Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,60 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
## Model Description
|
6 |
-
A PyTorch neural network that classifies electric vehicles as Battery Electric Vehicle (BEV) or Plug-in Hybrid Electric Vehicle (PHEV) based on vehicle characteristics.
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
## Usage
|
15 |
```python
|
16 |
import torch
|
17 |
-
from model import TabularModel
|
18 |
|
19 |
-
# Load model
|
20 |
checkpoint = torch.load('ev_classifier_model.pth')
|
21 |
model = TabularModel(input_size=9, hidden_sizes=[128, 64, 32], output_size=2)
|
22 |
model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- tabular-classification
|
5 |
+
- pytorch
|
6 |
+
- electric-vehicles
|
7 |
+
- binary-classification
|
8 |
+
model-index:
|
9 |
+
- name: Electric Vehicle Type Classifier
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: tabular-classification
|
13 |
+
name: Tabular Classification
|
14 |
+
metrics:
|
15 |
+
- name: Accuracy
|
16 |
+
type: accuracy
|
17 |
+
value: 0.87 # Replace with actual test accuracy
|
18 |
+
---
|
19 |
+
|
20 |
+
# 🚗 Electric Vehicle Type Classifier
|
21 |
|
22 |
## Model Description
|
|
|
23 |
|
24 |
+
This is a PyTorch-based neural network designed to classify electric vehicles as either:
|
25 |
+
|
26 |
+
- **Battery Electric Vehicle (BEV)**
|
27 |
+
- **Plug-in Hybrid Electric Vehicle (PHEV)**
|
28 |
+
|
29 |
+
The model uses structured tabular data such as make, model, year, range, and price to predict the EV type. It is lightweight and optimized for fast inference on small-scale datasets.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## 🧠 Model Architecture
|
34 |
+
|
35 |
+
- **Input Layer**: 9 features (e.g., make, model, year, range, price, etc.)
|
36 |
+
- **Hidden Layers**: [128, 64, 32] neurons with ReLU activations
|
37 |
+
- **Output Layer**: 2 neurons (BEV vs PHEV), softmax activation
|
38 |
+
- **Loss Function**: CrossEntropyLoss
|
39 |
+
- **Optimizer**: Adam
|
40 |
+
- **Accuracy**: ~87% on test set (replace with actual)
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## 📦 Usage
|
45 |
|
|
|
46 |
```python
|
47 |
import torch
|
48 |
+
from model import TabularModel # Ensure this matches your module structure
|
49 |
|
50 |
+
# Load model checkpoint
|
51 |
checkpoint = torch.load('ev_classifier_model.pth')
|
52 |
model = TabularModel(input_size=9, hidden_sizes=[128, 64, 32], output_size=2)
|
53 |
model.load_state_dict(checkpoint['model_state_dict'])
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
# Example inference
|
57 |
+
sample = torch.tensor([[0.5, 0.3, 2022, 250, 35000, 1, 0, 0.8, 0.6]]) # Replace with actual feature values
|
58 |
+
output = model(sample)
|
59 |
+
predicted_class = torch.argmax(output, dim=1)
|
60 |
+
print("Predicted class:", predicted_class.item()) # 0 = BEV, 1 = PHEV
|