Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ The code used to train this model is given in `train.py`.
|
|
14 |
|
15 |
```bash
|
16 |
conda env create -n mmgp_tensile2d -f https://huggingface.co/fabiencasenave/mmgp_tensile2d/resolve/main/environment.yml
|
17 |
-
conda mmgp_tensile2d
|
18 |
pip install git+https://huggingface.co/fabiencasenave/mmgp_tensile2d
|
19 |
```
|
20 |
|
@@ -28,9 +28,9 @@ import mmgp_tensile2d
|
|
28 |
model = mmgp_tensile2d.load()
|
29 |
|
30 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
31 |
-
ids_test = hf_dataset.description["split"]['test']
|
32 |
|
33 |
-
dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number =
|
34 |
|
35 |
print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
|
36 |
|
|
|
14 |
|
15 |
```bash
|
16 |
conda env create -n mmgp_tensile2d -f https://huggingface.co/fabiencasenave/mmgp_tensile2d/resolve/main/environment.yml
|
17 |
+
conda activate mmgp_tensile2d
|
18 |
pip install git+https://huggingface.co/fabiencasenave/mmgp_tensile2d
|
19 |
```
|
20 |
|
|
|
28 |
model = mmgp_tensile2d.load()
|
29 |
|
30 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
31 |
+
ids_test = hf_dataset.description["split"]['test'][:5]
|
32 |
|
33 |
+
dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 5, verbose = True)
|
34 |
|
35 |
print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
|
36 |
|
pipeline.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39bf5857f390d114fede4a147e156f41c95d860b7870186f2e6cea83bc1ed258
|
3 |
+
size 71519577
|
test.py
CHANGED
@@ -5,9 +5,9 @@ import mmgp_tensile2d
|
|
5 |
model = mmgp_tensile2d.load()
|
6 |
|
7 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
8 |
-
ids_test = hf_dataset.description["split"]['test']
|
9 |
|
10 |
-
dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number =
|
11 |
|
12 |
print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
|
13 |
|
|
|
5 |
model = mmgp_tensile2d.load()
|
6 |
|
7 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
8 |
+
ids_test = hf_dataset.description["split"]['test'][:5]
|
9 |
|
10 |
+
dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 5, verbose = True)
|
11 |
|
12 |
print("Check the 'U1' field is not present: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1'))
|
13 |
|
train.py
CHANGED
@@ -30,12 +30,12 @@ from mmgp.pipelines.mmgp_blocks import MMGPPreparer, MMGPTransformer
|
|
30 |
from mmgp_tensile2d.utils import length_scale_init, morphing
|
31 |
|
32 |
|
33 |
-
n_processes = min(max(1, os.cpu_count()),
|
34 |
|
35 |
|
36 |
# load dataset
|
37 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
38 |
-
ids_train = hf_dataset.description["split"]['train_500']
|
39 |
|
40 |
dataset_train, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_train, processes_number = n_processes, verbose = True)
|
41 |
|
@@ -58,7 +58,7 @@ input_scalar_scaler = WrappedPlaidSklearnTransformer(MinMaxScaler(), **config['i
|
|
58 |
nodes_preprocessor = Pipeline(
|
59 |
steps=[
|
60 |
("mmgp_nodes_transf", MMGPTransformer(**config['mmgp_nodes_transf'])),
|
61 |
-
('pca_nodes', WrappedPlaidSklearnTransformer(PCA(
|
62 |
]
|
63 |
)
|
64 |
|
@@ -82,7 +82,7 @@ kernel = Matern(length_scale_bounds=(1e-8, 1e8), nu = 2.5)
|
|
82 |
gpr = GaussianProcessRegressor(
|
83 |
kernel=kernel,
|
84 |
optimizer='fmin_l_bfgs_b',
|
85 |
-
n_restarts_optimizer=
|
86 |
random_state=42)
|
87 |
|
88 |
reg = MultiOutputRegressor(gpr)
|
@@ -95,7 +95,7 @@ regressor = WrappedPlaidSklearnRegressor(reg, **config['regressor_mach'], dynami
|
|
95 |
postprocessor = Pipeline(
|
96 |
steps=[
|
97 |
("mmgp_u1_transf", MMGPTransformer(**config['mmgp_u1_transf'])),
|
98 |
-
('pca_u1', WrappedPlaidSklearnTransformer(PCA(
|
99 |
]
|
100 |
)
|
101 |
|
@@ -103,7 +103,6 @@ postprocessor = Pipeline(
|
|
103 |
target_regressor = PlaidTransformedTargetRegressor(
|
104 |
regressor=regressor,
|
105 |
transformer=postprocessor,
|
106 |
-
# out_features_identifiers = config['pca_u1']['in_features_identifiers']
|
107 |
)
|
108 |
|
109 |
pipeline = Pipeline(
|
@@ -117,8 +116,8 @@ pipeline = Pipeline(
|
|
117 |
|
118 |
# Set hyperameter that have been optimized by cross-valdiation on the training set
|
119 |
optimized_pipeline = clone(pipeline).set_params(
|
120 |
-
preprocessor__column_preprocessor__nodes_preprocessor__pca_nodes__sklearn_block__n_components =
|
121 |
-
regressor__transformer__pca_u1__sklearn_block__n_components =
|
122 |
)
|
123 |
|
124 |
# Train the model
|
|
|
30 |
from mmgp_tensile2d.utils import length_scale_init, morphing
|
31 |
|
32 |
|
33 |
+
n_processes = min(max(1, os.cpu_count()), 24)
|
34 |
|
35 |
|
36 |
# load dataset
|
37 |
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
|
38 |
+
ids_train = hf_dataset.description["split"]['train_500']
|
39 |
|
40 |
dataset_train, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_train, processes_number = n_processes, verbose = True)
|
41 |
|
|
|
58 |
nodes_preprocessor = Pipeline(
|
59 |
steps=[
|
60 |
("mmgp_nodes_transf", MMGPTransformer(**config['mmgp_nodes_transf'])),
|
61 |
+
('pca_nodes', WrappedPlaidSklearnTransformer(PCA(), **config['pca_nodes'])),
|
62 |
]
|
63 |
)
|
64 |
|
|
|
82 |
gpr = GaussianProcessRegressor(
|
83 |
kernel=kernel,
|
84 |
optimizer='fmin_l_bfgs_b',
|
85 |
+
n_restarts_optimizer=2,
|
86 |
random_state=42)
|
87 |
|
88 |
reg = MultiOutputRegressor(gpr)
|
|
|
95 |
postprocessor = Pipeline(
|
96 |
steps=[
|
97 |
("mmgp_u1_transf", MMGPTransformer(**config['mmgp_u1_transf'])),
|
98 |
+
('pca_u1', WrappedPlaidSklearnTransformer(PCA(), **config['pca_u1'])),
|
99 |
]
|
100 |
)
|
101 |
|
|
|
103 |
target_regressor = PlaidTransformedTargetRegressor(
|
104 |
regressor=regressor,
|
105 |
transformer=postprocessor,
|
|
|
106 |
)
|
107 |
|
108 |
pipeline = Pipeline(
|
|
|
116 |
|
117 |
# Set hyperameter that have been optimized by cross-valdiation on the training set
|
118 |
optimized_pipeline = clone(pipeline).set_params(
|
119 |
+
preprocessor__column_preprocessor__nodes_preprocessor__pca_nodes__sklearn_block__n_components = 16,
|
120 |
+
regressor__transformer__pca_u1__sklearn_block__n_components = 32
|
121 |
)
|
122 |
|
123 |
# Train the model
|