YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
MISO-BR Misogyny Classifier
This model classifies text in Brazilian Portuguese as misogynistic or non-misogynistic. It's trained on the MISO-BR dataset.
Model Details
- Model Type: TF-IDF + RandomForest classifier
- Language: Portuguese (Brazil)
- Task: Binary classification (misogynistic vs non-misogynistic content)
- Framework: scikit-learn
Performance
The model was evaluated on a test set and achieved:
- F1 Score (macro): 0.6758
- Accuracy: 0.6778
- AUC: 0.7314
Requirements
This project requires the following libraries:
scikit-learn==1.7.0spacy==3.7.2joblib>=1.3.0pt_core_news_sm(downloadable from here)
Install the dependencies using the requirements.txt file:
pip install -r requirements.txt
Usage
from huggingface_hub import hf_hub_download
import joblib
import spacy
# Download the model from Hugging Face Hub
model_path = hf_hub_download(repo_id="fabiopassos/miso-br-classifier",
filename="models/miso_br_rf_classifier.joblib")
# Load the model
model = joblib.load(model_path)
# Load spaCy for Portuguese
nlp = spacy.load("pt_core_news_sm")
# Preprocess function
def preprocess_text(text):
doc = nlp(text)
tokens = [token.lemma_.lower() for token in doc
if not token.is_stop and not token.is_punct and token.is_alpha]
return " ".join(tokens)
# Example text
text = "Seu texto para classificar aqui"
processed_text = preprocess_text(text)
# Predict
prediction = model.predict([processed_text])[0]
probability = model.predict_proba([processed_text])[0][1]
print(f"Texto: {text}")
print(f"É misógino: {'Sim' if prediction == 1 else 'Não'}")
print(f"Probabilidade: {probability:.4f}")
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support