0: 2412.4. Samples: 557934. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
323 |
+
[2025-04-24 11:18:50,037][00031] Avg episode reward: [(0, '13.607')]
|
324 |
+
[2025-04-24 11:18:50,046][01223] Saving new best policy, reward=13.607!
|
325 |
+
[2025-04-24 11:18:50,738][01236] Updated weights for policy 0, policy_version 550 (0.0014)
|
326 |
+
[2025-04-24 11:18:54,950][01236] Updated weights for policy 0, policy_version 560 (0.0016)
|
327 |
+
[2025-04-24 11:18:55,036][00031] Fps is (10 sec: 9830.2, 60 sec: 9557.3, 300 sec: 9362.3). Total num frames: 2293760. Throughput: 0: 2409.2. Samples: 572644. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
328 |
+
[2025-04-24 11:18:55,037][00031] Avg episode reward: [(0, '13.353')]
|
329 |
+
[2025-04-24 11:18:59,000][01236] Updated weights for policy 0, policy_version 570 (0.0012)
|
330 |
+
[2025-04-24 11:19:00,036][00031] Fps is (10 sec: 9830.1, 60 sec: 9693.8, 300 sec: 9371.6). Total num frames: 2342912. Throughput: 0: 2413.8. Samples: 580066. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
331 |
+
[2025-04-24 11:19:00,037][00031] Avg episode reward: [(0, '14.495')]
|
332 |
+
[2025-04-24 11:19:00,049][01223] Saving new best policy, reward=14.495!
|
333 |
+
[2025-04-24 11:19:03,858][01236] Updated weights for policy 0, policy_version 580 (0.0013)
|
334 |
+
[2025-04-24 11:19:05,036][00031] Fps is (10 sec: 9011.6, 60 sec: 9557.3, 300 sec: 9348.5). Total num frames: 2383872. Throughput: 0: 2382.8. Samples: 593264. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
335 |
+
[2025-04-24 11:19:05,037][00031] Avg episode reward: [(0, '15.183')]
|
336 |
+
[2025-04-24 11:19:05,039][01223] Saving new best policy, reward=15.183!
|
337 |
+
[2025-04-24 11:19:08,089][01236] Updated weights for policy 0, policy_version 590 (0.0015)
|
338 |
+
[2025-04-24 11:19:10,036][00031] Fps is (10 sec: 9011.3, 60 sec: 9557.3, 300 sec: 9357.8). Total num frames: 2433024. Throughput: 0: 2389.1. Samples: 608084. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
339 |
+
[2025-04-24 11:19:10,038][00031] Avg episode reward: [(0, '16.189')]
|
340 |
+
[2025-04-24 11:19:10,049][01223] Saving new best policy, reward=16.189!
|
341 |
+
[2025-04-24 11:19:12,261][01236] Updated weights for policy 0, policy_version 600 (0.0016)
|
342 |
+
[2025-04-24 11:19:15,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9557.3, 300 sec: 9366.7). Total num frames: 2482176. Throughput: 0: 2385.9. Samples: 615340. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
343 |
+
[2025-04-24 11:19:15,038][00031] Avg episode reward: [(0, '16.561')]
|
344 |
+
[2025-04-24 11:19:15,078][01223] Saving new best policy, reward=16.561!
|
345 |
+
[2025-04-24 11:19:16,318][01236] Updated weights for policy 0, policy_version 610 (0.0014)
|
346 |
+
[2025-04-24 11:19:20,036][00031] Fps is (10 sec: 9830.5, 60 sec: 9557.3, 300 sec: 9375.3). Total num frames: 2531328. Throughput: 0: 2427.4. Samples: 630182. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
347 |
+
[2025-04-24 11:19:20,039][00031] Avg episode reward: [(0, '17.174')]
|
348 |
+
[2025-04-24 11:19:20,052][01223] Saving new best policy, reward=17.174!
|
349 |
+
[2025-04-24 11:19:20,501][01236] Updated weights for policy 0, policy_version 620 (0.0016)
|
350 |
+
[2025-04-24 11:19:24,772][01236] Updated weights for policy 0, policy_version 630 (0.0017)
|
351 |
+
[2025-04-24 11:19:25,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9383.6). Total num frames: 2580480. Throughput: 0: 2420.2. Samples: 644774. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
352 |
+
[2025-04-24 11:19:25,037][00031] Avg episode reward: [(0, '15.530')]
|
353 |
+
[2025-04-24 11:19:28,769][01236] Updated weights for policy 0, policy_version 640 (0.0014)
|
354 |
+
[2025-04-24 11:19:30,036][00031] Fps is (10 sec: 9830.3, 60 sec: 9694.1, 300 sec: 9391.5). Total num frames: 2629632. Throughput: 0: 2425.2. Samples: 652194. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
355 |
+
[2025-04-24 11:19:30,039][00031] Avg episode reward: [(0, '16.167')]
|
356 |
+
[2025-04-24 11:19:33,010][01236] Updated weights for policy 0, policy_version 650 (0.0017)
|
357 |
+
[2025-04-24 11:19:35,038][00031] Fps is (10 sec: 9419.1, 60 sec: 9625.3, 300 sec: 9384.8). Total num frames: 2674688. Throughput: 0: 2420.1. Samples: 666842. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
358 |
+
[2025-04-24 11:19:35,039][00031] Avg episode reward: [(0, '17.109')]
|
359 |
+
[2025-04-24 11:19:37,731][01236] Updated weights for policy 0, policy_version 660 (0.0016)
|
360 |
+
[2025-04-24 11:19:40,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 9392.5). Total num frames: 2723840. Throughput: 0: 2395.0. Samples: 680418. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
361 |
+
[2025-04-24 11:19:40,037][00031] Avg episode reward: [(0, '18.018')]
|
362 |
+
[2025-04-24 11:19:40,049][01223] Saving new best policy, reward=18.018!
|
363 |
+
[2025-04-24 11:19:41,966][01236] Updated weights for policy 0, policy_version 670 (0.0014)
|
364 |
+
[2025-04-24 11:19:45,036][00031] Fps is (10 sec: 9832.1, 60 sec: 9625.6, 300 sec: 9400.0). Total num frames: 2772992. Throughput: 0: 2388.9. Samples: 687564. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
365 |
+
[2025-04-24 11:19:45,037][00031] Avg episode reward: [(0, '20.164')]
|
366 |
+
[2025-04-24 11:19:45,039][01223] Saving new best policy, reward=20.164!
|
367 |
+
[2025-04-24 11:19:46,146][01236] Updated weights for policy 0, policy_version 680 (0.0013)
|
368 |
+
[2025-04-24 11:19:50,036][00031] Fps is (10 sec: 9830.6, 60 sec: 9625.6, 300 sec: 9566.6). Total num frames: 2822144. Throughput: 0: 2419.2. Samples: 702128. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
369 |
+
[2025-04-24 11:19:50,037][00031] Avg episode reward: [(0, '21.040')]
|
370 |
+
[2025-04-24 11:19:50,049][01223] Saving new best policy, reward=21.040!
|
371 |
+
[2025-04-24 11:19:50,364][01236] Updated weights for policy 0, policy_version 690 (0.0016)
|
372 |
+
[2025-04-24 11:19:54,497][01236] Updated weights for policy 0, policy_version 700 (0.0013)
|
373 |
+
[2025-04-24 11:19:55,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.7, 300 sec: 9594.4). Total num frames: 2871296. Throughput: 0: 2418.1. Samples: 716898. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
374 |
+
[2025-04-24 11:19:55,037][00031] Avg episode reward: [(0, '19.314')]
|
375 |
+
[2025-04-24 11:19:58,638][01236] Updated weights for policy 0, policy_version 710 (0.0013)
|
376 |
+
[2025-04-24 11:20:00,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9608.2). Total num frames: 2920448. Throughput: 0: 2421.2. Samples: 724294. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
377 |
+
[2025-04-24 11:20:00,038][00031] Avg episode reward: [(0, '17.601')]
|
378 |
+
[2025-04-24 11:20:02,902][01236] Updated weights for policy 0, policy_version 720 (0.0018)
|
379 |
+
[2025-04-24 11:20:05,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.1, 300 sec: 9608.2). Total num frames: 2969600. Throughput: 0: 2419.0. Samples: 739038. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
380 |
+
[2025-04-24 11:20:05,037][00031] Avg episode reward: [(0, '18.124')]
|
381 |
+
[2025-04-24 11:20:07,403][01236] Updated weights for policy 0, policy_version 730 (0.0015)
|
382 |
+
[2025-04-24 11:20:10,036][00031] Fps is (10 sec: 9011.2, 60 sec: 9625.6, 300 sec: 9594.4). Total num frames: 3010560. Throughput: 0: 2392.8. Samples: 752448. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
383 |
+
[2025-04-24 11:20:10,037][00031] Avg episode reward: [(0, '19.417')]
|
384 |
+
[2025-04-24 11:20:11,836][01236] Updated weights for policy 0, policy_version 740 (0.0018)
|
385 |
+
[2025-04-24 11:20:15,036][00031] Fps is (10 sec: 9011.2, 60 sec: 9625.6, 300 sec: 9608.3). Total num frames: 3059712. Throughput: 0: 2387.1. Samples: 759612. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
386 |
+
[2025-04-24 11:20:15,037][00031] Avg episode reward: [(0, '21.493')]
|
387 |
+
[2025-04-24 11:20:15,040][01223] Saving new best policy, reward=21.493!
|
388 |
+
[2025-04-24 11:20:16,030][01236] Updated weights for policy 0, policy_version 750 (0.0015)
|
389 |
+
[2025-04-24 11:20:20,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9608.2). Total num frames: 3108864. Throughput: 0: 2388.9. Samples: 774340. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
390 |
+
[2025-04-24 11:20:20,037][00031] Avg episode reward: [(0, '20.920')]
|
391 |
+
[2025-04-24 11:20:20,186][01236] Updated weights for policy 0, policy_version 760 (0.0015)
|
392 |
+
[2025-04-24 11:20:24,313][01236] Updated weights for policy 0, policy_version 770 (0.0016)
|
393 |
+
[2025-04-24 11:20:25,037][00031] Fps is (10 sec: 9829.6, 60 sec: 9625.5, 300 sec: 9608.2). Total num frames: 3158016. Throughput: 0: 2414.9. Samples: 789092. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
394 |
+
[2025-04-24 11:20:25,038][00031] Avg episode reward: [(0, '21.647')]
|
395 |
+
[2025-04-24 11:20:25,040][01223] Saving new best policy, reward=21.647!
|
396 |
+
[2025-04-24 11:20:28,463][01236] Updated weights for policy 0, policy_version 780 (0.0013)
|
397 |
+
[2025-04-24 11:20:30,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9608.2). Total num frames: 3207168. Throughput: 0: 2421.1. Samples: 796512. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
398 |
+
[2025-04-24 11:20:30,037][00031] Avg episode reward: [(0, '21.550')]
|
399 |
+
[2025-04-24 11:20:30,052][01223] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000783_3207168.pth...
|
400 |
+
[2025-04-24 11:20:30,138][01223] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000220_901120.pth
|
401 |
+
[2025-04-24 11:20:32,688][01236] Updated weights for policy 0, policy_version 790 (0.0013)
|
402 |
+
[2025-04-24 11:20:35,036][00031] Fps is (10 sec: 9830.8, 60 sec: 9694.1, 300 sec: 9608.2). Total num frames: 3256320. Throughput: 0: 2427.4. Samples: 811360. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
403 |
+
[2025-04-24 11:20:35,039][00031] Avg episode reward: [(0, '22.633')]
|
404 |
+
[2025-04-24 11:20:35,093][01223] Saving new best policy, reward=22.633!
|
405 |
+
[2025-04-24 11:20:36,798][01236] Updated weights for policy 0, policy_version 800 (0.0016)
|
406 |
+
[2025-04-24 11:20:40,036][00031] Fps is (10 sec: 9420.1, 60 sec: 9625.5, 300 sec: 9594.3). Total num frames: 3301376. Throughput: 0: 2416.1. Samples: 825626. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
407 |
+
[2025-04-24 11:20:40,039][00031] Avg episode reward: [(0, '23.292')]
|
408 |
+
[2025-04-24 11:20:40,075][01223] Saving new best policy, reward=23.292!
|
409 |
+
[2025-04-24 11:20:41,568][01236] Updated weights for policy 0, policy_version 810 (0.0018)
|
410 |
+
[2025-04-24 11:20:45,036][00031] Fps is (10 sec: 9421.2, 60 sec: 9625.6, 300 sec: 9608.2). Total num frames: 3350528. Throughput: 0: 2392.4. Samples: 831950. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
411 |
+
[2025-04-24 11:20:45,038][00031] Avg episode reward: [(0, '22.740')]
|
412 |
+
[2025-04-24 11:20:45,678][01236] Updated weights for policy 0, policy_version 820 (0.0015)
|
413 |
+
[2025-04-24 11:20:49,735][01236] Updated weights for policy 0, policy_version 830 (0.0013)
|
414 |
+
[2025-04-24 11:20:50,036][00031] Fps is (10 sec: 9831.1, 60 sec: 9625.6, 300 sec: 9608.2). Total num frames: 3399680. Throughput: 0: 2398.7. Samples: 846980. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
415 |
+
[2025-04-24 11:20:50,039][00031] Avg episode reward: [(0, '23.628')]
|
416 |
+
[2025-04-24 11:20:50,046][01223] Saving new best policy, reward=23.628!
|
417 |
+
[2025-04-24 11:20:53,889][01236] Updated weights for policy 0, policy_version 840 (0.0013)
|
418 |
+
[2025-04-24 11:20:55,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9622.1). Total num frames: 3448832. Throughput: 0: 2429.9. Samples: 861792. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
419 |
+
[2025-04-24 11:20:55,038][00031] Avg episode reward: [(0, '23.406')]
|
420 |
+
[2025-04-24 11:20:58,035][01236] Updated weights for policy 0, policy_version 850 (0.0013)
|
421 |
+
[2025-04-24 11:21:00,036][00031] Fps is (10 sec: 10240.0, 60 sec: 9693.9, 300 sec: 9636.0). Total num frames: 3502080. Throughput: 0: 2437.4. Samples: 869294. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
422 |
+
[2025-04-24 11:21:00,037][00031] Avg episode reward: [(0, '21.158')]
|
423 |
+
[2025-04-24 11:21:02,279][01236] Updated weights for policy 0, policy_version 860 (0.0015)
|
424 |
+
[2025-04-24 11:21:05,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9622.1). Total num frames: 3547136. Throughput: 0: 2436.2. Samples: 883968. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
425 |
+
[2025-04-24 11:21:05,037][00031] Avg episode reward: [(0, '21.758')]
|
426 |
+
[2025-04-24 11:21:06,356][01236] Updated weights for policy 0, policy_version 870 (0.0016)
|
427 |
+
[2025-04-24 11:21:10,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9830.4, 300 sec: 9636.0). Total num frames: 3600384. Throughput: 0: 2441.6. Samples: 898962. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
428 |
+
[2025-04-24 11:21:10,037][00031] Avg episode reward: [(0, '22.299')]
|
429 |
+
[2025-04-24 11:21:10,455][01236] Updated weights for policy 0, policy_version 880 (0.0016)
|
430 |
+
[2025-04-24 11:21:15,036][00031] Fps is (10 sec: 9420.8, 60 sec: 9693.9, 300 sec: 9622.1). Total num frames: 3641344. Throughput: 0: 2421.4. Samples: 905476. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
431 |
+
[2025-04-24 11:21:15,037][00031] Avg episode reward: [(0, '23.000')]
|
432 |
+
[2025-04-24 11:21:15,210][01236] Updated weights for policy 0, policy_version 890 (0.0015)
|
433 |
+
[2025-04-24 11:21:19,296][01236] Updated weights for policy 0, policy_version 900 (0.0014)
|
434 |
+
[2025-04-24 11:21:20,036][00031] Fps is (10 sec: 9011.2, 60 sec: 9693.9, 300 sec: 9622.1). Total num frames: 3690496. Throughput: 0: 2410.6. Samples: 919834. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
435 |
+
[2025-04-24 11:21:20,037][00031] Avg episode reward: [(0, '25.459')]
|
436 |
+
[2025-04-24 11:21:20,047][01223] Saving new best policy, reward=25.459!
|
437 |
+
[2025-04-24 11:21:23,458][01236] Updated weights for policy 0, policy_version 910 (0.0014)
|
438 |
+
[2025-04-24 11:21:25,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9694.0, 300 sec: 9622.1). Total num frames: 3739648. Throughput: 0: 2420.4. Samples: 934542. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
439 |
+
[2025-04-24 11:21:25,037][00031] Avg episode reward: [(0, '26.397')]
|
440 |
+
[2025-04-24 11:21:25,040][01223] Saving new best policy, reward=26.397!
|
441 |
+
[2025-04-24 11:21:27,600][01236] Updated weights for policy 0, policy_version 920 (0.0013)
|
442 |
+
[2025-04-24 11:21:30,036][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9636.0). Total num frames: 3788800. Throughput: 0: 2446.1. Samples: 942026. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
443 |
+
[2025-04-24 11:21:30,037][00031] Avg episode reward: [(0, '24.623')]
|
444 |
+
[2025-04-24 11:21:31,732][01236] Updated weights for policy 0, policy_version 930 (0.0014)
|
445 |
+
[2025-04-24 11:21:35,036][00031] Fps is (10 sec: 9830.3, 60 sec: 9693.9, 300 sec: 9636.0). Total num frames: 3837952. Throughput: 0: 2440.1. Samples: 956784. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
446 |
+
[2025-04-24 11:21:35,039][00031] Avg episode reward: [(0, '24.444')]
|
447 |
+
[2025-04-24 11:21:35,974][01236] Updated weights for policy 0, policy_version 940 (0.0014)
|
448 |
+
[2025-04-24 11:21:39,933][01236] Updated weights for policy 0, policy_version 950 (0.0014)
|
449 |
+
[2025-04-24 11:21:40,036][00031] Fps is (10 sec: 10240.1, 60 sec: 9830.5, 300 sec: 9649.9). Total num frames: 3891200. Throughput: 0: 2447.3. Samples: 971922. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
450 |
+
[2025-04-24 11:21:40,037][00031] Avg episode reward: [(0, '23.657')]
|
451 |
+
[2025-04-24 11:21:44,159][01236] Updated weights for policy 0, policy_version 960 (0.0018)
|
452 |
+
[2025-04-24 11:21:45,036][00031] Fps is (10 sec: 9830.5, 60 sec: 9762.1, 300 sec: 9636.0). Total num frames: 3936256. Throughput: 0: 2444.3. Samples: 979288. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
453 |
+
[2025-04-24 11:21:45,038][00031] Avg episode reward: [(0, '22.433')]
|
454 |
+
[2025-04-24 11:21:48,790][01236] Updated weights for policy 0, policy_version 970 (0.0014)
|
455 |
+
[2025-04-24 11:21:50,036][00031] Fps is (10 sec: 9010.6, 60 sec: 9693.8, 300 sec: 9636.0). Total num frames: 3981312. Throughput: 0: 2417.5. Samples: 992756. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
456 |
+
[2025-04-24 11:21:50,039][00031] Avg episode reward: [(0, '22.986')]
|
457 |
+
[2025-04-24 11:21:52,139][01223] Stopping Batcher_0...
|
458 |
+
[2025-04-24 11:21:52,140][01223] Loop batcher_evt_loop terminating...
|
459 |
+
[2025-04-24 11:21:52,139][00031] Component Batcher_0 stopped!
|
460 |
+
[2025-04-24 11:21:52,141][01223] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
461 |
+
[2025-04-24 11:21:52,142][00031] Component RolloutWorker_w1 process died already! Don't wait for it.
|
462 |
+
[2025-04-24 11:21:52,173][01236] Weights refcount: 2 0
|
463 |
+
[2025-04-24 11:21:52,176][01236] Stopping InferenceWorker_p0-w0...
|
464 |
+
[2025-04-24 11:21:52,176][01236] Loop inference_proc0-0_evt_loop terminating...
|
465 |
+
[2025-04-24 11:21:52,175][00031] Component InferenceWorker_p0-w0 stopped!
|
466 |
+
[2025-04-24 11:21:52,226][01223] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000500_2048000.pth
|
467 |
+
[2025-04-24 11:21:52,230][01244] Stopping RolloutWorker_w7...
|
468 |
+
[2025-04-24 11:21:52,231][01244] Loop rollout_proc7_evt_loop terminating...
|
469 |
+
[2025-04-24 11:21:52,231][00031] Component RolloutWorker_w7 stopped!
|
470 |
+
[2025-04-24 11:21:52,237][01223] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
471 |
+
[2025-04-24 11:21:52,240][01241] Stopping RolloutWorker_w4...
|
472 |
+
[2025-04-24 11:21:52,240][01240] Stopping RolloutWorker_w3...
|
473 |
+
[2025-04-24 11:21:52,240][00031] Component RolloutWorker_w4 stopped!
|
474 |
+
[2025-04-24 11:21:52,241][01240] Loop rollout_proc3_evt_loop terminating...
|
475 |
+
[2025-04-24 11:21:52,242][00031] Component RolloutWorker_w3 stopped!
|
476 |
+
[2025-04-24 11:21:52,245][01241] Loop rollout_proc4_evt_loop terminating...
|
477 |
+
[2025-04-24 11:21:52,248][01237] Stopping RolloutWorker_w0...
|
478 |
+
[2025-04-24 11:21:52,248][01237] Loop rollout_proc0_evt_loop terminating...
|
479 |
+
[2025-04-24 11:21:52,249][00031] Component RolloutWorker_w0 stopped!
|
480 |
+
[2025-04-24 11:21:52,347][01242] Stopping RolloutWorker_w5...
|
481 |
+
[2025-04-24 11:21:52,347][00031] Component RolloutWorker_w5 stopped!
|
482 |
+
[2025-04-24 11:21:52,350][01242] Loop rollout_proc5_evt_loop terminating...
|
483 |
+
[2025-04-24 11:21:52,375][01223] Stopping LearnerWorker_p0...
|
484 |
+
[2025-04-24 11:21:52,375][01223] Loop learner_proc0_evt_loop terminating...
|
485 |
+
[2025-04-24 11:21:52,375][00031] Component LearnerWorker_p0 stopped!
|
486 |
+
[2025-04-24 11:21:52,415][00031] Component RolloutWorker_w2 stopped!
|
487 |
+
[2025-04-24 11:21:52,416][01238] Stopping RolloutWorker_w2...
|
488 |
+
[2025-04-24 11:21:52,417][01238] Loop rollout_proc2_evt_loop terminating...
|
489 |
+
[2025-04-24 11:21:52,430][00031] Component RolloutWorker_w6 stopped!
|
490 |
+
[2025-04-24 11:21:52,431][00031] Waiting for process learner_proc0 to stop...
|
491 |
+
[2025-04-24 11:21:52,432][01243] Stopping RolloutWorker_w6...
|
492 |
+
[2025-04-24 11:21:52,435][01243] Loop rollout_proc6_evt_loop terminating...
|
493 |
+
[2025-04-24 11:21:53,727][00031] Waiting for process inference_proc0-0 to join...
|
494 |
+
[2025-04-24 11:21:53,729][00031] Waiting for process rollout_proc0 to join...
|
495 |
+
[2025-04-24 11:21:54,073][00031] Waiting for process rollout_proc1 to join...
|
496 |
+
[2025-04-24 11:21:54,074][00031] Waiting for process rollout_proc2 to join...
|
497 |
+
[2025-04-24 11:21:54,245][00031] Waiting for process rollout_proc3 to join...
|
498 |
+
[2025-04-24 11:21:54,246][00031] Waiting for process rollout_proc4 to join...
|
499 |
+
[2025-04-24 11:21:54,247][00031] Waiting for process rollout_proc5 to join...
|
500 |
+
[2025-04-24 11:21:54,248][00031] Waiting for process rollout_proc6 to join...
|
501 |
+
[2025-04-24 11:21:54,249][00031] Waiting for process rollout_proc7 to join...
|
502 |
+
[2025-04-24 11:21:54,250][00031] Batcher 0 profile tree view:
|
503 |
+
batching: 21.7457, releasing_batches: 0.0229
|
504 |
+
[2025-04-24 11:21:54,251][00031] InferenceWorker_p0-w0 profile tree view:
|
505 |
+
wait_policy: 0.0023
|
506 |
+
wait_policy_total: 12.9770
|
507 |
+
update_model: 5.9709
|
508 |
+
weight_update: 0.0014
|
509 |
+
one_step: 0.0026
|
510 |
+
handle_policy_step: 384.4620
|
511 |
+
deserialize: 11.1353, stack: 2.4861, obs_to_device_normalize: 95.0258, forward: 186.4066, send_messages: 19.1418
|
512 |
+
prepare_outputs: 54.3857
|
513 |
+
to_cpu: 35.6634
|
514 |
+
[2025-04-24 11:21:54,252][00031] Learner 0 profile tree view:
|
515 |
+
misc: 0.0034, prepare_batch: 11.9075
|
516 |
+
train: 48.2229
|
517 |
+
epoch_init: 0.0046, minibatch_init: 0.0058, losses_postprocess: 0.5200, kl_divergence: 0.5248, after_optimizer: 21.2001
|
518 |
+
calculate_losses: 16.3529
|
519 |
+
losses_init: 0.0034, forward_head: 0.9508, bptt_initial: 11.4578, tail: 0.6834, advantages_returns: 0.1799, losses: 1.5829
|
520 |
+
bptt: 1.3280
|
521 |
+
bptt_forward_core: 1.2728
|
522 |
+
update: 9.2565
|
523 |
+
clip: 0.7626
|
524 |
+
[2025-04-24 11:21:54,253][00031] RolloutWorker_w0 profile tree view:
|
525 |
+
wait_for_trajectories: 0.1670, enqueue_policy_requests: 8.7871, env_step: 305.9285, overhead: 7.1967, complete_rollouts: 1.0693
|
526 |
+
save_policy_outputs: 10.1860
|
527 |
+
split_output_tensors: 3.8644
|
528 |
+
[2025-04-24 11:21:54,254][00031] RolloutWorker_w7 profile tree view:
|
529 |
+
wait_for_trajectories: 0.1746, enqueue_policy_requests: 8.6829, env_step: 294.7375, overhead: 7.6320, complete_rollouts: 1.2495
|
530 |
+
save_policy_outputs: 10.3105
|
531 |
+
split_output_tensors: 3.9377
|
532 |
+
[2025-04-24 11:21:54,255][00031] Loop Runner_EvtLoop terminating...
|
533 |
+
[2025-04-24 11:21:54,256][00031] Runner profile tree view:
|
534 |
+
main_loop: 439.3208
|
535 |
+
[2025-04-24 11:21:54,256][00031] Collected {0: 4005888}, FPS: 9118.4
|
536 |
+
[2025-04-24 11:22:09,622][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
537 |
+
[2025-04-24 11:22:09,623][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
538 |
+
[2025-04-24 11:22:09,624][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
539 |
+
[2025-04-24 11:22:09,624][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
540 |
+
[2025-04-24 11:22:09,625][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
541 |
+
[2025-04-24 11:22:09,627][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
542 |
+
[2025-04-24 11:22:09,627][00031] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
543 |
+
[2025-04-24 11:22:09,628][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
544 |
+
[2025-04-24 11:22:09,629][00031] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
545 |
+
[2025-04-24 11:22:09,630][00031] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
546 |
+
[2025-04-24 11:22:09,630][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
547 |
+
[2025-04-24 11:22:09,631][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
548 |
+
[2025-04-24 11:22:09,631][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
549 |
+
[2025-04-24 11:22:09,632][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
550 |
+
[2025-04-24 11:22:09,633][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
551 |
+
[2025-04-24 11:22:09,660][00031] Doom resolution: 160x120, resize resolution: (128, 72)
|
552 |
+
[2025-04-24 11:22:09,663][00031] RunningMeanStd input shape: (3, 72, 128)
|
553 |
+
[2025-04-24 11:22:09,664][00031] RunningMeanStd input shape: (1,)
|
554 |
+
[2025-04-24 11:22:09,678][00031] ConvEncoder: input_channels=3
|
555 |
+
[2025-04-24 11:22:09,783][00031] Conv encoder output size: 512
|
556 |
+
[2025-04-24 11:22:09,783][00031] Policy head output size: 512
|
557 |
+
[2025-04-24 11:22:09,992][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
558 |
+
[2025-04-24 11:22:10,775][00031] Num frames 100...
|
559 |
+
[2025-04-24 11:22:10,887][00031] Num frames 200...
|
560 |
+
[2025-04-24 11:22:10,997][00031] Num frames 300...
|
561 |
+
[2025-04-24 11:22:11,107][00031] Num frames 400...
|
562 |
+
[2025-04-24 11:22:11,224][00031] Num frames 500...
|
563 |
+
[2025-04-24 11:22:11,369][00031] Avg episode rewards: #0: 10.760, true rewards: #0: 5.760
|
564 |
+
[2025-04-24 11:22:11,370][00031] Avg episode reward: 10.760, avg true_objective: 5.760
|
565 |
+
[2025-04-24 11:22:11,408][00031] Num frames 600...
|
566 |
+
[2025-04-24 11:22:11,526][00031] Num frames 700...
|
567 |
+
[2025-04-24 11:22:11,659][00031] Num frames 800...
|
568 |
+
[2025-04-24 11:22:11,771][00031] Num frames 900...
|
569 |
+
[2025-04-24 11:22:11,884][00031] Num frames 1000...
|
570 |
+
[2025-04-24 11:22:11,998][00031] Num frames 1100...
|
571 |
+
[2025-04-24 11:22:12,114][00031] Num frames 1200...
|
572 |
+
[2025-04-24 11:22:12,228][00031] Num frames 1300...
|
573 |
+
[2025-04-24 11:22:12,338][00031] Num frames 1400...
|
574 |
+
[2025-04-24 11:22:12,449][00031] Num frames 1500...
|
575 |
+
[2025-04-24 11:22:12,560][00031] Num frames 1600...
|
576 |
+
[2025-04-24 11:22:12,673][00031] Num frames 1700...
|
577 |
+
[2025-04-24 11:22:12,785][00031] Num frames 1800...
|
578 |
+
[2025-04-24 11:22:12,898][00031] Num frames 1900...
|
579 |
+
[2025-04-24 11:22:13,012][00031] Num frames 2000...
|
580 |
+
[2025-04-24 11:22:13,126][00031] Num frames 2100...
|
581 |
+
[2025-04-24 11:22:13,240][00031] Num frames 2200...
|
582 |
+
[2025-04-24 11:22:13,353][00031] Num frames 2300...
|
583 |
+
[2025-04-24 11:22:13,469][00031] Num frames 2400...
|
584 |
+
[2025-04-24 11:22:13,581][00031] Num frames 2500...
|
585 |
+
[2025-04-24 11:22:13,696][00031] Num frames 2600...
|
586 |
+
[2025-04-24 11:22:13,835][00031] Avg episode rewards: #0: 37.879, true rewards: #0: 13.380
|
587 |
+
[2025-04-24 11:22:13,836][00031] Avg episode reward: 37.879, avg true_objective: 13.380
|
588 |
+
[2025-04-24 11:22:13,865][00031] Num frames 2700...
|
589 |
+
[2025-04-24 11:22:13,983][00031] Num frames 2800...
|
590 |
+
[2025-04-24 11:22:14,100][00031] Num frames 2900...
|
591 |
+
[2025-04-24 11:22:14,217][00031] Num frames 3000...
|
592 |
+
[2025-04-24 11:22:14,336][00031] Num frames 3100...
|
593 |
+
[2025-04-24 11:22:14,443][00031] Num frames 3200...
|
594 |
+
[2025-04-24 11:22:14,553][00031] Num frames 3300...
|
595 |
+
[2025-04-24 11:22:14,670][00031] Num frames 3400...
|
596 |
+
[2025-04-24 11:22:14,791][00031] Num frames 3500...
|
597 |
+
[2025-04-24 11:22:14,911][00031] Num frames 3600...
|
598 |
+
[2025-04-24 11:22:15,029][00031] Num frames 3700...
|
599 |
+
[2025-04-24 11:22:15,149][00031] Num frames 3800...
|
600 |
+
[2025-04-24 11:22:15,269][00031] Num frames 3900...
|
601 |
+
[2025-04-24 11:22:15,389][00031] Num frames 4000...
|
602 |
+
[2025-04-24 11:22:15,508][00031] Num frames 4100...
|
603 |
+
[2025-04-24 11:22:15,656][00031] Avg episode rewards: #0: 34.933, true rewards: #0: 13.933
|
604 |
+
[2025-04-24 11:22:15,657][00031] Avg episode reward: 34.933, avg true_objective: 13.933
|
605 |
+
[2025-04-24 11:22:15,680][00031] Num frames 4200...
|
606 |
+
[2025-04-24 11:22:15,789][00031] Num frames 4300...
|
607 |
+
[2025-04-24 11:22:15,898][00031] Num frames 4400...
|
608 |
+
[2025-04-24 11:22:16,009][00031] Num frames 4500...
|
609 |
+
[2025-04-24 11:22:16,123][00031] Num frames 4600...
|
610 |
+
[2025-04-24 11:22:16,244][00031] Num frames 4700...
|
611 |
+
[2025-04-24 11:22:16,361][00031] Num frames 4800...
|
612 |
+
[2025-04-24 11:22:16,479][00031] Num frames 4900...
|
613 |
+
[2025-04-24 11:22:16,626][00031] Avg episode rewards: #0: 30.200, true rewards: #0: 12.450
|
614 |
+
[2025-04-24 11:22:16,626][00031] Avg episode reward: 30.200, avg true_objective: 12.450
|
615 |
+
[2025-04-24 11:22:16,651][00031] Num frames 5000...
|
616 |
+
[2025-04-24 11:22:16,780][00031] Num frames 5100...
|
617 |
+
[2025-04-24 11:22:16,907][00031] Num frames 5200...
|
618 |
+
[2025-04-24 11:22:17,032][00031] Num frames 5300...
|
619 |
+
[2025-04-24 11:22:17,156][00031] Num frames 5400...
|
620 |
+
[2025-04-24 11:22:17,287][00031] Num frames 5500...
|
621 |
+
[2025-04-24 11:22:17,409][00031] Num frames 5600...
|
622 |
+
[2025-04-24 11:22:17,529][00031] Num frames 5700...
|
623 |
+
[2025-04-24 11:22:17,649][00031] Num frames 5800...
|
624 |
+
[2025-04-24 11:22:17,769][00031] Num frames 5900...
|
625 |
+
[2025-04-24 11:22:17,892][00031] Num frames 6000...
|
626 |
+
[2025-04-24 11:22:18,011][00031] Num frames 6100...
|
627 |
+
[2025-04-24 11:22:18,125][00031] Num frames 6200...
|
628 |
+
[2025-04-24 11:22:18,242][00031] Num frames 6300...
|
629 |
+
[2025-04-24 11:22:18,363][00031] Avg episode rewards: #0: 30.112, true rewards: #0: 12.712
|
630 |
+
[2025-04-24 11:22:18,364][00031] Avg episode reward: 30.112, avg true_objective: 12.712
|
631 |
+
[2025-04-24 11:22:18,417][00031] Num frames 6400...
|
632 |
+
[2025-04-24 11:22:18,525][00031] Num frames 6500...
|
633 |
+
[2025-04-24 11:22:18,638][00031] Num frames 6600...
|
634 |
+
[2025-04-24 11:22:18,755][00031] Num frames 6700...
|
635 |
+
[2025-04-24 11:22:18,872][00031] Num frames 6800...
|
636 |
+
[2025-04-24 11:22:18,990][00031] Num frames 6900...
|
637 |
+
[2025-04-24 11:22:19,101][00031] Num frames 7000...
|
638 |
+
[2025-04-24 11:22:19,217][00031] Num frames 7100...
|
639 |
+
[2025-04-24 11:22:19,332][00031] Num frames 7200...
|
640 |
+
[2025-04-24 11:22:19,442][00031] Num frames 7300...
|
641 |
+
[2025-04-24 11:22:19,552][00031] Num frames 7400...
|
642 |
+
[2025-04-24 11:22:19,678][00031] Num frames 7500...
|
643 |
+
[2025-04-24 11:22:19,790][00031] Num frames 7600...
|
644 |
+
[2025-04-24 11:22:19,899][00031] Num frames 7700...
|
645 |
+
[2025-04-24 11:22:20,017][00031] Num frames 7800...
|
646 |
+
[2025-04-24 11:22:20,135][00031] Num frames 7900...
|
647 |
+
[2025-04-24 11:22:20,216][00031] Avg episode rewards: #0: 31.707, true rewards: #0: 13.207
|
648 |
+
[2025-04-24 11:22:20,217][00031] Avg episode reward: 31.707, avg true_objective: 13.207
|
649 |
+
[2025-04-24 11:22:20,302][00031] Num frames 8000...
|
650 |
+
[2025-04-24 11:22:20,410][00031] Num frames 8100...
|
651 |
+
[2025-04-24 11:22:20,525][00031] Num frames 8200...
|
652 |
+
[2025-04-24 11:22:20,644][00031] Num frames 8300...
|
653 |
+
[2025-04-24 11:22:20,761][00031] Num frames 8400...
|
654 |
+
[2025-04-24 11:22:20,883][00031] Num frames 8500...
|
655 |
+
[2025-04-24 11:22:21,003][00031] Num frames 8600...
|
656 |
+
[2025-04-24 11:22:21,124][00031] Num frames 8700...
|
657 |
+
[2025-04-24 11:22:21,243][00031] Num frames 8800...
|
658 |
+
[2025-04-24 11:22:21,363][00031] Num frames 8900...
|
659 |
+
[2025-04-24 11:22:21,428][00031] Avg episode rewards: #0: 30.868, true rewards: #0: 12.726
|
660 |
+
[2025-04-24 11:22:21,429][00031] Avg episode reward: 30.868, avg true_objective: 12.726
|
661 |
+
[2025-04-24 11:22:21,542][00031] Num frames 9000...
|
662 |
+
[2025-04-24 11:22:21,675][00031] Num frames 9100...
|
663 |
+
[2025-04-24 11:22:21,785][00031] Num frames 9200...
|
664 |
+
[2025-04-24 11:22:21,894][00031] Num frames 9300...
|
665 |
+
[2025-04-24 11:22:22,004][00031] Num frames 9400...
|
666 |
+
[2025-04-24 11:22:22,114][00031] Num frames 9500...
|
667 |
+
[2025-04-24 11:22:22,223][00031] Num frames 9600...
|
668 |
+
[2025-04-24 11:22:22,333][00031] Num frames 9700...
|
669 |
+
[2025-04-24 11:22:22,450][00031] Num frames 9800...
|
670 |
+
[2025-04-24 11:22:22,542][00031] Avg episode rewards: #0: 29.665, true rewards: #0: 12.290
|
671 |
+
[2025-04-24 11:22:22,543][00031] Avg episode reward: 29.665, avg true_objective: 12.290
|
672 |
+
[2025-04-24 11:22:22,620][00031] Num frames 9900...
|
673 |
+
[2025-04-24 11:22:22,729][00031] Num frames 10000...
|
674 |
+
[2025-04-24 11:22:22,841][00031] Num frames 10100...
|
675 |
+
[2025-04-24 11:22:22,955][00031] Num frames 10200...
|
676 |
+
[2025-04-24 11:22:23,074][00031] Num frames 10300...
|
677 |
+
[2025-04-24 11:22:23,192][00031] Num frames 10400...
|
678 |
+
[2025-04-24 11:22:23,310][00031] Num frames 10500...
|
679 |
+
[2025-04-24 11:22:23,427][00031] Num frames 10600...
|
680 |
+
[2025-04-24 11:22:23,539][00031] Num frames 10700...
|
681 |
+
[2025-04-24 11:22:23,656][00031] Num frames 10800...
|
682 |
+
[2025-04-24 11:22:23,768][00031] Num frames 10900...
|
683 |
+
[2025-04-24 11:22:23,883][00031] Num frames 11000...
|
684 |
+
[2025-04-24 11:22:23,997][00031] Num frames 11100...
|
685 |
+
[2025-04-24 11:22:24,111][00031] Num frames 11200...
|
686 |
+
[2025-04-24 11:22:24,225][00031] Num frames 11300...
|
687 |
+
[2025-04-24 11:22:24,345][00031] Num frames 11400...
|
688 |
+
[2025-04-24 11:22:24,465][00031] Num frames 11500...
|
689 |
+
[2025-04-24 11:22:24,582][00031] Num frames 11600...
|
690 |
+
[2025-04-24 11:22:24,695][00031] Num frames 11700...
|
691 |
+
[2025-04-24 11:22:24,806][00031] Num frames 11800...
|
692 |
+
[2025-04-24 11:22:24,916][00031] Num frames 11900...
|
693 |
+
[2025-04-24 11:22:25,005][00031] Avg episode rewards: #0: 32.702, true rewards: #0: 13.258
|
694 |
+
[2025-04-24 11:22:25,006][00031] Avg episode reward: 32.702, avg true_objective: 13.258
|
695 |
+
[2025-04-24 11:22:25,080][00031] Num frames 12000...
|
696 |
+
[2025-04-24 11:22:25,198][00031] Num frames 12100...
|
697 |
+
[2025-04-24 11:22:25,316][00031] Num frames 12200...
|
698 |
+
[2025-04-24 11:22:25,433][00031] Num frames 12300...
|
699 |
+
[2025-04-24 11:22:25,551][00031] Num frames 12400...
|
700 |
+
[2025-04-24 11:22:25,671][00031] Num frames 12500...
|
701 |
+
[2025-04-24 11:22:25,837][00031] Avg episode rewards: #0: 30.992, true rewards: #0: 12.592
|
702 |
+
[2025-04-24 11:22:25,838][00031] Avg episode reward: 30.992, avg true_objective: 12.592
|
703 |
+
[2025-04-24 11:23:04,829][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
704 |
+
[2025-04-24 11:25:18,101][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
705 |
+
[2025-04-24 11:25:18,102][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
706 |
+
[2025-04-24 11:25:18,103][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
707 |
+
[2025-04-24 11:25:18,104][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
708 |
+
[2025-04-24 11:25:18,105][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
709 |
+
[2025-04-24 11:25:18,105][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
710 |
+
[2025-04-24 11:25:18,106][00031] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
711 |
+
[2025-04-24 11:25:18,107][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
712 |
+
[2025-04-24 11:25:18,107][00031] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
713 |
+
[2025-04-24 11:25:18,108][00031] Adding new argument 'hf_repository'='ezrab/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
714 |
+
[2025-04-24 11:25:18,108][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
715 |
+
[2025-04-24 11:25:18,109][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
716 |
+
[2025-04-24 11:25:18,111][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
717 |
+
[2025-04-24 11:25:18,112][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
718 |
+
[2025-04-24 11:25:18,113][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
719 |
+
[2025-04-24 11:25:18,143][00031] RunningMeanStd input shape: (3, 72, 128)
|
720 |
+
[2025-04-24 11:25:18,144][00031] RunningMeanStd input shape: (1,)
|
721 |
+
[2025-04-24 11:25:18,154][00031] ConvEncoder: input_channels=3
|
722 |
+
[2025-04-24 11:25:18,190][00031] Conv encoder output size: 512
|
723 |
+
[2025-04-24 11:25:18,191][00031] Policy head output size: 512
|
724 |
+
[2025-04-24 11:25:18,209][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
725 |
+
[2025-04-24 11:25:18,654][00031] Num frames 100...
|
726 |
+
[2025-04-24 11:25:18,765][00031] Num frames 200...
|
727 |
+
[2025-04-24 11:25:18,874][00031] Num frames 300...
|
728 |
+
[2025-04-24 11:25:18,984][00031] Num frames 400...
|
729 |
+
[2025-04-24 11:25:19,094][00031] Num frames 500...
|
730 |
+
[2025-04-24 11:25:19,205][00031] Avg episode rewards: #0: 12.510, true rewards: #0: 5.510
|
731 |
+
[2025-04-24 11:25:19,206][00031] Avg episode reward: 12.510, avg true_objective: 5.510
|
732 |
+
[2025-04-24 11:25:19,259][00031] Num frames 600...
|
733 |
+
[2025-04-24 11:25:19,368][00031] Num frames 700...
|
734 |
+
[2025-04-24 11:25:19,477][00031] Num frames 800...
|
735 |
+
[2025-04-24 11:25:19,586][00031] Num frames 900...
|
736 |
+
[2025-04-24 11:25:19,701][00031] Num frames 1000...
|
737 |
+
[2025-04-24 11:25:19,815][00031] Num frames 1100...
|
738 |
+
[2025-04-24 11:25:19,924][00031] Num frames 1200...
|
739 |
+
[2025-04-24 11:25:20,054][00031] Avg episode rewards: #0: 12.330, true rewards: #0: 6.330
|
740 |
+
[2025-04-24 11:25:20,055][00031] Avg episode reward: 12.330, avg true_objective: 6.330
|
741 |
+
[2025-04-24 11:25:20,097][00031] Num frames 1300...
|
742 |
+
[2025-04-24 11:25:20,205][00031] Num frames 1400...
|
743 |
+
[2025-04-24 11:25:20,321][00031] Num frames 1500...
|
744 |
+
[2025-04-24 11:25:20,438][00031] Num frames 1600...
|
745 |
+
[2025-04-24 11:25:20,556][00031] Num frames 1700...
|
746 |
+
[2025-04-24 11:25:20,673][00031] Num frames 1800...
|
747 |
+
[2025-04-24 11:25:20,790][00031] Num frames 1900...
|
748 |
+
[2025-04-24 11:25:20,909][00031] Num frames 2000...
|
749 |
+
[2025-04-24 11:25:21,028][00031] Num frames 2100...
|
750 |
+
[2025-04-24 11:25:21,139][00031] Num frames 2200...
|
751 |
+
[2025-04-24 11:25:21,250][00031] Num frames 2300...
|
752 |
+
[2025-04-24 11:25:21,362][00031] Num frames 2400...
|
753 |
+
[2025-04-24 11:25:21,520][00031] Avg episode rewards: #0: 16.940, true rewards: #0: 8.273
|
754 |
+
[2025-04-24 11:25:21,521][00031] Avg episode reward: 16.940, avg true_objective: 8.273
|
755 |
+
[2025-04-24 11:25:21,547][00031] Num frames 2500...
|
756 |
+
[2025-04-24 11:25:21,668][00031] Num frames 2600...
|
757 |
+
[2025-04-24 11:25:21,775][00031] Num frames 2700...
|
758 |
+
[2025-04-24 11:25:21,883][00031] Num frames 2800...
|
759 |
+
[2025-04-24 11:25:21,993][00031] Num frames 2900...
|
760 |
+
[2025-04-24 11:25:22,109][00031] Num frames 3000...
|
761 |
+
[2025-04-24 11:25:22,225][00031] Num frames 3100...
|
762 |
+
[2025-04-24 11:25:22,341][00031] Num frames 3200...
|
763 |
+
[2025-04-24 11:25:22,461][00031] Num frames 3300...
|
764 |
+
[2025-04-24 11:25:22,574][00031] Num frames 3400...
|
765 |
+
[2025-04-24 11:25:22,686][00031] Num frames 3500...
|
766 |
+
[2025-04-24 11:25:22,798][00031] Num frames 3600...
|
767 |
+
[2025-04-24 11:25:22,906][00031] Num frames 3700...
|
768 |
+
[2025-04-24 11:25:23,015][00031] Num frames 3800...
|
769 |
+
[2025-04-24 11:25:23,133][00031] Num frames 3900...
|
770 |
+
[2025-04-24 11:25:23,246][00031] Num frames 4000...
|
771 |
+
[2025-04-24 11:25:23,357][00031] Num frames 4100...
|
772 |
+
[2025-04-24 11:25:23,470][00031] Num frames 4200...
|
773 |
+
[2025-04-24 11:25:23,586][00031] Num frames 4300...
|
774 |
+
[2025-04-24 11:25:23,708][00031] Num frames 4400...
|
775 |
+
[2025-04-24 11:25:23,828][00031] Num frames 4500...
|
776 |
+
[2025-04-24 11:25:23,979][00031] Avg episode rewards: #0: 25.955, true rewards: #0: 11.455
|
777 |
+
[2025-04-24 11:25:23,979][00031] Avg episode reward: 25.955, avg true_objective: 11.455
|
778 |
+
[2025-04-24 11:25:24,000][00031] Num frames 4600...
|
779 |
+
[2025-04-24 11:25:24,112][00031] Num frames 4700...
|
780 |
+
[2025-04-24 11:25:24,222][00031] Num frames 4800...
|
781 |
+
[2025-04-24 11:25:24,336][00031] Num frames 4900...
|
782 |
+
[2025-04-24 11:25:24,454][00031] Num frames 5000...
|
783 |
+
[2025-04-24 11:25:24,571][00031] Num frames 5100...
|
784 |
+
[2025-04-24 11:25:24,678][00031] Num frames 5200...
|
785 |
+
[2025-04-24 11:25:24,826][00031] Avg episode rewards: #0: 23.372, true rewards: #0: 10.572
|
786 |
+
[2025-04-24 11:25:24,827][00031] Avg episode reward: 23.372, avg true_objective: 10.572
|
787 |
+
[2025-04-24 11:25:24,843][00031] Num frames 5300...
|
788 |
+
[2025-04-24 11:25:24,951][00031] Num frames 5400...
|
789 |
+
[2025-04-24 11:25:25,059][00031] Num frames 5500...
|
790 |
+
[2025-04-24 11:25:25,168][00031] Num frames 5600...
|
791 |
+
[2025-04-24 11:25:25,278][00031] Num frames 5700...
|
792 |
+
[2025-04-24 11:25:25,390][00031] Num frames 5800...
|
793 |
+
[2025-04-24 11:25:25,479][00031] Avg episode rewards: #0: 21.217, true rewards: #0: 9.717
|
794 |
+
[2025-04-24 11:25:25,479][00031] Avg episode reward: 21.217, avg true_objective: 9.717
|
795 |
+
[2025-04-24 11:25:25,561][00031] Num frames 5900...
|
796 |
+
[2025-04-24 11:25:25,668][00031] Num frames 6000...
|
797 |
+
[2025-04-24 11:25:25,775][00031] Num frames 6100...
|
798 |
+
[2025-04-24 11:25:25,881][00031] Num frames 6200...
|
799 |
+
[2025-04-24 11:25:25,990][00031] Num frames 6300...
|
800 |
+
[2025-04-24 11:25:26,100][00031] Num frames 6400...
|
801 |
+
[2025-04-24 11:25:26,210][00031] Num frames 6500...
|
802 |
+
[2025-04-24 11:25:26,319][00031] Num frames 6600...
|
803 |
+
[2025-04-24 11:25:26,427][00031] Num frames 6700...
|
804 |
+
[2025-04-24 11:25:26,536][00031] Num frames 6800...
|
805 |
+
[2025-04-24 11:25:26,684][00031] Avg episode rewards: #0: 21.980, true rewards: #0: 9.837
|
806 |
+
[2025-04-24 11:25:26,685][00031] Avg episode reward: 21.980, avg true_objective: 9.837
|
807 |
+
[2025-04-24 11:25:26,700][00031] Num frames 6900...
|
808 |
+
[2025-04-24 11:25:26,810][00031] Num frames 7000...
|
809 |
+
[2025-04-24 11:25:26,918][00031] Num frames 7100...
|
810 |
+
[2025-04-24 11:25:27,037][00031] Num frames 7200...
|
811 |
+
[2025-04-24 11:25:27,179][00031] Num frames 7300...
|
812 |
+
[2025-04-24 11:25:27,307][00031] Num frames 7400...
|
813 |
+
[2025-04-24 11:25:27,431][00031] Num frames 7500...
|
814 |
+
[2025-04-24 11:25:27,563][00031] Avg episode rewards: #0: 20.822, true rewards: #0: 9.447
|
815 |
+
[2025-04-24 11:25:27,564][00031] Avg episode reward: 20.822, avg true_objective: 9.447
|
816 |
+
[2025-04-24 11:25:27,615][00031] Num frames 7600...
|
817 |
+
[2025-04-24 11:25:27,736][00031] Num frames 7700...
|
818 |
+
[2025-04-24 11:25:27,852][00031] Num frames 7800...
|
819 |
+
[2025-04-24 11:25:27,972][00031] Num frames 7900...
|
820 |
+
[2025-04-24 11:25:28,085][00031] Num frames 8000...
|
821 |
+
[2025-04-24 11:25:28,198][00031] Num frames 8100...
|
822 |
+
[2025-04-24 11:25:28,315][00031] Num frames 8200...
|
823 |
+
[2025-04-24 11:25:28,437][00031] Num frames 8300...
|
824 |
+
[2025-04-24 11:25:28,597][00031] Avg episode rewards: #0: 20.211, true rewards: #0: 9.322
|
825 |
+
[2025-04-24 11:25:28,598][00031] Avg episode reward: 20.211, avg true_objective: 9.322
|
826 |
+
[2025-04-24 11:25:28,609][00031] Num frames 8400...
|
827 |
+
[2025-04-24 11:25:28,726][00031] Num frames 8500...
|
828 |
+
[2025-04-24 11:25:28,843][00031] Num frames 8600...
|
829 |
+
[2025-04-24 11:25:28,955][00031] Num frames 8700...
|
830 |
+
[2025-04-24 11:25:29,064][00031] Num frames 8800...
|
831 |
+
[2025-04-24 11:25:29,181][00031] Num frames 8900...
|
832 |
+
[2025-04-24 11:25:29,296][00031] Num frames 9000...
|
833 |
+
[2025-04-24 11:25:29,453][00031] Avg episode rewards: #0: 19.994, true rewards: #0: 9.094
|
834 |
+
[2025-04-24 11:25:29,454][00031] Avg episode reward: 19.994, avg true_objective: 9.094
|
835 |
+
[2025-04-24 11:25:57,388][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|