--- license: mit datasets: - PLAID-datasets/Tensile2d language: - en pipeline_tag: graph-ml --- # PCA-GP model for VKILS59 dataset The code used to train this model is given in `train.py`. ## Install ```bash conda env create -n mmgp_tensile2d -f https://huggingface.co/fabiencasenave/mmgp_tensile2d/resolve/main/environment.yml conda activate mmgp_tensile2d pip install git+https://huggingface.co/fabiencasenave/mmgp_tensile2d ``` ## Use ```python from datasets import load_dataset from plaid.bridges.huggingface_bridge import huggingface_dataset_to_plaid import mmgp_tensile2d model = mmgp_tensile2d.load() hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples") ids_test = hf_dataset.description["split"]['test'][:5] dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 5, verbose = True) print("Check that 'U1' field is not present in test dataset: dataset_test[0].get_field('U1') =", dataset_test[0].get_field('U1')) print("Run prediction...") dataset_pred = model.predict(dataset_test) print("Check that 'U1' field is now present in pred dataset: dataset_pred[0].get_field('U1') =", dataset_pred[0].get_field('U1')) ```