fabiencasenave commited on
Commit
eb85dea
·
verified ·
1 Parent(s): 0f859ab

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +3 -3
  2. pipeline.joblib +2 -2
  3. test.py +2 -2
  4. train.py +7 -8
README.md CHANGED
@@ -14,7 +14,7 @@ The code used to train this model is given in `train.py`.
14
 
15
  ```bash
16
  conda env create -n mmgp_tensile2d -f https://huggingface.co/fabiencasenave/mmgp_tensile2d/resolve/main/environment.yml
17
- conda mmgp_tensile2d
18
  pip install git+https://huggingface.co/fabiencasenave/mmgp_tensile2d
19
  ```
20
 
@@ -28,9 +28,9 @@ import mmgp_tensile2d
28
  model = mmgp_tensile2d.load()
29
 
30
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
31
- ids_test = hf_dataset.description["split"]['test']
32
 
33
- dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 6, verbose = True)
34
 
35
  print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
36
 
 
14
 
15
  ```bash
16
  conda env create -n mmgp_tensile2d -f https://huggingface.co/fabiencasenave/mmgp_tensile2d/resolve/main/environment.yml
17
+ conda activate mmgp_tensile2d
18
  pip install git+https://huggingface.co/fabiencasenave/mmgp_tensile2d
19
  ```
20
 
 
28
  model = mmgp_tensile2d.load()
29
 
30
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
31
+ ids_test = hf_dataset.description["split"]['test'][:5]
32
 
33
+ dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 5, verbose = True)
34
 
35
  print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
36
 
pipeline.joblib CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9950a0b4b472fd87721f54fe271aec7da67cec3afef8045f01e319a6d24cbe3
3
- size 1996169
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39bf5857f390d114fede4a147e156f41c95d860b7870186f2e6cea83bc1ed258
3
+ size 71519577
test.py CHANGED
@@ -5,9 +5,9 @@ import mmgp_tensile2d
5
  model = mmgp_tensile2d.load()
6
 
7
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
8
- ids_test = hf_dataset.description["split"]['test']
9
 
10
- dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 6, verbose = True)
11
 
12
  print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
13
 
 
5
  model = mmgp_tensile2d.load()
6
 
7
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
8
+ ids_test = hf_dataset.description["split"]['test'][:5]
9
 
10
+ dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 5, verbose = True)
11
 
12
  print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
13
 
train.py CHANGED
@@ -30,12 +30,12 @@ from mmgp.pipelines.mmgp_blocks import MMGPPreparer, MMGPTransformer
30
  from mmgp_tensile2d.utils import length_scale_init, morphing
31
 
32
 
33
- n_processes = min(max(1, os.cpu_count()), 8)
34
 
35
 
36
  # load dataset
37
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
38
- ids_train = hf_dataset.description["split"]['train_500'][:8]
39
 
40
  dataset_train, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_train, processes_number = n_processes, verbose = True)
41
 
@@ -58,7 +58,7 @@ input_scalar_scaler = WrappedPlaidSklearnTransformer(MinMaxScaler(), **config['i
58
  nodes_preprocessor = Pipeline(
59
  steps=[
60
  ("mmgp_nodes_transf", MMGPTransformer(**config['mmgp_nodes_transf'])),
61
- ('pca_nodes', WrappedPlaidSklearnTransformer(PCA(n_components=4), **config['pca_nodes'])),
62
  ]
63
  )
64
 
@@ -82,7 +82,7 @@ kernel = Matern(length_scale_bounds=(1e-8, 1e8), nu = 2.5)
82
  gpr = GaussianProcessRegressor(
83
  kernel=kernel,
84
  optimizer='fmin_l_bfgs_b',
85
- n_restarts_optimizer=1,
86
  random_state=42)
87
 
88
  reg = MultiOutputRegressor(gpr)
@@ -95,7 +95,7 @@ regressor = WrappedPlaidSklearnRegressor(reg, **config['regressor_mach'], dynami
95
  postprocessor = Pipeline(
96
  steps=[
97
  ("mmgp_u1_transf", MMGPTransformer(**config['mmgp_u1_transf'])),
98
- ('pca_u1', WrappedPlaidSklearnTransformer(PCA(n_components=4), **config['pca_u1'])),
99
  ]
100
  )
101
 
@@ -103,7 +103,6 @@ postprocessor = Pipeline(
103
  target_regressor = PlaidTransformedTargetRegressor(
104
  regressor=regressor,
105
  transformer=postprocessor,
106
- # out_features_identifiers = config['pca_u1']['in_features_identifiers']
107
  )
108
 
109
  pipeline = Pipeline(
@@ -117,8 +116,8 @@ pipeline = Pipeline(
117
 
118
  # Set hyperameter that have been optimized by cross-valdiation on the training set
119
  optimized_pipeline = clone(pipeline).set_params(
120
- preprocessor__column_preprocessor__nodes_preprocessor__pca_nodes__sklearn_block__n_components = 4,
121
- regressor__transformer__pca_u1__sklearn_block__n_components = 8
122
  )
123
 
124
  # Train the model
 
30
  from mmgp_tensile2d.utils import length_scale_init, morphing
31
 
32
 
33
+ n_processes = min(max(1, os.cpu_count()), 24)
34
 
35
 
36
  # load dataset
37
  hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
38
+ ids_train = hf_dataset.description["split"]['train_500']
39
 
40
  dataset_train, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_train, processes_number = n_processes, verbose = True)
41
 
 
58
  nodes_preprocessor = Pipeline(
59
  steps=[
60
  ("mmgp_nodes_transf", MMGPTransformer(**config['mmgp_nodes_transf'])),
61
+ ('pca_nodes', WrappedPlaidSklearnTransformer(PCA(), **config['pca_nodes'])),
62
  ]
63
  )
64
 
 
82
  gpr = GaussianProcessRegressor(
83
  kernel=kernel,
84
  optimizer='fmin_l_bfgs_b',
85
+ n_restarts_optimizer=2,
86
  random_state=42)
87
 
88
  reg = MultiOutputRegressor(gpr)
 
95
  postprocessor = Pipeline(
96
  steps=[
97
  ("mmgp_u1_transf", MMGPTransformer(**config['mmgp_u1_transf'])),
98
+ ('pca_u1', WrappedPlaidSklearnTransformer(PCA(), **config['pca_u1'])),
99
  ]
100
  )
101
 
 
103
  target_regressor = PlaidTransformedTargetRegressor(
104
  regressor=regressor,
105
  transformer=postprocessor,
 
106
  )
107
 
108
  pipeline = Pipeline(
 
116
 
117
  # Set hyperameter that have been optimized by cross-valdiation on the training set
118
  optimized_pipeline = clone(pipeline).set_params(
119
+ preprocessor__column_preprocessor__nodes_preprocessor__pca_nodes__sklearn_block__n_components = 16,
120
+ regressor__transformer__pca_u1__sklearn_block__n_components = 32
121
  )
122
 
123
  # Train the model