--- license: mit tags: - tabular-classification - pytorch - electric-vehicles - binary-classification model-index: - name: Electric Vehicle Type Classifier results: - task: type: tabular-classification name: Tabular Classification metrics: - name: Accuracy type: accuracy value: 0.9989 --- # 🚗 Electric Vehicle Type Classifier ## Model Description This is a PyTorch-based neural network designed to classify electric vehicles as either: - **Battery Electric Vehicle (BEV)** - **Plug-in Hybrid Electric Vehicle (PHEV)** The model uses structured tabular data such as make, model, year, range, and price to predict the EV type. It is lightweight and optimized for fast inference on small-scale datasets. --- ## 🧠 Model Architecture - **Input Layer**: 9 features (e.g., make, model, year, range, price, etc.) - **Hidden Layers**: [128, 64, 32] neurons with ReLU activations - **Output Layer**: 2 neurons (BEV vs PHEV), softmax activation - **Loss Function**: CrossEntropyLoss - **Optimizer**: Adam - **Accuracy**: ~87% on test set (replace with actual) --- ## 📦 Usage ```python import torch from model import TabularModel # Ensure this matches your module structure # Load model checkpoint checkpoint = torch.load('ev_classifier_model.pth') model = TabularModel(input_size=9, hidden_sizes=[128, 64, 32], output_size=2) model.load_state_dict(checkpoint['model_state_dict']) model.eval() # Example inference sample = torch.tensor([[0.5, 0.3, 2022, 250, 35000, 1, 0, 0.8, 0.6]]) # Replace with actual feature values output = model(sample) predicted_class = torch.argmax(output, dim=1) print("Predicted class:", predicted_class.item()) # 0 = BEV, 1 = PHEV