File size: 2,161 Bytes
064e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b98c21
064e0ea
 
 
 
 
 
 
 
 
0b98c21
 
064e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ba2e5
064e0ea
 
 
 
 
 
0b98c21
 
 
 
064e0ea
 
 
 
 
 
43ba2e5
064e0ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

library_name: transformers
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: wav2vec2-base-960h-finetuned-ks
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8928571428571429
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-960h-finetuned-ks

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2908
- Accuracy: 0.8929

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 4

- eval_batch_size: 4

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| 0.5519        | 1.0   | 70   | 0.4880          | 0.8571   |

| 0.8835        | 2.0   | 140  | 0.6964          | 0.7286   |

| 0.3766        | 3.0   | 210  | 0.3114          | 0.8714   |

| 0.2251        | 4.0   | 280  | 0.2908          | 0.8929   |





### Framework versions



- Transformers 4.51.3

- Pytorch 2.7.0+cpu

- Datasets 3.5.1

- Tokenizers 0.21.1