--- license: mit datasets: - PLAID-datasets/VKI-LS59 language: - en pipeline_tag: graph-ml --- # PCA-GP model for VKILS59 dataset The code used to train this model is given in `train.py`. ## Install ```bash pip install git+https://huggingface.co/fabiencasenave/pca_gp_vkils59 ``` ## Use ```python from datasets import load_dataset from plaid.bridges.huggingface_bridge import huggingface_dataset_to_plaid import pca_gp_vkils59 model = pca_gp_vkils59.load() hf_dataset = load_dataset("PLAID-datasets/VKI-LS59", split="all_samples") ids_test = hf_dataset.description["split"]['test'] dataset_test, _ = huggingface_dataset_to_plaid(hf_dataset, ids = ids_test, processes_number = 6, verbose = True) print("Check that 'mach' field is not present in test dataset: dataset_test[0].get_field('mach', base_name='Base_2_2') =", dataset_test[0].get_field('mach', base_name='Base_2_2')) print("Run prediction...") dataset_pred = model.predict(dataset_test) print("Check that 'mach' field is now present in pred dataset: dataset_pred[0].get_field('mach', base_name='Base_2_2') =", dataset_pred[0].get_field('mach', base_name='Base_2_2')) ```