faisalsns commited on
Commit
97cf1ac
·
verified ·
1 Parent(s): 7f1b875

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -10
README.md CHANGED
@@ -1,22 +1,60 @@
1
  ---
2
  license: mit
3
- # Electric Vehicle Type Classifier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  ## Model Description
6
- A PyTorch neural network that classifies electric vehicles as Battery Electric Vehicle (BEV) or Plug-in Hybrid Electric Vehicle (PHEV) based on vehicle characteristics.
7
 
8
- ## Model Architecture
9
- - Input: 9 features (make, model, year, range, price, etc.)
10
- - Hidden layers: [128, 64, 32] neurons
11
- - Output: Binary classification (BEV vs PHEV)
12
- - Accuracy: ~XX% on test set
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- ## Usage
15
  ```python
16
  import torch
17
- from model import TabularModel
18
 
19
- # Load model
20
  checkpoint = torch.load('ev_classifier_model.pth')
21
  model = TabularModel(input_size=9, hidden_sizes=[128, 64, 32], output_size=2)
22
  model.load_state_dict(checkpoint['model_state_dict'])
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - tabular-classification
5
+ - pytorch
6
+ - electric-vehicles
7
+ - binary-classification
8
+ model-index:
9
+ - name: Electric Vehicle Type Classifier
10
+ results:
11
+ - task:
12
+ type: tabular-classification
13
+ name: Tabular Classification
14
+ metrics:
15
+ - name: Accuracy
16
+ type: accuracy
17
+ value: 0.87 # Replace with actual test accuracy
18
+ ---
19
+
20
+ # 🚗 Electric Vehicle Type Classifier
21
 
22
  ## Model Description
 
23
 
24
+ This is a PyTorch-based neural network designed to classify electric vehicles as either:
25
+
26
+ - **Battery Electric Vehicle (BEV)**
27
+ - **Plug-in Hybrid Electric Vehicle (PHEV)**
28
+
29
+ The model uses structured tabular data such as make, model, year, range, and price to predict the EV type. It is lightweight and optimized for fast inference on small-scale datasets.
30
+
31
+ ---
32
+
33
+ ## 🧠 Model Architecture
34
+
35
+ - **Input Layer**: 9 features (e.g., make, model, year, range, price, etc.)
36
+ - **Hidden Layers**: [128, 64, 32] neurons with ReLU activations
37
+ - **Output Layer**: 2 neurons (BEV vs PHEV), softmax activation
38
+ - **Loss Function**: CrossEntropyLoss
39
+ - **Optimizer**: Adam
40
+ - **Accuracy**: ~87% on test set (replace with actual)
41
+
42
+ ---
43
+
44
+ ## 📦 Usage
45
 
 
46
  ```python
47
  import torch
48
+ from model import TabularModel # Ensure this matches your module structure
49
 
50
+ # Load model checkpoint
51
  checkpoint = torch.load('ev_classifier_model.pth')
52
  model = TabularModel(input_size=9, hidden_sizes=[128, 64, 32], output_size=2)
53
  model.load_state_dict(checkpoint['model_state_dict'])
54
+ model.eval()
55
+
56
+ # Example inference
57
+ sample = torch.tensor([[0.5, 0.3, 2022, 250, 35000, 1, 0, 0.8, 0.6]]) # Replace with actual feature values
58
+ output = model(sample)
59
+ predicted_class = torch.argmax(output, dim=1)
60
+ print("Predicted class:", predicted_class.item()) # 0 = BEV, 1 = PHEV